On a class of operations over the space of integrable functions
by
W. ORLICZ (Poznan)

In this paper M[«] will denote a convex non decreasing continuous

funetion in ¢0,cc), vanishing only for =0 and such that M [w]/u—>0

as u—>0 and M[u]/u—oco as u-—>oco. LY will stand for the set of all
measurable functions ®(¢) in {a,b) for which there exists the integral

b
(1) [ M klz(t)1dt,

k being a constant (depending on #(¢)) such that o0<<h<1.
In I* a homogeneous norm |z may be defined as the infimum of
the numbers ! satisfying the condition

b
[ M Na ) 1d< 1.

It may be shown!) that under the usual definitions of addition of
elements and multiplication by scalars, with this norm L™ is a Banach
space. The space LY iy separable if and only if the function M[u] sa-
tisfies also the following condition:

(Ag) M2ul< oM [u]

a8  uz=u,.

1) Z. W. Birnbaum and W. Orlicz, Uber die Verallgemeinerung des Begriffes
der zueinander konjugierten Potenzen, Studia Mathematica 3 (1931), p.1-67; W. Or-
liez, Uber eine gewisse Klasse von Riumen vom Typus B, Bull. Acad. Polonaise (1932),
D. 207-220; W. Orlicz, Uber Rdwme LM, ibidem (1936), p. 93-107. :
In the second and the third of the above papers another norm is defined,
namely :

13
ol =sup| [ =)y de|,

1]
y(t) denoting a measurable function such that M Tly@®]1di<<l and M’(v) being

a function called complementary to M (w) (for its definition see the first of the above
mentioned papers, p.8). It is easily seen that llell < |lwllar, llollar <21l=f|, whence
both norms are equivalent.
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If the condition (A,) is satisfied, then for every z(t)eL? the integral (1)
exigts with k=1.

Let us denote the differences of the second order of the sequence
M{n] by A2M[n], i e.

AM[n]=Mn]—2M[n—11+M[n—2],

where M[—1] is to be set equal to 0. The convexity of M [u] implies
AM[n]>=0. If M[u]=u°, 1<a, then

AMn]~nt
The funections ,(tf) being bounded and measurable in {a,b), let
us write, given an integrable function z(¢) in <{e,b>,

o b
Silw,1= 3 A M [ln] [ (1) — 2, ()] 8,
n=1 a

and let us denote by I,[#] the integral (1).

I' will denote the space of integrable funetions with the usual norm
flelly, —M will stand for the space of bounded and measurable functions
in the interval ¢a,b>. The function y (i) being measurable, we shall denote
by sup*y(t) the infimum of the numbers k such that the set 1;7{y(t)>7c}
is of measure 0.

THEOREM 1. 1° Let the function (i) be integrable; then there exist
measurable and bounded funclions w,(t) such thai

(2) sup*lz, ()<<n  for a=1,2,...,
and for 0<<k<<l, O<I<E, the inequality
Sy [w, 1< (M 114+ M[2]4- ...+ M [y~ 1] (b —a) + L 2]
is satisfied with
1
ny=E (itk) + 1.

2% For every sequence o, (t) of bounded and measurable funatiowfs sa,tisf‘y-
ing the mequalz:ty (2), and for the integrable function w(t) the inequality

3) L [e]<(M[11+M[2]+ ... M5+ 1]) (b— a)+ Si 2]

holds for 0<k<<1 with

2k
wy=B (E—_—IE) —+1.

Proof. Let us write

B,=EB{(n—1<le@)|<n} for n=1,2,..;
. t
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then the following inequalities are satisfied:

(4) EIM [k(n— DB, < L [21< ) M [kn]|B,).
n= n=1

Now, for z(t), we define

x(t) if {m(t)i<'nv,

&

n signa(t)  elsewhere;
then
_f i+1) |En+q+tl<f]m ) — (¢ |dt<2 (a+ 1) B, 4,
(5) (3 410 0i) By
2 n)f & (1) — ap (8) | A < Zl(é:’ (n+1—d)w (1)) | B,

where w(n) stands for an arbitrary sequence with non negative terms.

‘We choose w(n) so that

1§ (m+1—f)w(@)=M[kn] for n=1,2,...
Since

MEn]—ME(n—1)]=w(l)+w(2) +...4+w(n),
we get
A M [knl=w(n)
Then (5) implies for k=1
S [wy ZlM[ln] | B,|.
Since for "

1

n;nozE(l T

)+1 0<I<E,

the inequality M[n—1]1> M[kn]> M[In] holds, and
ng—1 o .
NEMES ZIM[k%]]EnI-F _2 Mn—1}|8,|,
we get by (4) ™
7ng~1
Slan]< ( Z M [n])(b—a)+ I, [z].

Now let the condition (2) be satistied for measurable functions , ().

Since te{a,b) implies

2 (1) — an ()] < |2 (8) — @ (8)],
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we geb
S [27]1< S [2,].
By (5)
"Z' K (0] By < 8 [55])
For
2k
> — ———

= E(l—k) +1

the inequality
' M [n1>Mk(n+2)]

is satisfied, whence
ny—1 o0
21 M) Bpyal+ 3 M k(04 2)]| Byl < 81 [231< 8, [ 2],
Ne== R=ty

oo m+1
21 M [7n] | Byl < 8y [0, ]+ | ;; Min))(b—a);
n= =
this, together with (4), gives
nyj+4+1
Llo1< 8o+ ( 3 Hn])(b—a).
THEOREM 2. 1° Let (t) be in L ; then there exist measurable functions
, (t) such that
(6) sup® |2, (D)< KEn  for m=1,2,...,
where K=z, satisfying the inequality
(7) 8y [, 1< O],

where Cy=1-+ (M[1i+ M[2])(b— a).
29 If, for & sequence of bounded and measurable functions z,(t), the
condition (6) is satisfied with a constant K, and

8 [#,]=8< o0,
where 0< k<1, then @(t)eI™ and

”“’H<Gz +"~,

where Oy=2 sup{(M[1]+... 4+ M[4]) (b—a) 1).
Proof. Ad 1% M z(t)eL™, Z(t)=u=(t)/|(, then

1

f MiE@)la<l,
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whence applying Theorem 1.1° to the function Z(¢) with k==1/3 we see
that there exist measurable functions Z,(¢) such that sup” |7, (t)|<n
and
Sypf® ] < (M 1]+ M [2]) (b— o)+ Ih[ 7],
whence
8,17, 1< O

This implies immediately that the inequality (7) is satisfied for the
functions #(f) and z,(f)=|2||Z, (t)
. Ad 2°. Let us apply theorem 1.2°, with k=1/2, replacing the func-
tion M[u] by M[ku] and substituting x(i)/K and @,(¢)/E for z(t) and
o, (t) respectively. There follows

L|= :
m[f]g(ﬂ[l]—f—...—k MEDb—a)+ 4,

Fa[ e .
!M[ 2K ]‘”?Wfl]%n+M[4j)(b—a)+f.

Let
o= (M[1)+ ...+ M4 (b —a) + 2.

If p<1, then

b
Elz(t) :
JM[T] dt<1,
whence :
' 2K K S
”9’“<T <0’T+27;

if ¢>1, then
b
ko (t)|
g/ Pl SCAN
af [ T ]dtgl,

el<2Kp/k,

whence
or equivalently

el < Gz +2 -
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THEOREM 3%). Let the operation U(z)=T
the conditions: .
(a) U(x) maps the fundction z(t)=0 into itself;
(b) U(x) satisfies the condition of mesohitz
1T @) —Uyh<Elo—yl, for
¢) if # s a bounded and measurable function, the fum:twn Ulz,t) 15
also bounded and measurable,
(d) sup*|U(,t)—Uly,t)| <K sup*|a(t)—y(t)|
Under. these' hypotheses:
(o) we LM implies U(w)eL¥,
(B) U(x), as an operation from I* to TM, satisfies the Lipsohits con-
dition, 1. e.

(@,8) from L' to L' satisfy

7y5L1'

for =z,yeM.

1T@—T@I<Eulo—yll for @,yeL™,

(Y) the constant K above may be chosen as

Ky=20,K+ 40, K;.

Proof. Let el and let z(t) and 2,(f) denote such functions as
in theorem 2.1'. By (a) and (c)
(8) sup® | U (i, )| < K sup” o, (8)| < K],
and sinee (b) implies

U (2)— U (@)l < Kyl — tll s

we infer by (7)

[—n] f]U 1) — U (@y,,3)| dt

P

n=1
(9) o
<K, 5’A2M[ ] [ 13 ()~ 2a ()| B< K O]
n=1 2
In virtue of (8) and (9) we may apply Theorem 2. 2% to the funechions

Ulz,t) and U(z,,t) with k=1/2. Thus U(z)eL™ and
11U (@)1 < 2C K |la]] + 4K, Oy ol = Eellal]-

Given 2 bounded and measurable function y(#) let us define the

operation
V(z)=Ul(x+y)—TU)-

*) This is a generalization of a theorem of the author. See W. Orlicz, Ein

Satz iiber die Erweiterung von lnearen Operationen, Studia Mathematica 5 (1935),
p. 127-140; Theorem 1, p. 133.
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Since ¥ (x) satisties the conditions (a)-(d) of our Theorem, therefore, by
what has just been proved,

(10) IV (@—yli=11T (@) — U ()< Eplle—y]).

Ng{w we shall prove the validity of the inequality (10) for every
#,ye L. Let ,(8), ,(t) be the functions defined as

m(t=[”“ if ¥ i i<,
7 signa (¢) n signy(t) elsewhere.

o)<,

t)=
elsewhere, ¥n(®

Since

]‘m‘n(t) - yn(t)f < ‘m(t)" !l(t)|
for a<t< b, therefore

b
[t (1) — 9, (2)] DT e~y ()]
) [ o9l ]"K! M[ o] }"Kl’

and this implies
(11) . o — yall<llw— g
Let 2, be functions of LM converging asymptotically to z(¢), and let

l=’}i_njo lenlls  lleml 2.

If I> 0, the asymptotic convergence of a,(f)/lle,fl to 2(2)/l implies

b
1>lm [ ¥ [—___’z"“t)'] dt}fbM[lz(t)l] i,

m
= [i2ndl !

whence
(12) lell<i=1lim|la,|.

This inequality is valid also if 1=0, for in this case

b
meElzm(t)l]dt <llewll
for almost all 4%, whence 2(f)=0.
By hypothesis (b) the sequence 2, (t)=U(a,)— U(
. = ) —U(Y,) converges
asymptotically to #(t)=U(x)—T(y); thus (10)-(12) implies
1T (@) — U (9)l|< i || U (@) — U (3, < K gl — .
n—o0
Remark 1. Let us note that the condition (A;) was no
arl t assumed
for M [u]in the above Theorem, and this implies in gerzlera.l that

i o —a,j[> 0,  Fm ly — g, >0.
-—ro0 Her0o
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Remark 2. If U(2) is a linear operation from I} to I' mapping
bounded functions into bounded functions, then the hypotheses of The-
orem 3 are satisfied.

Indeed, by a well-known theorem of Banach?), U(s) is linear as
an operation from M to M, and this implies the hypothesis (d); U(x)
being linear in I, the conditions (a) and (b) must also be satisfied.

THEOREM 4. Let M[u] satisfy the condition (A,) and let operations
U, (x) satisfy the hypotheses (a)-(d) from theorem 3, with common Lipschitz
constants K, and K. If the sequence U,(z,t) converges asymplotically for
every » belonging to a set R dense in IM, composed of bounded functions,
then for every w(t)e L™
(13) 1T (2) — Un (@) >0,

s Ny, T —> 00,
Proof. By theorem 3

(14) 1Un(2) = U< Eple—yll  for

By our hypothesis
sup™ | Un (@,1)| < K sup™ o (1))

n=1,2,...

for zeR, and U,(z,t)— Uy (#,1) 30, as m,n->oco, whence we infer that
(13) is satisfied for xzeR. Indeed, we R implies '

b
(18) [ MUy (1) — Un(a,)]1d~0,

and (15) implies (13) if M [u] satisfies the condition (A,). In order to prove
(13) for every ze I it suffices to apply the inequality (14) and the

following one:

1 U (@) — U (@M <N Un (@) — Ul 11 Un () — U (9
HNUn () — Un @< 2K plle — 9+ Un(5) — U (95
here yeR.
(Regu par la Rédaction le 18. 12. 1953)

3) See 8. Banach, Théorie des opérations Tinéaires, Monografie Matematyczne,
Warszawa 1932; Théordme 7, p. 41.
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