

On a class of operations over the space of integrable functions

by W. ORLICZ (Poznań)

In this paper M[u] will denote a convex non decreasing continuous function in $\langle 0, \infty \rangle$, vanishing only for u = 0 and such that $M[u]/u \to 0$ as $u \to 0$ and $M[u]/u \to \infty$ as $u \to \infty$. L^M will stand for the set of all measurable functions x(t) in $\langle a, b \rangle$ for which there exists the integral

(1)
$$\int_{0}^{b} M[k|x(t)|] dt,$$

k being a constant (depending on x(t)) such that $0 \le k < 1$.

In L^M a homogeneous norm $\|x\|$ may be defined as the infimum of the numbers l satisfying the condition

$$\int_a^b M[l^{-1}|x(t)|]dt \leqslant 1.$$

It may be shown') that under the usual definitions of addition of elements and multiplication by scalars, with this norm L^M is a Banach space. The space L^M is separable if and only if the function M[u] satisfies also the following condition:

$$M[2u] \leqslant cM[u]$$
 as $u \geqslant u_0$

In the second and the third of the above papers another norm is defined, namely

$$||x||_{M} = \sup \left| \int_{a}^{b} x(t) y(t) dt \right|,$$

y(t) denoting a measurable function such that $\int_{a}^{b} M'[|y(t)|] dt \leqslant 1$ and M'(v) being a function called *complementary* to M(u) (for its definition see the first of the above mentioned papers, p. 8). It is easily seen that $||x|| \leqslant ||x||_M$, $||x||_M \leqslant 2 ||x||$, whence both norms are equivalent.

If the condition (Δ_2) is satisfied, then for every $x(t) \in L^M$ the integral (1) exists with k=1.

Let us denote the differences of the second order of the sequence M[n] by $\Delta^2 M[n]$, *i. e.*

$$\Delta^2 M \lceil n \rceil = M \lceil n \rceil - 2M \lceil n - 1 \rceil + M \lceil n - 2 \rceil,$$

where M[-1] is to be set equal to 0. The convexity of M[u] implies $\Delta^2 M[n] \ge 0$. If $M[u] = u^a$, $1 < \alpha$, then

$$\Delta^2 M \lceil n \rceil \sim n^{\alpha-2}$$
.

The functions $x_n(t)$ being bounded and measurable in $\langle a,b \rangle$, let us write, given an integrable function x(t) in $\langle a,b \rangle$,

$$S_k[x_n] = \sum_{n=1}^{\infty} \Delta^2 M[kn] \int_a^b |x(t) - x_n(t)| dt,$$

and let us denote by $I_k[x]$ the integral (1).

 L^1 will denote the space of integrable functions with the usual norm $\|x\|_1$, -M will stand for the space of bounded and measurable functions in the interval $\langle a,b \rangle$. The function y(t) being measurable, we shall denote by $\sup^* y(t)$ the infimum of the numbers k such that the set $E\{y(t)>k\}$ is of measure 0.

THEOREM 1. 1º Let the function x(t) be integrable; then there exist measurable and bounded functions $x_n(t)$ such that

(2)
$$\sup^* |x_n(t)| \leq n \quad \text{for} \quad n=1,2,\ldots,$$

and for 0 < k < 1, $0 \le l \le k$, the inequality

$$S_1[x_n] \leq (M[1] + M[2] + ... + M[n_0 - 1])(b-a) + I_1[x]$$

is satisfied with

$$n_0 = \mathbf{E}\left(\frac{1}{1-k}\right) + 1.$$

 2^{0} For every sequence $x_{n}(t)$ of bounded and measurable functions satisfying the inequality (2), and for the integrable function x(t) the inequality

(3)
$$I_{k}[x] \leq (M[1] + M[2] + \dots M[n_{1}+1])(b-a) + S_{1}[x_{n}]$$

holds for 0 < k < 1 with

$$n_1 = \mathbf{E}\left(\frac{2k}{1-k}\right) + 1.$$

Proof. Let us write

$$E_n = E_t \{ (n-1) \leqslant |x(t)| < n \}$$
 for $n = 1, 2, ...;$

¹⁾ Z. W. Birnbaum and W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Mathematica 3 (1931), p. 1-67; W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polonaise (1932), p. 207-220; W. Orlicz, Über Räume L^M, ibidem (1936), p. 93-107.

then the following inequalities are satisfied:

(4)
$$\sum_{n=1}^{\infty} M[k(n-1)] |E_n| \leq I_k[x] \leq \sum_{n=1}^{\infty} M[kn] |E_n|.$$

Now, for x(t), we define

$$x_n^*(t) = \begin{cases} x(t) & \text{if } |x(t)| < n, \\ n & \text{sign } x(t) & \text{elsewhere;} \end{cases}$$

then

$$\sum_{i=0}^{\infty} \left(i+1 \right) |E_{n+2+i}| \! \leqslant \! \int\limits_{a}^{b} |x(t) - x_{n}^{\star}(t)| \, dt \! \leqslant \! \sum_{i=0}^{\infty} \left(i+1 \right) |E_{n+i}| \, ,$$

(5)
$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} (n+1-i) w(i) \right) |E_{n+2}|$$

$$\leqslant \sum_{n=1}^{\infty} w(n) \int\limits_{a}^{b} |x(t) - x_{n}^{\star}(t)| \, dt \leqslant \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} (n+1-i)w(i)\right) |E_{n}| \, ,$$

where w(n) stands for an arbitrary sequence with non negative terms. We choose w(n) so that

$$\sum_{i=1}^{n} (n+1-i) w(i) = M[kn] \quad \text{for} \quad n=1,2,...$$

Since

$$M[kn]-M[k(n-1)]=w(1)+w(2)+...+w(n),$$

we get

$$\Delta^2 M \lceil kn \rceil = w(n)$$

Then (5) implies for k=l

$$S_l[x_n^*] \leqslant \sum_{n=1}^{\infty} M[ln]|E_n|.$$

Since for

$$n \geqslant n_0 = \mathbf{E}\left(\frac{1}{1-k}\right) + 1, \qquad 0 \leqslant l \leqslant k,$$

the inequality $M[n-1] > M[kn] \ge M[ln]$ holds, and

$$S_{l}[x_{n}^{*}] \leqslant \sum_{n=1}^{n_{0}-1} M[kn]|E_{n}| + \sum_{n=n_{0}}^{\infty} M[n-1]|E_{n}|,$$

we get by (4)

$$S_l[x_n^{\bullet}] \leqslant \left(\sum_{n=1}^{n_0-1} M[n]\right)(b-a) + I_1[x].$$

Now let the condition (2) be satisfied for measurable functions $x_n(t)$. Since $t \in \langle a, b \rangle$ implies

$$|x(t)-x_n^*(t)| \leq |x(t)-x_n(t)|,$$

we get

$$S_k[x_n^*] \leq S_k[x_n].$$

By (5)

$$\sum_{n=1}^{\infty} M[n] |E_{n+2}| \leqslant S_1[x_n^*].$$

For

$$n \geqslant n_1 = \mathbb{E}\left(\frac{2k}{1-k}\right) + 1$$

the inequality

$$M[n] \geqslant M[k(n+2)]$$

is satisfied, whence

$$\begin{split} \sum_{n=1}^{n_1-1} M[n] |E_{n+2}| + \sum_{n=n_1}^{\infty} M[k(n+2)] |E_{n+2}| \leqslant S_1[x_n^{\bullet}] \leqslant S_1[x_n], \\ \sum_{n=1}^{\infty} M[kn] |E_n| \leqslant S_1[x_n] + (\sum_{n=1}^{n_1+1} M[n])(b-a); \end{split}$$

this, together with (4), gives

$$I_k[x] \leq S_1[x_n] + (\sum_{n=1}^{n_1+1} M[n])(b-a).$$

THEOREM 2. 1^0 Let x(t) be in L^M ; then there exist measurable functions $x_n(t)$ such that

(6)
$$\sup^* |x_n(t)| \leqslant Kn \quad \text{for} \quad n = 1, 2, \dots,$$

where K=||x||, satisfying the inequality

(7)
$$S_{1/2}[x_n] \leqslant C_1 ||x||,$$

where $C_1 = 1 + (M[1] + M[2])(b-a)$.

 2^{o} If, for a sequence of bounded and measurable functions $x_n(t)$, the condition (6) is satisfied with a constant K, and

$$S_k[x_n] = S < \infty,$$

where $0 < k \leq 1$, then $x(t) \in L^M$ and

$$||x|| \leqslant C_2 \frac{K}{k} + 2 \frac{S}{k},$$

where $C_2 = 2 \sup ((M[1] + ... + M[4])(b-a),1)$.

Proof. Ad 1°. If $x(t) \in L^M$, $\overline{x}(t) = x(t)/||x||$, then

$$\int\limits_{}^{b}M[|\bar{x}(t)|]dt\leqslant 1,$$

whence applying Theorem 1.1° to the function $\bar{x}(t)$ with k=1/2 we see that there exist measurable functions $\bar{x}_n(t)$ such that $\sup^* |\bar{x}_n(t)| \leq n$ and

$$S_{1/2}[\bar{x}_n] \leq (M[1] + M[2])(b-a) + I_1[\bar{x}],$$

whence

$$S_{1/2}[\bar{x}_n] \leqslant C_1$$
.

This implies immediately that the inequality (7) is satisfied for the functions x(t) and $x_n(t) = ||x|| \overline{x}_n(t)$.

 $Ad\ 2^0$. Let us apply theorem 1.2°, with k=1/2, replacing the function M[u] by M[ku] and substituting x(t)/K and $x_n(t)/K$ for x(t) and $x_n(t)$ respectively. There follows

$$I_{1/2}\left[\frac{x}{K}\right] \leqslant (M[1] + \ldots + M[4])(b-a) + \frac{S}{K},$$

i. e.

$$\int_{a}^{b} M\left[\frac{k|x(t)|}{2K}\right] dt \leqslant (M[1] + \ldots + M[4])(b-a) + \frac{S}{K}.$$

Let

$$\varrho = (M[1] + ... + M[4])(b - a) + \frac{S}{K}.$$

If $\varrho \leqslant 1$, then

$$\int\limits_a^b M\bigg[\frac{k|x(t)|}{2K}\bigg]\,dt\!\leqslant\!1,$$

whence

$$||x|| \leqslant \frac{2K}{k} \leqslant C_2 \frac{K}{k} + 2 \frac{S}{k};$$

if $\varrho > 1$, then

$$\int_{a}^{b} M\left[\frac{k|x(t)|}{2K\rho}\right] dt \leqslant 1,$$

whence

$$||x|| \leq 2K\varrho/k$$

or equivalently

$$||x|| \leqslant C_2 \frac{K}{k} + 2 \frac{S}{k}.$$

THEOREM 3²). Let the operation U(x) = U(x,t) from L^1 to L^1 satisfy the conditions:

- (a) U(x) maps the function x(t) = 0 into itself;
- (b) U(x) satisfies the condition of Lipschitz:

$$||U(x)-U(y)||_1 \leq K_1||x-y||_1$$
 for $x, y \in L^1$;

- (c) if x is a bounded and measurable function, the function U(x,t) is also bounded and measurable.
 - (d) $\sup^* |U(x,t)-U(y,t)| \leqslant K \sup^* |x(t)-y(t)|$ for $x,y \in M$.

Under these hypotheses: (a) $x \in L^M$ implies $U(x) \in L^M$,

(β) U(x), as an operation from L^M to L^M , satisfies the Lipschitz condition, i. e.

$$||U(x)-U(y)|| \leqslant K_{\boldsymbol{M}}||x-y|| \quad \text{for} \quad x,y \in L^{\boldsymbol{M}},$$

 (γ) the constant K_M above may be chosen as

$$K_M = 2C_2K + 4C_1K_1$$
.

Proof. Let $x \in L^M$ and let x(t) and $x_n(t)$ denote such functions as in theorem 2.1°. By (a) and (c)

(8)
$$\sup^{\star} |U(x_n,t)| \leqslant K \sup^{\star} |x_n(t)| \leqslant K ||x|| n,$$

and since (b) implies

$$||U(x)-U(x_n)||_1 \leqslant K_1||x-x_n||_1$$

we infer by (7)

$$\sum_{n=1}^{\infty}\varDelta^{2}M\left[\frac{1}{2}\;n\right]\int\limits_{a}^{b}|U\left(x,t\right)-U\left(x_{n},t\right)|dt$$

(9)
$$\leqslant K_1 \sum_{n=1}^{\infty} \Delta^2 M \left[\frac{1}{2} n \right] \int_a^b |x(t) - x_n(t)| dt \leqslant K_1 C_1 ||x||.$$

In virtue of (8) and (9) we may apply Theorem 2.2° to the functions U(x,t) and $U(x_n,t)$ with k=1/2. Thus $U(x)\in L^M$ and

$$||U(x)|| \leq 2C_2K||x|| + 4K_1C_1||x|| = K_M||x||.$$

Given a bounded and measurable function y(t) let us define the operation

$$V(x) = U(x+y) - U(y).$$

²⁾ This is a generalization of a theorem of the author. See W. Orlicz, Ein Satz über die Erweiterung von linearen Operationen, Studia Mathematica 5 (1935), p. 127-140; Theorem 1, p. 133.

Since V(x) satisfies the conditions (a)-(d) of our Theorem, therefore, by what has just been proved,

$$||V(x-y)|| = ||U(x)-U(y)|| \leqslant K_M ||x-y||.$$

Now we shall prove the validity of the inequality (10) for every $x, y \in L^M$. Let $x_n(t)$, $y_n(t)$ be the functions defined as

$$x_n(t) = \begin{cases} x(t) & \text{if } |x(t)| < n, \\ n \operatorname{sign} x(t) & \text{elsewhere,} \end{cases} \quad y_n(t) = \begin{cases} y(t) & \text{if } |y(t)| < n, \\ n \operatorname{sign} y(t) & \text{elsewhere.} \end{cases}$$

Since

$$|x_n(t)-y_n(t)| \leq |x(t)-y(t)|$$

for $a \leq t \leq b$, therefore

$$\int\limits_{a}^{b}M\left[\frac{\left|x_{n}(t)-y_{n}(t)\right|}{\left|\left|x-y\right|\right|}\right]dt\leqslant\int\limits_{a}^{b}M\left[\frac{\left|x(t)-y\left(t\right)\right|}{\left|\left|x-y\right|\right|}\right]dt\leqslant1,$$

and this implies

$$||x_n - y_n|| \leqslant ||x - y||.$$

Let z_n be functions of L^M converging asymptotically to z(t), and let

$$l = \lim_{n \to \infty} ||z_n||, \qquad ||z_{n_i}|| \to l.$$

If l>0, the asymptotic convergence of $z_{n_i}(t)/||z_{n_i}||$ to z(t)/l implies

$$1\!\geqslant\!\lim_{t\to\infty}\int\limits_a^bM\left[\frac{|z_{n_t}(t)|}{||z_{n_t}||}\right]dt\geqslant\!\int\limits_a^bM\left[\frac{|z(t)|}{l}\right]dt,$$

whence

$$||z|| \leqslant l = \lim_{n \to \infty} ||z_n||.$$

This inequality is valid also if l=0, for in this case

$$\int_{a}^{b} M[|z_{n_{i}}(t)|] dt \leqslant ||z_{n_{i}}||$$

for almost all i's, whence z(t) = 0.

By hypothesis (b) the sequence $z_n(t) = U(x_n) - U(y_n)$ converges asymptotically to z(t) = U(x) - U(y); thus (10)-(12) implies

$$\parallel U(x)-U(y)\parallel\leqslant \lim_{n\to\infty}\parallel U(x_n)-U(y_n)\parallel\leqslant K_M\parallel x-y\parallel.$$

Remark 1. Let us note that the condition (Δ_2) was not assumed for M[u] in the above Theorem, and this implies in general that

$$\overline{\lim_{n\to\infty}} \|x-x_n\| > 0, \qquad \overline{\lim_{n\to\infty}} \|y-y_n\| > 0.$$

Remark 2. If U(x) is a linear operation from L^1 to L^1 mapping bounded functions into bounded functions, then the hypotheses of Theorem 3 are satisfied.

Indeed, by a well-known theorem of Banach³), U(x) is linear as an operation from M to M, and this implies the hypothesis (d); U(x) being linear in L^1 , the conditions (a) and (b) must also be satisfied.

THEOREM 4. Let M[u] satisfy the condition (Δ_2) and let operations $U_n(x)$ satisfy the hypotheses (a)-(d) from theorem 3, with common Lipschitz constants K_1 and K. If the sequence $U_n(x,t)$ converges asymptotically for every x belonging to a set R dense in L^M , composed of bounded functions, then for every $x(t) \in L^M$

$$||U_n(x) - U_m(x)|| \to 0,$$

as $m, n \to \infty$.

Proof. By theorem 3

(14)
$$||U_n(x)-U_n(y)|| \leqslant K_M ||x-y|| \quad \text{for} \quad n=1,2,...$$

By our hypothesis

$$\sup^* |U_n(x,t)| \leqslant K^* \sup^* |x(t)|$$

for $x \in R$, and $U_n(x,t) - U_m(x,t) \stackrel{\text{as}}{\to} 0$, as $m, n \to \infty$, whence we infer that (13) is satisfied for $x \in R$. Indeed, $x \in R$ implies

$$\int\limits_{z}^{b}M[|U_{n}(x,t)-U_{m}(x,t)|]dt\rightarrow0\,,$$

and (15) implies (13) if M[u] satisfies the condition (Δ_2). In order to prove (13) for every $x \in L^M$ it suffices to apply the inequality (14) and the following one:

$$\begin{split} \|\,U_n(x) - U_m(x)\| \leqslant & \|\,U_n(x) - U_n(y)\| + \|\,U_n(y) - U_m(y)\| \\ + & \|\,U_m(y) - U_m(x)\| \leqslant 2K_M \|x - y\| + \|\,U_n(y) - U_m(y)\| ; \end{split}$$

here $y \in R$.

(Reçu par la Rédaction le 18. 12. 1953)

³) See S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warszawa 1932; Théorème 7, p. 41.