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En comparant (8) et (9), il vient, pour ¢=k—1,
ézktl _ l (Ak—-l Bk—l)
BZIc—l 2 Bk——l Alr—-l
Cela prouve que le (k—1)®™° réduit de Ve, substitué au lien de o,

dans la formule (1) donne pour @, le (25—1)P"° réduit de 1/ 0. D'aprég
la proposition (I), les itérations postérieures donneront tioujours un ré-

duit de /e.
6. Considérons encore lo développement du nomhre 1/13:

3(1,1,1,1,6);

—+e¢

la période est ici impaire. Les réduits initiaux sont

g o 7 11 18 119 137 256 393 649 4287 4936
"7 3 5’ 337 38 71’ 109’ 180 ° 1189’ 1369’
9223 14159
2558’ 3927 '

En prenant pour =, successivement les valeurs des cing réduits initianx,
‘on trouve pour m, ,, moyennant (1), '
11 35 101 119 649 14159
3’ 8’ 28’ 33" 180’ 3927
D’aprés la proposition (I), le quatridme des réduits, est-a-dire lo
nombre 18/5 reproduit, moyennant (1), un réduit de y/13. Or, on voit
que les réduits antérieurs 3 et 11/3, ainsi que 119/33, reproduisent encore

des réduits. Il serait peut-étre intéressant de trouver des rigles générales
qui permettraient A’indiquer tous les réduits jouissant do telles propriétés.

On a new method of solving homogeneous systems of linear
difference equations with constant coefficients

by J.CERMAK (Brno)

1. In 1889 appeared a paper of E. Weyr, O theorii forem bilinearngjch
[1]. It contains an original theory of matrices and its applications in diffe-
rent branches of mathematics. .

Using Weyr’s theory I shall present here a new method of solving
homogeneous systems of linear difference equations with constant coeffi-
cients. I shall show that general solution of the above mentioned system
is given and — what is especially remarkable — can be expressed by
explicit formulas, if a reduced normal system of vectors, relative to the
matrix of coefficients of the system is known. The reduced normal system
of vectors is a slighfly modified concept of the normal system of vectors
of Weyr’s theory.

I want to point out here that complete solutions of the above mentio-
ned system were given in course of time by many mathematicians. Par-
ticularly neat were those of L. Stickelberger [2], O.Perron [3] and
J.Kaucky [4]. O. Perron also obtained explicit formulas for solution ;
of course his method is quite different from mine.

The idea of the method presented here is due to 0." Bortavka,
who bas derived in a similar way the general solution (hitherto not publi-
shed) of homogeneous systems of linear differential equations with con-
stant coefficients. It may be mentioned that independently of him, in
a somewhat different manner but also starting from a theorem of Weyr’s
theory, M. Kumorovitz has given the general solution of the same
system of differential equations [5].

It was J. Kaucky who called my attention to the difference
oquations.

2. Let A be a square matrix!) with elements in the field of complex
numbers and & one of its characteristic roots. Then zero is the characte-

') Square matrices of order n will be denoted by capital Latin characters, vectors
in n-dimensional vector space by small Gothic or bold face type Latin characters with
possible superscripts and identified with one-column matrices. E is unit-matrix. The
determinant of 4 will be written [4].
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ristic root of the matrix A—a¥. If ¢ is of mulfiplicity «, lot

ay, @+ay, etestag, ..., atat.ta=a,...

be the nullities?) of the succesive powers

(1) A—aE, (A—aE)p2, ..., (A—aB), ...,
where r is the firgt integer giving the maximum nullity «?2).

Numbers- a,,as,...,a, are positive integers and are called characte-
ristic numbers of A relative to the characteristic root . It can be ghown

that they satisfy the inequalities
0> 4> 0>

Further it can be shown that there exists a system of vectors relative
to the characteristic root zero of A—aF consisting of a; +ay+...++a, =«
(linearly) independent vectors, °

1,1 1,
at, ..., a%,

2,1 2, 2,0, 4
[N S Y S SR LU N

(2)

.’a‘r,rx,’ar,a,-bl yorey ar,n,_l,ar,a,_l+1 oo ar,n1 )’

which is called the normal system of vectors relative to the characteristic
root a of A and has the following noteworthy quality: 4 — oE transforms
every vector (2), except those standing in the last row, into the vector
whose symbol is just below it, and vectors in the last row into zero
vectors.

Thus the following formulas are valid:

(A—aB)o=atl for 1<ur—1

®3) (v=1,2
=1,2,0 00y 1)
(A—aE)a* =0 for pu=r e

© ?) If the rank of 4 is h, then n—h is called the nullity of A.

®) It can be shown that in the row of matrices (1) exists the first matrix such
that its nullity is o, and all those following have also the nullity a.

%) Naturally, if, for instance, a,=a,_,, the symbols alh“r-i‘l,.‘“ for u=2,3,...,r
cannot he read in the above schema.

The concept of the normal system of vectors relative to a .characteristic root
of a matrix is well known in the modern algebra but it doesn’'t figure usually
under the name ‘“normal system”. See for instance R. Courant, Methoden der
mathematischen Physik I, Berlin 1931, p- 87 or U. M. Dexnsdang, Jeryuu no
aunelinol ansebpe, Mockpa-Jlennarpay 1951, p. 157-160,
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We can construet such a normal system of vectors in the following
way:
For vectors in the first row

(4) at,...,abe

we take a, arbitrary independent vectors which (4 —aR)" transforms
into zero vectors and (A-—aeE) " into independent vectors. Vectors in
the second row

. @ 9
(5) a¥l,... 0% a2etl L gher

we obtain as follows: We transform vectors (4) by (4—aF) and thus
get the first «, vectors (5); we see that (A4—aB) ' transforms these vec-
tors into zero veetors. If a,<a,_;, let us choose further arbitrary vectors,
a,_y—a, in number, in such a way that all vectors (3) are independent
and that (A —eB)~* transforms them into zero vectors and (4—aE)*
into independent vectors. Vectors in the third row

(6) a®t, ..., 0 bt gbe ghe-itl | gder-e
we obtain as follows: We transform vectors (5) by (4 —aF) and thus
get the first «,_, vectors (6); we see that (A—aB)~? transforms these
vectors into zero vectors. If «._,<a,_,, let us choose further arbitrary
vectors, a,_,—a,_, in number, in such a way that all vectors (6) are inde-
pendent and that (A—aB)y~* transforms them into zero vectors and
(A—aE)y - into independent vectors. And in this way we go on. Weyr’s
theory guarantees that competent calculations shall be carried out.

Let a,b,...,f denote all distinet characteristic roots of A and
a,B,...,p their multiplicities. Then to every characteristic root there
corresponds a normal system of vectors and these normal systems contain
altogether a--§-...4-¢p=n vectors. The set of these n vectors is called
the normal system of vectors relative to the matriz A, and it can be shown
that all these vectors are independent.

The following remark is important for our purpose:

Remark I If A is real, i. e. elements 6f A are real numbers, then
its characteristic roots are either real or occur in conjugate pairs. Then
it can easily be shown that to conjugate pairs of complex roots corres-
pond mormal systems consisting of conjugate pairs of vectors.

Suppose now that the characteristic root @ of A of multiplicity «
is 0, and form the matrix

() (A—aB).

SR
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The matrix (7) has evidently o-multiple characteristic root zero,
and it is easy to see that Weyr’s characteristic numbers relative to this
root are the same as the characteristic numbers relative to the characte-
ristic root @ of A and that the normal system of vectors relative to thiy
root is cbtained from the normal system (2), for instance, in the following
way:

For vectors in the first row we directly choose vectors (4), for
vectors in the second row we take vectors (5) multiplied by the
scalar 1/a; generally, we then take for vectors in the k-th row the
vectors from the %-th row of the system (2) multiplied by the sca-
lar (1/a)-?.

The normal system of vectors relative to the characteristic roob
zero of the matrix (7) will be called the reduced normal system of
vectors relative to the characieristic root & of A and denoted by

1,1 1,0,
a,...,a",
2,1 2,0, o2.a.+1 2,0,
) >, e, e, an
7,1 " - "
a’ _7a,u,,ar,a,4 1 ,..A,ar’“’*l,a”“'—l“,...,'ar”“l .

There are valid formulas similar to formulas (3):

1
E(A—aE)a“”:a““’” for 1< ugr—1,

(9) . (v=1,2,...,0_,41).
E(A-—a,E) a”=0 for u=r,

Buppese now that all distinet characteristic roots of 4,a,b,...,f
of multiplicities a,f,...,p are different from zero. Then to every characte-
ristic root there corresponds a reduced normal system of vectors and
these systems contain altogether a+-p--...+p==n vectors. The sot of
these n vectors will be called the reduced mormal system of wvectors re-
lative to A. Since the reduced normal system rvelative to A consists eithor
of the vectors of the normal system relative to A or of their scalar multi-
ples, it follows from the independence of the vectors of the normal system
that the vectors of the reduced normal system are likewise independent.

From remark I easily follows another important

Remark IT. If 4 is real and has a conjugate pair of complex roots,

then vectors of corresponding reduced normal systems oceur likewise
in conjugate pairs.

icm
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3. Cousider now the system:of linear homogeneous difference equa-
tions in the normal form )
. n .
(10) g (w-+1)= Y a0, () (1=1,2,...,n),

i=1
where a; are constants, # independent variable.
A set of n particular solution

(11) ul}c(w):uzk(m)v“:unk(w)’ (k=1,2,...,m),

will be identified with vectors ul(z),u*(x),...,u" (z) and denoted b.y the
matrix U(x), so that the columns of U(x) are precisely those particular

solutions (11).
In matrix notation the system (10) is expressed by

u(p+1)=Au(z),

where A is the matrix of coefficients a;.

Tet us observe that we can suppose, without loss of generality,
that |4|s 0 and followingly all characteristic roots of A are #05).

From the theory of systems of the type (10) it is then well known
that the solutions make up an n-dimensional vector space. The base of this
space is called the fundamental system of solutions which is a seb of n
solutions ut(z),us(x),...,u" (z) such that |U(z)|#0 for all x. The general
solution, and hence every solution, is then a linear combination of. th.e
solutions of the fundamental system, whose coefficients are periodic
functions with the period 1. -

Thus, in order to find all solutions of (10), it is sufficient to find a ba-
se, 4. ¢. a fundamental system of solutions.

Now (10) ean be written in the form

(10a) Au(z)=(4A—E)u (=), Au(@)=u(z+1)—u(z).
Let us set
(12) : u ()= 1"y (x)

and seek to determine the constant A and the vector y () (whose compcl)-
nents are suitable functions of the independent variable ) so thab this
will be a solution of (10).

Substituting (12) in (10a) and dividing by ! we obtain

(13) dy(e) = (A-AB)y (a).

5) See P.Funk [6].
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Thus if the vector (12) is a solution of (10), then y (=) is a solution of (13)
which is also a system of linear homogeneous difference equations with
constant coefficients.

I shall show that the fundamental system of solutions of (13) is de-
termined and can be expressed by explicit formulas when the characte-
ristic Toots and a reduced mormal system of vectors relative to A are
known. In other words, to solve system (13), and hence also (10), it is
sufficient to find the characteristic roots of 4 and a cerfain reduced
normal system of vectors relative to A.

First of all we shall prove the following

LevMA 1. Let a be an arbitrary characteristic root of A of multiplicity
a and (8) o certain reduced normal system relative to it. Then to the root o cor-
respond o solutions of (10) of the form

oo B B
(14)
o #lw—1)... (s~ (r—p—1)) a’r“}
(r—m)!
Sor p=1,2,..r—1, v=1,2,...,0,_,.y, a0d

YIRS TR o — —
w=a"a™ for w=r, v=1,2,...,q,.

Proof. Let us coordinate to every wvector a* tho vector

g Doy m(mwl)awz’v_[_ oy w(@—1)...(8— (1 —p—1)) o
N § 2! (r—u)!
for p=1,2,...,7—1, v=l,2,..;,a,._#+1, and the vector

y'=a" for u=r, v=1,2,...,a,
By (9) we have

dyr —ar+ir 4 Z ey P01 <m 1) @t W-l)---(w—(‘f—M—E))ar,y
1! T (r—p—1)1

M+2v +

= a,E){wu_*_ au+lv+ (5;' 1)

8= fo—(—p—2) ,, @@=1)..(e—@—p—1)
A v —a! “}

(A—aB)y"

iR

icm

Tinear difference equations 201
for
p=1,2,..,7—1, v=1,2,...,0_,41,
and
1 1
Ay’ =0= a_(A —aB) @ =—(A—aE)y”
a
for

— — )
p=r, v=1,2,...,0q;.

Thus every vector y*” is a solution of (13). Henge, in view of (12), all
vectors (14) are solutions of (10).

Thus to every characteristic root of A there corresponds a set of
solutions, their number being always equal to the multiplicity of the
respective root. With the help of this lemma we easily obtain the above
mentioned result which we shall express by

THEOREM 1. Let all distinet characleristic roots of A be a,by...,f
of multiplicities a,B,...,9. All solutions of the form (14) corresponding io
these characteristic roots make up the fundamental system of solutions of (10).

Proof. By lemma I, to every characteristic root a (b,...,f) corres-
pond, a (B,...,¢) solutions of (10). Thus we get altogether a4-f4-...4-p=n
solutions, a.nd it only remains to be shown that these n solutions form
the fundamental system. But it is easy to see that the determinant of
the matrix of these solutions is equal to the product of the function
oxp(aloga+plogh+...+plogf) and the determinant of the reduced
normal system of vectors relative to A, and hence 20 for all z since
vectors' of the reduced normal system are mdependent

. Thus (10) is completely solved.

If the independent variable in (10) is real and A is real, the question
arises whether a real base of solutions can be constructed.

If all characteristic roots of A are real, then in order to find the fun-
damental system of solutions we can make use of real reduced normal
systems of vectors, so that we evidently obtain a real base.

If some characteristic roots of A are complex, they occur in conjugate
pairs a=a,-+ia,,d=a; —ia,. Following remark II such reduced normal
system of vectors can be found that to every vector a“’ of a reduced
normal system relative to & corresponds a conjugate vector a*” of the
reduced normal system relative to @. Thus we see that for every solution
w™’ corresponding, in view of the formulas (14), to the characteristic
r00t @ there exists a conjugate solution u“* corresponding, in view of the

same formulas, to 4. Vectors

1 1
w1l _ U il 2 kg Ty
(15) u” =3 (w4 u*), w =5 (u™ —u”)
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are real, independent and are of course solutions of (10). They are given
by the formulas
W= g®(q"" cosyz— ¢ sinyir),

w? = o* (™" cosyx -+ g sin y)

where g=mod (a,-+4a,), y=2arg (¢;4ia,) and g, q** are vectors whose
components are real and imaginary parts of components of the vector
g

This result we can express by the following:

TaEorEM IT. If the independent variable in (10) is real and the cocffi-
cients ay; are real numbers, then & real fundamental system of solutions
can be obtwined, and solutions of this fundamental system are of the form
(14) or consist of pairs (15).

.
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Sur certaines fractions continues finies
par J. MIKUSINSKI (Wroclaw)
1. Développons chacune des n—1 fractions
1
"

n—1

2
—geiey
P

~

(4

en une fraction continue, et désignons par K (n) le plus grand nombre

de termes dans les développements obtenus.
Par exemple, on a

2 5
(n, ?=(312)7 =(2,3), ?:(1:212)7

3
? “=(171)3)7

=
Il

Z=(1,6).

7

Les plus longues des fractions confinues précédentes contiennent 3 ter-

mes, on a donc
K(7)=

Le procédé ci-dessus détermine une fonction!) qui fait correspondre
un nombre naturel K (n) & tout entier n>>2. Le but de cette note est de

démontrer les inégalités

1 K(n 1
& L _E 1 (n=2,3,...),
2a " logn a
1415
oll a=log——— +] 2 .
2. Supposons que
(2) (@1yney ) (k=K(n), ;>2)

soit le plus long des développements de 1/n,...,(n—

continues. Considérons encore la fraction continue

(3) (1,...,1,2)

1y M. W. Urbanski m’a fait remarquer cette fonction.

1)/n en fractions
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