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done, si n; est suffisamment grand, on a, d’aprés (7),

20 (1_051/1—;@ »
116 3-0 2
et enfin, d’apres (10),

26 ]//1+@V1+@<@
1+6 2 2
ce qui donne l'inégalité fausse O<6.
Par suite, 'inégalité (2) ne peut pas avoir lieu, ce qui prouve que la
thése M (z,,7)>1 est vraie.
Remarque. A chague nombre R=1 on peut faire corvespondre unme
suite (1) telle que la quantité M(z,,r) soit égale & R.

Bn effet, soient #{”,7(,...,n{™ les sommets du polygone régulier
inscrit dans le cercle [2|=1. Alors

An‘mm 17 |77m*‘77m)|"”+1

k¥7

done ']72; 1.

D’autre part, soit {d,} une suite de nombres positifs tels qu’on ait

0,<dy, et }8,~1/R.
En changeant convenablement la position d’un seul des points 5{™,n™,
7% ..., 75 sur la circonférence |2| =1, on peut &tre conduit au cas ou

8,=nmin H [ — 57
7 k=0

k=i

5

Posons 2=0 et {f'=r,nf", ot |r,} est une suite de nombres positifs
tendant vers zéro. Lorsque 7,<r, on a

. n
. .;(ml 7 1
Mnlza,r) = max [n |€(n) C(n){ - " s
7 L i Iz
done e

M (20,7) =Tim } M, (20,7) = 1/V/ 8, = E.

icm

Non-local problems in the calculus of variations (I)

by A. KRzZYWICKI, J. RZEWUSKI, J.ZAMORSKI and A. ZmgBA (Wroclaw)

Introduction. Non-local variational problems occur in the deve-
lopments of modern theoretical physics, especially in the theory of ele-
mentary particles. On the other hand they are intimately connected
with the theory of integro-differential equations. In view of the above
applications and of the fact that they constitute a new domain of the
caleulus of variations, we thought it worth while to carry out a systematic
investigation of their mathematical structure.

A variational problem iz called non-local if the unknown functions
under the integral sign are taken at several different points of the domain
considered. The integrals are multiple, each taken over the same domain
of integration. Integrals of various multiplicity may oceur.

In the present paper we shall confine ourselves to the study of non-
-local problems in which the unknown functions g¢(t),¢:(%),-..,¢.(f) are
functions of one independent variable {. We denote by g¢;,q; ,... the first,
the second, ete. derivatives of these functions with respect to ¢. The fi-
xed domain of integration is the closed interval a<(t<b. We shall further
restrict our investigations to problems in which higher order derivati-
ves than the first do not occur under the integral sign and in which the
multiplicity of integrals is at most two.

With all these restrictions we may finally write out the general form
of the functional W to be investigated

b b
(0.1) W= [I®[t,qt),q®)]dt+i[[ IO, q:(1), g: (), 6: (), g:(1) 1 dedit’.

We assume all the conventional conditions for g;(t),L" and L® that
are necessary for the existence of the integrals in (0.1); they will be listed
in detadl in due course. In the following investigations the parameter 4 will
play a similar role to that of the analogous parameter in the integral
equations of Fredholm’s type.

We must emphasize at this place that the restriction to firgt order deri-
vatives and twofold integrals is not essential since problems with higher
order derivatives of ¢; and integrals of higher order muitiplicity may
be treated by trivial generalizations of the methods developed for (0.1).
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On the contrary, the restriction to functions of one independent variable
is essential and we intend in fubure to investigate also problems contai-
ning funetions of more independent variables. The variational problem
corresponding to the functional (0.1) consists in the investigation of
conditions for an extremum of this functional.

In section 1 the necessary conditions for the existence of an ex-
fremum are derived. The investigation of the second variation and the
construction of the non-local analogue of the Weierstrass function are
postponed until a later paper'; since they demand certain theoretical
means to be developed first.

The necessary conditions have the form of integro-differential
equations and in section 2 the existence of their solution is invest-
gated. These investigations bring to light an interesting equivalence
between integro-differential equations and pure differential equations
of the same order (of derivatives).

Section 3 is devoted to the explicit solution of the integro-differen-
tial equation in the linear case (linear in the ¢;), and to the explicit con-
struction of the equivalent differential equation.

In section 4 the problem of reduction of integro-differential equa-
tions to differential equations is illustrated on a simple example of a li-
near integro-differential equation with constant coefficients.

1. The first variation. Congider the following variation

(1.1) 044 (t) =0, q; (£)+ g (t) bt

consisting of the variation &,¢;(f) for constant ¢ and of the variation
¢;(t) 6t derived from the variation of the independent variable t. (We
assume that the functions LW, I®, ¢, 6,q;, 6t possess continuous second
order derivatives with respect to each of the arguments.) The correspon-
ding variation of the functional (0.1) is

(LW
LA _ﬂ}dt n
dt

0 0g; (1)

4 @) 1
(1.2) 6W=f{ Slfﬂ(_ v 0L

biJ 641 t) aOQ'i(t) ’ILAI_‘ ‘é’qlm 60([,5

b

aL® aL(Z)
2] S hat+ Y2 g+

a 0g,(t) < g, (') Gy (1) +

oL

5 AP s
+; 0qmu)*509i(t)+ +

(LB sty l ,
o le datdt’ .

) b A: Krzywicki, J. Rzewuski, J. Zamorski and A. Zieba, Non-local
problems in the caleulus of wariations (II), to appear.
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Without loss of generality we may assume L® to be a symetric function
of t and ¢

(1.3) ® [t7t’7 q:(t),q; (") 2 i (t)y Q;(t’)] =L [t :t’Qi(t’)a 4:(t),q; (t’) 3 ql(t)]

Tndeed, if this is not the case we can always symmetrize the integrand
of the double integral in (0.1), making use of the fact that the integra-
tion. limits for both integrations are the same.

In (1.2) one may interchange the integration variables in those terms
of the double integral in which the variations depend on t'. Then, making
use of (1.3) and carrying out some conventional integrations by parts,
we may write (1.2) in the form

(1.4) 6W=f${§£%— %%} S0t (8) A+
+ [_E % bt + 2 1) e
+ 22 { bf E { -gq%(%— 7.% ;f:t} } Soqa(t) dtdl +
+21 j [2%50 g(8)+L® 6t] ‘::bdt

We may now interchange in (1.4) the differentiation connected with ¢
and integration over ¢'. Introducing a functional
b
(1.5) L=I%42[I®dt,
a

which may be called the non-local Euler-Lagrange functional, we may
finally write (1.4) in the simple form

: 0L 4 9L \

I Y e M 0L

(16) W‘af < =aqm) @ agw ) e
‘t.—_b

0L
~~~~~~ ; Lét|
+ [Z i huot ]“H
The second term in (1.6), containing the variations éﬂqi(t) and 4t taken
at the points a and b, is important for the investigation of the tragmfor—
mation properties of non-local variational problems. We shall discuss
this point in a forthcoming paper.
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In the following we assume that the variations vanish at « and b

(L7 bgia)=bg;()=0,  i=1,2,...,m,  St(a)=0t(b)=0.
With these assumptions the variation of (0.1) becomes
b
0L d 0L
S o B N P
(1.8) oW aff-,;-« 6g, " a ag; 7%

On account of the theorem of Du Bois-Reymond the necessary (and
of course sufficient) condition for vanishing of the first variation (1.8)
is

oL d oL
(1.9) =

dg; dt dg;
Just as in the conventional local case, we show that (1.9) (or dW=0) is
& necessary condition for an extremum of the functional (0.1). The
equations (1.9) have the same form as the usual Euler-Lagrange equa-
tions, known from the conventional variational problems. There exists,
however, a profound difference due to the fact that L is now a functional

i=1,2,...,n.

(not a function as in the local case) of the form (1.5). A consequence of

this fact is that now the equations (1.9) are integro-differential equa-
tions, in contrast to the differential equations occuring in the local
case.

For further purposes we shall write down the explicit form of these
equations using again the functions L" and L®

w 2 70 T 2 70
T N L (R .
R 0g;(t)  9tdg;(1) v 0q,(t)0g;(t) “F 0q,(1)0q;(1)
b (2) 2 7,2 2 7/(2)
+21f‘ aP__a,Lkh \ A._{L__vq'k(t)_
J L 0q(d)  dtdg(t) < 0gu(t)ag(t) ¥
‘ - 62 L(2)
Ny OB b ar—o.
< bgitogn Y

This is an integro-differential equation containing second order deri-
vatives and simple integrals with “constant integration limits. It may
be noted that second order derivatives oceur only outside the integral.

In the next section we shall investigate the problem of existence
of solutions of (1.10) i. e. existence of extremals of the non-local varia-
tional problem.

The investigations of the second variation bring us (as will be de-
monstrated in part IT of this paper) to the problem of discussion of the
non-local analogue of Jacobi’s conditions which in our case takes the form

icm®
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of the homogeneous, linear integro-differential equations of the second
order. It is, therefore, necessary to investigate first this type of equation
(section 3) in some detail.

2. Existence theorems. Before starting any further considerations
on non-local variational problems, we must investigate under what con-
ditions there exist extremals of these problems. Therefore we shall prove
in this section an existence theorem for the integro-differential equations
(1.9) or (1.10).

We shall consider first equations with one unknown funetion q(t).
In & final remark we shall indicate how to generalize the procedure to
the case of » unknown functions.

Denoting g=¢(t), ¢'=g(¥'),

. o’ | L™ Jrw . I
PG D) == 55 (= Gt g BLD= "0
' - *L® . PI®  §I®
qjl(t’tl’q’ql’g’q')=~2[aq’aqq aq‘at_Tag—]’

PIO®
Dy(t,1,4,0', 4,0 ") =2 g’

and solving (1.10) with respect to ¢~ we get

b
%(t,q,q')-i-if D,(t,t,9,4,9 ,0")dt

(2.1) 7'=

5 .
%(tyq,!Z'H-lf Dy(t,t',q,9',q5q") At
Introducing the new functions

a®)=q), GE=q@®)

we get, instead of (2.1), the system of two equations

b
Pits 41, G0) ‘!‘Zf LA RN A AY
(2.2) a

=0, f=

5 .
9’2(“':!11792)+Zf¢z(tet’:qu§;9427q;)dt,

We assume that for a<{i<<bh, —c0<q,,64,47,45 < o0

192 (ty 415 85)|>0>0,
lpi (2, Q;’Q;)““Pi(ta 91742)]<K(!QT“ gl[‘f‘lq;—‘Qzl)a

Annales Polonici Mathematici IT 6

(2.3)

i=1,2,
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@;(t,0,,¢,) — continuous functions of ¢. With these assumptions the ny-
stem
LAGYIRID)
®3(t,G1,Gz)
has, in the interval (a;b), a unique and continuous solution 7, (1), g,(¢)
passing through the fixed point (%), g, go)-

Now let us consider the full system (2.2). On account of (2
exigts a positive number @ such that

7 (1) — ul <€, [32(0) — goal <@
THEOREM. With the assumptions (2.3) and the additional assumptions

(2.4) L=0, =

.3) there

(2.5) — Oyt 1,01, %y 2]

l+I6 — ),

Idji(tftlyq:yquyq;g;’)
<SK(gi—al+1g" —al+g:— i=1,2

(D; — continuous functions of t,t') to be satisfied in the domain D:

o<t ' <Ch,

(2.6) %1*‘2Q<41,Qrvqiaqr/<%1+2@,

Uo—20< 00 2,02, &3 <du+29,

there exists, for sufficiently small values of 1, a unique solution of the system
(2.2) (and, therefore, of equation (2.1)) passing through the point (fy,Go,ge)-
The proof is based on a simple application of Banach’s fixed point
theorem.
We note first that from the assumptions it follows that ¢; and &,
are bounded in D

2.9 lpd <M,  [BI<H.

Let us rewrite (2.2) in the equivalent form

b b
Pa fq)1 at’ —‘Plf D, at'
a | a

(2.8) G=@  G=Tt+ —

2 [ [‘Pz’l-}*f ¢zdt’]

a
Integrating over the interval (4,t) we get
b
. ,q;ftbdt — o f O,
0=qu+ [ g,d, &=p+ f‘—dt—*-lf ¢ — dt.
iy

boop [‘Pz +4 f D, dt’]
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The space of pairs of continuous functions (¢;,¢,) which are contained

in D with a metric defined by
e[(qi‘,qé‘),(ql,qz)1=m?xb(lq?~qll+lq§—q2l)
a<ts

is complete. We define a transformation U(gq,,q)=(q;,q;) of the point

(¢,¢,) into the point (g7,q;) as follows

P
!ll=!lm+t{q;dt

(2.9)
b b
(,‘0 (¢ ) i %(Q)fQ(!l)dt'-—%(Q)‘f@z(q)dt'
4= gun ) ‘mr dita [ ——= " dt,
“ o () [pa (@) +2 af @, (qydi']

where g;(g) is an abbreviation of ;(f,¢:1,8),9:(¢") — of @(t,q7,42);
D;(q) — of D (t,t,q1,q1,8:,0) ebe.

In the formulas (2.9) the functions ¢ ,¢> appear implicitly. It may be
shown that for sufficiently small 1 the two conditions are satisfied: (i) the
transforma“ed functions gf,q;‘ fall in the domain D if the primary functions
¢;,9, had this property, (ii) the distance of two points (¢,,q,) and (p;,p,)
is transformed in the following way:

(210)  o([U(q1,2), U(p1,22)1<O -0 [(21, €2) (P1:P2)],

If (i) and (ii) are satisfied, our theorem follows from Banach’s theorem
mentioned above.

b
Since |@,|<<M in D, we have M.fdizdt’]g[MM(b——a,) and for

0<O<.

o

(2.11) THO—a)

A<
we shall have

b
. o
(2.12) lpat-4 [ Byt > —.
2 2

Integrating (2.4) over the interval (f,,f) and subtracting the result from
(2.9) we get

i
Q;—@x:if (6 — ) dt,
0

b b
’ 1 @2 4
qi—qz——-f["’l(q svl(q)] i+ 2 t%(m‘{@l@m (P(Q)f o di
W leld)  w@ b p(@)nlg +1f P, (g dt']

6% -
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Hence and in virtue of (2.3), (2.7), (2.12) we have further

2
Iﬂ—m!éfflr‘zz*—(hldt,
0

_ 216" 2: (@) — %2 ()i (@) 1 i ”1 (b_f_go)i
< T + A
a=nl< ) e @
Making use of the identity
2(@)9:@) =00 (@) _ 2@ o)~ @1+ 2 @00 — @)
@:(4") (@) C0a(d)) (@)
and of the formulas (2.3), (2.7), we finally get
i
_§1!<“q;—52ldiy
(2.13) ‘ b
. 2K M } 4 MY b—a
i< 2 [ g - i+l —anat w2

. A
In order to simplify the notations we assume that >0, i1, For
further applications we shall need the following lemma:

If a continuous function f(t) satisfies the inequlity

|2
(2.14) !f(i)léAtf If()ldat+ B,
then .
(2.15) [F(5)]| < Be*th.

Now let us multiply the second equation (2.13) by x>0 and add
the result to the first equation. When p satisfies the condition
1 2K Moy

216) — = =
( ) p 142KMo " pn

1
or = (L4 (14 207K M),

we get

A (b—a)

_ . _ _2EM !
—qll+ulq2—qzl<-(;ruf(lq1 Dl + plgs — Bl di+ A~ e
ty

In virbue of the lemma (2.14), (2.15) and the inequality |g7 —

h 0l +ule—
=g —gl+1¢ —¢| (sinee u>1) we have

4 M*(b— a)? 2KM (b—
al<n SHOT TL o 2N )
ag

e
0_2

(2.17)

=

g —al+ g —

k]

¢ SM*E (b
12 ( a)
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putting upon 1 the condition

(2.18) i<

9
M
we find that ¢;,¢; fall in the domain D. Thus (i) is proved.
Let us proceed now to the demonstration of (ii). Writing out the
formulas (2.9) for (g,,4.) and (p,,p,) respectively and subtracting, we get

€
—p1=tf(q§-pz)dt
i)

q*_p*zf'[%(q') (" )] t+1f[¢z(g)éf (g)dt — .pl(q)quz(q i i
o Ldd) el i ACHCACIE f @, (g)dt’]
b b
p)f@l(p)dt - P)fq)z(P)dt]
- . dt.
@, (p) [po (P +Zfdi )i

On account of (2.3), (2.5), (2.7),
equation is smaller than

(2.12) the last term in the second

SM*K (b—a)
A—
42

[4-+3(h—a)i] I?B{f (s~ 21l +1ga—

Hence we get, in the same way as above (cf. (2.13)),

14
|ﬁ—2’f[<£|§l§—p;|dh
i

* * 2KM * * * *
I —p31<~ 5 [ (g~ pil-+ig —pil)at +
t

—a)l] max [l — 21l +1g:— psl].
Multiplying the second equation by u (ef. (2.16)), subtracting it from the

first and repeating the procedure which brought us to (2.17) we finally

get
max [|g7 —pi|+1g: — p21]
(a.6)
MaK(b a 2KM(b—a)u
<2 )[4+3 b—a)i] exp————;g——)-/ rfwgc[lql—pwrlqﬁ—pzl]-
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Condition (2.10) will be satisfied if 1 is smaller than the positive root 2*
of the equation

SMPE(b—a) 2EM(b—a)
ex]p o

B aA+3(b—a)i?]=1.
[

Thus the proof is complete, the condition for A being ((2.11), (2.18))
% 2KM(b—a

o _ G exp(_,_g )M)’ﬁ[.

2M(b—a)’ AM*(b—a)p o f

The above considerations, without essential changes, may be applied

to the case of n unknown functions ¢ (t),...,q,(t). To solve the system

}.<min{

(1.10) with respect to g¢i,...,q, we must assume that the determinant
BZL(I) b 6ZL(2) d
A)=ay = T T/ 4
F( ) I‘%a'a (457 aqzaqk P aq’baqk

gatisfies the condition
|F(0)| >0

After reducing the system of » second order equations to a set of 2n first
order equations with assumptions analogous to (2.3), (2.5) we get the
generalization of the above theorem for n» unknown functions.

An interesting consequence of the above theorem is the equivalence
of integro-differential equations and pure differential equations. Indeed,
it has been shown that through every system of » line-elements of a cer-
tain domain passes one and only one solution of the system of » integro-
-differential equations (1.10). There exists, therefore, a system of n pure
differential equations which is satisfied by the solutions of (1.10). In re-
gular cases, when the corresponding system of differential equations
satisfies the condition of wniqueness, this system is equivalent to (1.10)
in the sense that both of them possess the same family of solutions. In
further considerations we shall frequently make use of this result.

for a<i<h, —oo<g,gi<-+oo, i=1,2,...,n.

3. The linear integro-differential equation and the correspon-
ding differential equation. In this section we shall consider the linear
integro-differential equation of the general type?)

b
(31) PG () +pi ()G O+ 0o (D) g(0)=F () +A [ K (2,8) q(t') 2.

*) Similar equations have been considered independently by B. H. Haxo-
TeHK0 (3adava Hown das unmespo-dubdepenyuaavroso ypasrenus muna Dpedzoavma,
VYen. mar. mayw, rom VII, 5 (51), 1952, p. 225-228) and B. B. Bacuunes (Peuse-
Hue aunednns obobuennniy urmes po-duddepenyuanonmms ypasnerul, Ilpumri. wmar.
u wex., ToMm XV, 5, 1951, p. 609-614). The methods developed in those papers differ
essentialy from ours and are less convenient for our purposes.
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THEOREM. Hguation (3.1) has a two-parameter set of solutions if A
s not a characteristic value to be determined below and if the following assum-
plions are satisfied:

(1) the functions Pg,DP1,De;f are continuous and p,=0 in the interval
{a,b),

(i) 4n the square a< t,t’'<<b there ewists a bounded first order derivative

0K (1,t')
ot |

(3.2) <0,
(iif) K (t,t') is a continuous function of t'.

The proof is given by an effective method of constructing the solu-
tion of (3.1).

We shall first replace (3.1) by the equivalent pure integral equation.
For this purpose we write the kernel X (¢,1’) as the sum of three funetions

(33) E(8,t) =Ky (t,8)+ K. (2,8) + Ko (4,7)-

The last term in (3.1), on account of (3.3) and after partial integrations,
takes the form
b

b 14
(3.4) JEt,¢)q(t)at = [[q(t)Eo(t,t)—q (') [ Ky (t,7)dr+

a

14 4
b ¢ @) Baltyo) dedr)dr + [ Ey(t,m)de+ [ Kyt r)delg( )it
([ Rty dedrg (€)=

" ¥
where the symbols fdr and [fdrdr denote indefinite integrals. They are
uniquely determined as will become clear from the following considera-
tion.

Now we determine the functions K,(¢,t') to satisty the following
equations:

K, (t,8) =N (t,t")po (1),

v
(3.5) — [Ei(t,7)dr=N (1,8) p. (1),

¢
[ Ey(t,7)dvde=N(2,8) Py (t').
The equation (3.3) takes the form

2

e [N, 0)p.(')}]— 2 [V (@, p (¢)]+ N (2,8 po (') =K (£, 7).

(3.6) =
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This is an equation for the function N (¢,1') where ¢ plays the role of a pa-
rameter, so that (3.6) is an ordinary second order differential equation.
If p,= p,, which may be assumed without loss of generality®), then equa-
tion (3.6) is selfadjoint and, therefore, may be written in the form

2

&
() 5

. (1,1)=

N (@) +pot) N K(t,t).

N ) +p. ()= ¢

8.7) 7

Denoting by ¢:(f) and ¢,(¢) two linearly independent solutions of the
equation

Ligh)1=p:.0) ¢ )+ 0.0 ¢ () +po(8) () =0

we may write the partial solution of the non-homogeneous equation
(3.7) in the form

Ca@al) — e ald)

(3.8) N (4,5t = e

K(t,7)dv,

where W(r) denotes Wronski’s determinant of ¢,,¢,. In the notation
for N (t,t';t;) we have expressed the dependence of N on #,, since it affects
characteristic values of N. Formula (3.4), on account of (3.5), now takes
the form

b

b
JE @) q(t)dt' = [ N(2,1'55) L{q(#')] a8’ —

~{Fetsimn - govesnmenae) "~ Fesnwdn)
Denoting
69 —Fetmne - o ennela -
Wt 0)m(6)q (1) ZZ:cb(t),
(3.10) 1)+ 19 () =100,
(3.11) Lig®)=F(1)

we may write equation (3.1) in the final form

b
(3.12) F(t)=y ()42 [ N(t,8 ;0) P(t')dt'.

) (3.1) may always be transformed into a form in which [
= by the multi-
plication by a suitable function not vanishing in {a,by. s
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The solution of (3.1) is, therefore, equivalent to the successive solution
of the equations (3.12) and (3.11). If p(f)==0 in the interval {a,b) and i
is not a characteristic value of the kernel N (¢,t';t,), then (3.12) has a uni-
que solution

b
(3.13) F(t)=w(t)+lfR(t,t';té)w(t')dt'

where R(t,t';1,) is the resolving kernel of equation (3.12). ‘We note that
(3.11) has not the usual form of a non-homogeneous linear differential
equation of the second order since F(f) depends linearly on the values
of g(t) and ¢ () at the points a and b (ef. (3.9) and (3. 10)) In spite of
this fact we shall show that (3.11) has a two-parameter set of solutions.

Levma. Equation

(8.14)  Pog +Prg + Pog=hot Alhig(a)+ hag () + hyq(b)+ Ry g (B)]

has, jor all values of 1 with the emceplion of at most two, a two-parameter
set of solutions if

(i) the functions h;=h;(t) are continuous in {a,b),

(ii) the functions p; satisfy the assumptions of our theorem.

Proof. The formal solution of equation (3.14) may be written in
the form
(3.15) g(1)=C1¢(8) + Caa () + Ho )+

+A[H,q(a)+ Hag (@) + Hsq(b)+ Hyg ()]
where

2 (7) (8 By () dT -+ ag iy (8)+ @i e ()

7 (1) g (B —
Hn= f W)

(1=0,1,2,3,4),

41,95, W have the same meaning as in (3.8) and a; are arbitrary con-

stants.
To prove the lemma it is sufficient to show that the quantities q(a),
q(b),q (a),4 (b) may be eliminated from (38.15). In fact, that is the case

if the set of four linear equations

q (a)=Cy g1 () + Cy gz (a) + Hy(a)+ ALH (@) g (@) +-. .+ Hi(a) g (B)],
¢ (8)=0,¢:(a)+Cs g () + Hy(a)+ A[Hi(a)g(a)+.. .+ Hyla) ¢ (B)],
q (B)=C, ¢ (b)+ Cy05(b)+ Ho(B) +A[H:(b)g(a)+-- -+ Hilb) g (B)],

¢ (b) =016 (b)+ Coga (b)-+ Hy (b) + 2 [H(b) g(a)+-..+ Hy(D)q (b)]

(3.16)
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can be solved with respect to these quantities. Equations (3.16) are non-
homogeneous on account of W(t)s0 in (a,b>. It is sufficient to demand,
therefore, that

W=l My Ay Wu |
Ay Mpp—1 Ay M a4

T T Ma M=l Ay | #0
W e Me M1

4

where
1y = 3 G1 (@) + 0 45 (@) 5
J 3 =0y, g1 (a) + 0y g2 (a),

b 1
i QZ(T) r 4
= (_,, g hi(r)mah-) o)+ ( Ik ((T; h¢<r)dr--+-a%) ),

(]

s

b b
R QZ(T) . Ql(’b‘)
Ja ( o hi<r)dr+an) q1<b>+(af ki

for ¢=1,2,3,4.
Taking a;=—H,; where

hi(r)dr+a2i) 4 ()

b b
2 _ 0
Hy= I hy(z)dr, sz-_g Ve k() dz
we geb
A }*(Hl141(“)+ﬂzlqz(a))+1 Z(leql(a)’l’ﬂnqg(a))
A (H g (a)+ Hy, g (a) AHugi(@)+ Hygy (@) +1]

From the last formula it can be seen that A4=0 for at most two values
of 4. It may be shown that this number cannot in general be reduced.

From (3.9) and (3.10) it can easily be seen that equation (3.11) has
the form (3.14). This remark completes the proof of our theorem, the
cha\-.ra.‘eteristic values of 1 being the two zeros of 4 and the ch;xm(a-
ter{stlc values of the kernel N(i,#;f;). The existence of dF(t)/dt
which was necessary for the derivation of equation (3.15), follows from7
the assun}ption (3.2) about K(t,t') since it guarantees the existence of
O[R(t,t';t,)]/0t. This follows from simple considerations concerning
t]:te convergence of JR /0t analogous to those carried out by Fredholm
with respect to R. : '

It may be of some interest to discuss the particular case of a homo-
geneous equation (3.1) (f(#)=0). In this case it can easily be seen from
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(3.9) that for the condition p(f)==0 in {(a,b, to be satisfied it is necessary
and sufficient that at least one of expressions

s 4 a 7,40 .l
N@,&5t) N EW(8)— 55 [N (@, t580)pa()lemy (§=a50)

does not vanish identically in {a,b>.

We may now proceed to the final conclusion of this section 1. e.
to the explicit construction of the differential equation which is equi-
valent to the original equation (3.1). For this purpose we rewrite the
equations (3.16) with the functions H,,H;,i=1,2,3,4 determined from
equations (3.11), (3.13), and (3.10). Together with equation (3.15) and
its first and second derivative

—g )+Cq () +0Cags () +Hqit)+A[H, #) g(a)+...+ H, (£ g (8)]=0,
— g @)+ 0.q; () Cots () +H 8+ ALH; (1) g(a) ...+ H, (1) g (8)]=0,
— g () + 0 gy &)+ Cogs (O +Ho(t)-+A[HT () g(a) +.. .+ Hy (1) g (9)]=0

they form a set of seven equations for the six arbitrary parameters Cp,
0y, q(a),q (a),q(b),q (b). The result of elimination of these parameters

—q{t)+ Ho(i) 0 (%) g:(?) AH, (1) AH, (1)

O+ H G @) AE) AL

L —COHE D G0 GO A . AEE
(817) | Hya) 0@ @@ AH(6)—1... AH(a) |=0

. Hia) Gla) @) 2Hi() ... AHy@) |

- Hy) 6@  @®)  AHb) AH,0B)

| H(b) G(®) GO AE®) ... AH@G)-1

is just the required differential equation. This equation is equivalent
to equation (3.1) in the sense that each solution of (3.1) satisfies (3.17)
and vice versa. ' .

The reduction of an integro-differential equation to a pure differen-
tial equation of the same order (in derivatives) is of practical as well as
theoretical importance since it enables us to apply to integro-differential
equations the powerful methods of the theory of differential equations.
One of the immediate and most important consequences of the above
considerations is e.g. the oscillation theorem of Sturm for (3.1).
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The above considerations may be generalized to higher order linear
equations containing derivatives also under the integral sign:

Do) g™ @) + L Do (8 (t)
b
=F(0)+A [ [Eo(&,t) q(t)+ ...+ K (2,8 ¢ (") 101"

The results will be published elsewhere.

We shall make use of the results of this section in the investigations
of the second variation (Part II). Applications to the quantum theory
of non local systems (systems described by integro-differential equations)
are discussed elsewhere *).

4. Example. The calculation of the coefficients of the differential
equation (3.17) corresponding to the integro-differential equation (3.1)
is rather complicated apart from the fact that it requires knowledge
of the resolving kernel R(¢,t;t;). Therefore we shall consider in this see-
tion a simple example of an integro-differential equation with constant
coefficients. For constant coefficients the method of section 3 may be
simplified to a great extent and new methods may be developed which
are of importance for the generalization of the results to partial integro-
differential equations.

Congider the integro-differential equation
b
g (1) +"q(t)=2 [ K (t,t') q(t') dt'.
a
This equation may inmediately be converted into an integral equation
.of Fredholm’s type by means of the function

(4.1)

, [1 for >0,
f)=
TO=Vo tor 1<o.

Indeed, multiplying (4.1) by A"(z—1) and integrating with respect to ¢
over the interval (a,b> we obtain (after some partial integrations)

1
A7 (t) =" (t) = sin s,
i

b
(4.2) 9(7)=¢"(1)+A [ N (v,t') g(t")@t'

where

1
¢ (r)=q (a) —~sinx(v—a)+ g(a) cos n(v—a),

. b
N(z,t)=[A"(z—t) K (t,t')dt.
a
4 J. Rzewuski, Differential structure of non-local theories, 1, Acta Phys. Pol.

XTI (1954), p. 135-144; On differential structure of non-local field theories, Bull.
Acad. Pol. Sc., CL III, 2 (1954), p. 429-433.
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It K(t,#) is bounded in the domain a<t<b, a<t'<b, then N(z,t) is
also bounded together with its first and second derivative with respect
to 7. Further, if A is not a characteristic value of the kernel ¥ (z,t), equa-
tion (4.2) has & unique solution. Since ¢°(z) contains two arbitrary para-
meters, ¢'(a) and g(a), (4.2) represents a two-parameter set of solutions.
Equations (4.1) and (4.2) are equivalent in the sense that each solution
of (4.1) satisfies (4.2) (with a particular choice of parameters), and
vice versa: each solution of (4.2) (with arbitrary choice of parameters)
satisties (4.1). Therefore the solutions of (4.1) form (under the above
assumptions about 2 and K(i,1)) also a two-parameter set. They may
be explicitly written down by means of the resolving kernel R(z,1) of
equation (4.2)

b
(4.3) g(0)=¢" (1) +A [ R(z,t') ¢ () dt"

Elimination of the arbitrary parameters ¢ (a) and g(a) from (4.3) yields
immediately the corresponding differential equation in the form

(4.4) P2(t) ¢ (8) — D2 (1) ¢ (B)+ Do (1) q(£) =0
where
1Ty Ta Tyl
Po= . .I» Po=| .. ..
7y 7y PO
with

b
rl(t)zi sinx(t—a) + sz(t,t')i sinx(t’ — a)dt’,
>

* a

b
7y (t) = cosx(t—a) +4 [ R(¢,t') eos = (8’ —a)dt’.

The explicit calculation of the coefficients yields

(4.5) Py=—(1+ ¢cs), Po=—2"(1+6)

with
b

b q |
Cp=—7 ‘j ;R' (t,8') sinw(t—1t) A’ — A ~;2—R"(t,t') cosx(t—t')db' +
a a

b
[P B . .
2 [ S R ) sin e ~ ) B (41) a0
a
b b

-1 .
Cy=—21 .f —;{-R'(t,t’)smn(t—t')dt’—i—ﬂJ R(t,t') cosn(t—1t')dt' —
a

a

(4.6)

b
A 1
— B [ [Rt,t) sin(t' — ")~ R (¢,8") at' "
@ X
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(dots always denote differentiation with respect to the first argument).
With the notation (4.5) equation (4.4) takes the form

(4.7) (1+0)q — 6q +2" (14 ¢) g=0.

Tt can be seen from (4.6) that, for A=0, ¢,=¢=0 in accordance with

(4.1).
Taking A sufficiently small we can always obtain

140,70

in this case (4.7) may be rewritten in the form

in <a,b>;

0q T (06— g
146,

Comparison with the original equation (4.1) shows that in the space of
solutions of (4.1) the following identity is satisfied:

g =

Gq 7G0T, i e g
(4.8) ——i+—02-——HZLLfK(t,t)q(t )@t
The existence of an identity of the type (4.8) indicates a new possibility
of converting integro-differential equations into differential equations,
which puts the whole problem into a new light: indeed, given an equa-
tion of the type (4.1), we may seek two functions A (¢) and B(?) such that
the equation :

(4.9) A(t)g (&)+B(@) q(t =2 fK(tt Yg(t')dt'

is satisfied in the space of solutions of (4.1). The construction of these
functions may be carried out by the expansion of A,B, and ¢ in power
series' of A and equating coefficients on both sides of (4.9).

Let

(4.10) A=31mA™,  B=3 1B™.
n=0

n=0
From (4.3), remembering that R(¢,t') iz the resolving kernel of (4.2),
we obtain

b oo
(4.11) gty =" )+ [ 3 N (t,)q" (¢ dv',
a n=0
where
b b
{F @, )= [ ... [N (7)Y N (77, N (™ ¢ dd. .. o™,
(4.12) a @

- (WY@, =N(t,1).
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In (4.11) we may express ¢'(t') by its initial value and the initial value
of its first derivative at an arbitrary point t=14

1
(4.13) =g — smx( ' — 1)+ ° (&) cos % (t —1°).

Introducing (4.13) and (4.11) into the right-hand side of (4.9) and de-

- noting for convenience

1 .
A(t)=— sint, A (t)=cosxt,
*

we obtain

(4.14) fK (6,6)q() @t = 3 A [|EN"4) (1,8) g () + (KN4} (5,8 ¢ ()],
n=0

‘where

|EN"4} (t,1%) = ”'Ktr N AP - d?, (N =1,
and similarly for {KN mAL |, in an obvious generalization of the notation
(4.12).

i The shape of (4.14) already indicates the general form of the
left-hand side of (4.9), which is not at all obvious a priori (e.g. one could
introduce also ¢~ on the left-hand side of (4.9)). Treating in exactly
the same manner the left-hand side of (4.9) by use of (4.10), (4.11) and
(4.13) we obtain|

(4.15) | (A% + B)q

foo o ‘(; ’
— é’; 2_7 Jrtm [A(n) +B(n)] [{NmA}(t,t”)q'O(t‘))—l—{NmA‘}(t,t“)qﬂ(to)].

Equating coefficients of (4.14) and (4.15) we obtain the infinite set of
equations
(4.16) Z ( A +B(m)) [{N"’”'mA}(t,to)q'o (to)—-l—{N”—mA'} (t’to)qo(tn)]

m=0

={EN"A}(t,0)¢° (") +{EN" A} (2,8 ¢° (),  n=1,2,...

(4.16) are identities in the space of solutions of (4.1) and, therefore, they
must be satisfied for an arbitrary choice of the parameters ¢°(°) and
¢°(1°). Therefore the equations (4.16) split into

, Z( <m> -+ B(M)){W—MA}(t )= {EN"4} (1),
m=0

(4.17) n=1,2,...
3 ( am & B(m)) (NP 4) (3, ) = BN 4 (2,8).

m=0
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Taking =1, we obtain from (4.17) simple recurrence formulas for the
functions A™(#) and B™(t), n=1,2,...

The consistency of the two methods deseribed in this section may
be verified by the expansion of ¢;/(1-+¢,) and #(C— ) [ (1+ ¢,) in power
series of 1 and a comparison with A and B respectively.

In contract to the first method described in this section the second
method allows a generalization to partial differential equations. We ghall
return to these questions at another place.

Finally it may be noted that the considerations of this section apply
equally well to general types of linear integro-differential equations with
constant eoefficients and higher order derivatives oufside the integral.
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Eingliedrige Gruppen der homogenen kanonischen
Transformationen und Finslersche Riume

von K.MAURIN (Warszawa)®

1. Einfiihrung. Bisher wurden die kanonischen Transformationen

éi=¢i($17“w”n;pl:-'-’?’n)a i’iz%‘.(wl:‘"am"L;pU“':pn) (t=1,2,...,n)

als Abbildungen des 2n-dimensionalen linearen Raumes (des sog. Pha-
senraumes) interpretiert. In dieser Abhandlung werden &',...,2" als
Koordinaten des Punktes P einer (nicht notwendig linearen) Mannigfal-
tigkeit M, der Klasse (", dagegen py,...,p, 2ls Koordinaten des Punkbes
peT,(z) gedeutet. T,(z) ist der duale Raum des tangentialen Raumes
der M, im Punkte P.

Auf diese Weise wird die geometrische Interpretation der infini-
tesimalen kanonischen homogenen Transformationen (k.h.) und ihr
enger Zusammenhang mit den Indicatrizen Eichflichen der (kovarian-
ten) Finsler-Metrik evident.

Damit die Zusammenhénge klarer vor Augen treten, werden die
fiir die Anwendungen wichtigsten k. h. Transformationen ausgesondert
und als sternartige. Transformationen bezeichnet. Es wird bewiesen der
folgende :

Havuprsatz. Jede sternartige 1-gliedrige Gruppe G, der k. h. Trans-
formationen induziert in M, eine Finsler- Metrik und wmgekehrt: der Fins-
lersche Rawm bestimmt eine sternartige Gy, wobei die geodditischen Limien
des F, Trajektorien der @, sind.

Die hier entwickelte Theorie zeigt, daB die Elementarwellen von
Huyghens-Vessiot die Indikatrizen des von @, erzeugten F,-Raumes
sind; &, beschreibt die Ausbreitung der Storungen im permanenten Me-
dium.

Als Anwendung gebe ich einen einfachen Beweis des Haupsatzes
der Theorie der Normalkongruenzen geodatischer Linien im Finslerschen
Raume. :

In der Arbeit wurde alles auf koordinatenfreie Weise entwickelt;
dadurch wurde der geometrische Inhalt der Theorie in den Vorder-

* Hier michte ich Professor 8. Golab meinen aufrichtigen Dank fir das Lesen
des Manuskriptes ausdriicken (Verfasser).
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