On summability of double sequences (I)

by A. Arexmewricz and W. Oruicz (Poznan)

The subject of this paper is a theorem on the consistency of methods
of summability for bounded double sequences (theorem 3.3) which extends
a theorem of Mazur and Orliez ([7], theorem 2) concerning the summa-
bility of single sequences. Our theorem will be proved for completely
permanent methods 7. e. methods preserving not only the principal limit
but also the row- and column-limits if sueh exist. The method of proof
is simpler than the original proof of [7] and, applied for single sequences
will appear in the paper [9] of Orlicz. J.D. Hill [4] has transferred for dou-
ble sequences an earlier consistency theorem of Banach ([2], p. 95) which
ig less general than the theorem in [7]. Hence the results of this paper
may be considered as a generalization of the theorems of Xill. The
results of this paper may be extended to the case of transformations
of sequences with an arbitrary degree of multiplicity, without any essen-
tial alterations of the proofs.

1. Definitions and preliminaries. By a convergent sequence will
be meant any double sequence v= {wlk} converging in the sense of Prings-
heim. The principal limit of such a sequence will be written lim xy ox

i, k—r00
simply . The sequence {wy} is said to converge regularly it it is con-
vergent and if the row- and column-limits

Hm g, =,  Um wy=

k=>o0 i—ro0
exist for every ¢ and % respectively. Every regularly convergent sequence
is bounded. The sequence z will be called perfectly convergent if it is ve-
gularly convergent and a; =, for 4,k=0,1,...

The - most frequently used methods of summability for double se-
quences may be obtained by the following proeedure. Given a four-di-
mensional matrix

Az(“’ik;w): ik v =0,1,...

and a double sequence m:{mik} let us consider the transforms

o0
Ay (@) = 20 Ditogup Dy -

Hoy=
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If these transforms are defined for every ¢ and % 4.e. if the series on the
right converge (in the sense of Pringsheim), we say that the method A
transforms the sequence x into the sequence {Az(m)}; if the sequence
|4u(@)} converges to a, the sequence z will be said to be A-summable
(or to be summable by the method A) to a; the number e will be deno-
ted in this case by A-lim s, or simply A ().
T, fr00

The sequence z will be said to be regularly A-summable to o if the
sequence {Aik(ac)} converges regularly to a (we shall also say that the
method A iransforms the sequence » regularly) and we shall write

lim Ag(z) = 4, (), limAy(e)=4,().

koo i—s00

The method 4 will be said to fulfil the condition

(ro) if @t transforms every sequence x regularly convergent tv 0 into
@ sequence regularly convergent in such a manner thot

(1) Ay (@) =y, AI\(I)Z'Z'L for i,k=0,1,...

in this case, of course, A (x)=0.

The method 4 will be called completely permanent if every regularly
convergent sequence is regularly A-summable and the conditions (1)
are satisfied.

The sequence # will be termed perfecily A-summable if it is re-
gularly 4-summable and

A; (x)=A,(x) for i,k=0,1,...

i.e. if the sequénee of the transforms converges perfectly.

The following Toeplitzian conditions are known?) —

(i) The method A transforms regularly every sequence regularly conver-
gent to 0 if and only if the following conditions are satisfied:

oo

: .l
(12) Sup ) |ag,,| < oo,

ik=01,... up=t

(i) there exist

lim ay,,= @

lim ag,,,= ;4 5 limay,,, = @ 4,
4,00 k—so0 >0

') These conditions are due in principle to Kojima [5] (this paper was unavai-
lable to the authors); for a complete discussion of conditions of this kind see Hamil-
ton [3].
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(is) there exist

oo o0 o q
. = : -8
lim y aikmr: S e lim 24 a/ik/_w: S'i..v? ?lm Z alklw SR}
1,Je-s00 ¥ ’ K00 gm0 200 50
y im 3 1i 5‘ Cytep= S
lim } Aty =8 Him 2 Gitepr= Si s Aam ilepn == P e+
i, k=00 y':o k—>00 =0 =00 =0

If these condilions are satisfied, then for every sequence x regularly
convergent to 0 the following formulae hold:

oo o0 o0 o0 o
1
A; (@)= Y a2+ 3, (8, — > “i.,w) + 3w, (8, 3 a.),
: =0 ii=0 Py} P =0
oo (=] [ (o] o0
4 k(w)z Z a’.kmx,uu“'_ Zm,u. (S.k,u. - Z a’.k;w) + Z z, (SJM_ Z a.k/l)')’
: =00 =0 »=0 v=0 =0
3 S - o o
4 L(@)= 2 @ ey + Zmu. (Su" .}J a’..;w) + 2.1 wm(s,..v"— 24 a’..;n') i
’ =0 =0 y=0 y=0 u=0
moreover
lim a'i./w: Lim a.k;w= a..mf’
>0 k—o0
lim S‘i.u =lim S.ku. ::S../!, y
00 " kesoo

img; ,=lim&,,=8 ,.
i->00 fe—»co
(i) The method A tramsforms regularly every sequence regularly convergent
to 0 into a sequence convergent to 0 if and only if the conditions (i),
(y), and (i;) are satisfied and

a’../w=07 S..y.:oa ‘S._J,=0

for every p,».
(iii) The method A fulfils the condition (v,) if and only if the conditions
of (i) and (ii) are satisfied and )

a"i,,uv: 0) S’i.u. = S.’i.# = 613 Si../¢= S.i/z. =0 )

o
where 9;, denotes the delté of Kronecker.

(iv) The method A transforms reqularly every sequence regularly convergent
if and only if the conditions (i), (i), (i), and the following are satis-
fied: i ‘

(ivy) there ewist

oo ¢ . o o0 ) . o0 .
limh i 1 ; 3 — g
2 Wiy == Si lim 2 Rty = ’S’E,..? lim 2, a’ikﬂu: /S,In. .
0

100 py= F—>00 pp=0 00 pyve=0
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In this case
Iiln Sl = hm S,Ic_, = b’.... ?
i—>00 k-0

A (x) =2 (Si.,_"‘ 28— Z;S,;“,,) + > m,+
=0 v= #

+ 3 (Sf.,‘, - ai.,w) z, + 3 (S‘l’..ﬂ - Z“i.m) L,y
p=0 y=0 y=0 =0
and similar formulae hold for A, (x) and A (x).

(v) The method A is completely permanent if and only if the conditions
(1), (), (), and (iv,) are satisfied and

O = 0, S.A/x. = Sv: 0,
s 1y = 0 gy =0, Si= S.i.ﬂzéiu,
8 =284=0 8. .=8; =8; =L

fop ATV

The proof of these theorems may easily be carried out by consi-
dering the space R of regularly convergent sequences and its subspace R,
composed of the sequences convergent to 0 ; both are Bamach spaces
under the norm |lzj|= sup |zg|. Denoting by e;. the sequence having 1

k=01

in the ith row and 0 elsewhere, by ¢, an analogous sequence with 1
in the kth column, by e, the sequence with 1 at the intersection point
of the 4th row and the kth column, one can easily prove that the
linear combinations of these elements compose a dense set in R, and
that every linear functional £ in R, is of the form

£0) = 3 5,80, + 35, [£(e,) — Fete]+ Salete)— et

y=

4ues

(see Hill [4]). This enables us to get the representations of A; (m), A 5 (),
and A (z) in (i).

2. A linear space. Let us denote by P, the space of all sequences
r={uy} perfectly convergent to 0; it is a linear subspace of the space
R,. Given a Banach space X we shall denote by TO{X} the space of the
sequences x={x,} with z,X and such that llz,)]>0; this linear space
is a Banach space under the norm [fell= sup [,). It may easily be pro-

n=0,1,.,.
ved that the general form of linear functionals in TO{X } is
n=0
where &; is a linear functional in X and, moreover,

e = .S'f &l
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In the case of X being the space of reals we shall write simply T, for

To{X}.
2.4, LEMMA. The space Py is equivaleni to the space To{ Ly}

Proof. For every a={wy)e P, write
"= {wwmmn,vwrl: . -}; o= {wn+1,ﬂymn+2,n} . } :
these are elements of T,. It is easily shown that the correspondence
wz{wﬂ.,wﬁ,wl.’m.l,”'}

definies the equivalence between the two spaces under consideration.
Taking into account the general form of the linear functionals in
the space T, we obtain as the general form of linear functionals in P,:

oo
(@)= D o
i,ke=0

with > |ag|=|€]|. This easily gives
k=0
2.2, Lmmua. If the sequences o™=]|a) and w={ay) are in Py and

satisfy the conditions
sup || <oo, limaf =y for 4,k=0,1,...,
i,k,m=0,1,... T->00
then @™ converges weakly to x in Py.

Now we shall prove a lemma which, for single sequences, was sta-
ted in its original form by Banach ([2], p. 93) and in the final one by
Mazur and Orlicz ([7], theorem 2.2). )

2.3, LmmwmA. Let the method A fulfil the condition (r). If the sequence
w={ny} is bounded and perfectly A-summable to 0, then for every e>0
and n there ewists a positive integer p>n and o sequence z=|2y} such
that

@y, for ik,
(2) Bip= .
0 for max(i,k) > p,
e < |2l for 4,k=0,1,...,
A (m) — Agle)<e  for 4,k=0,1,...
Proof. Write
3
Ajy(w)= Zoﬂ%kw%w yr= A% (®)}, Yy ={4du(®)}.
Hy=
By the condition (r,) the elements y" belong to P,, and the element y
belongs there by hypothesis, moreover,

@

Summabilily of double sequences (1) . i?5

. o0
sup  sup  [A%(2)|<< sup’ ; sup |
n=0,1,.. t,k=0,1,... ‘ 1Ic( )l\i,lc=0,li,u. yéo ]{L!/}‘,m!”’u:;?})ﬂ."bltvf =%

Hm A (x)=4, ‘ 1
MmAm(wJ A (2), whence by Lemma 2.2 the sequence y" converges

Weakl-y to y in P,. By a theorem of Mazur ([6], p.81) there exist non-
negative numbers Any+eeyAy Such that It FA=1 and |y—(4 Y+
+o F Y7 [<e. Writing @™ ={a} where "

xy for i,k <m,

=

0 elsewhere,

E)i see tlliat A"+ A AP = A (A . + 4,#%)}, whence it eésily
ollows that the element 44"+ ...+ 2,0"=z = {2} satisties the condi-
tions (2) and (3) and that

lg(@) — Adge) <e  for 4,k=0,1,...

Suppose that the method 4 has the property (r,) and denote by P,
the space of all bounded sequences m={wik} which are perfectly A—su.mf
mable to 0. Let us introduce in P, two norms

loll= sup |y,

4k=0,1,.,.

lel” = X' 27 9zl + sup Ay (@)
1,k=0 tk=0,1,...
A sequence {wn} of elements of P, will be called y-convergent to z, (in
symbols z,, 5a,) if ' '
(4) SUp [[Zaf <co  and  lim|la, — )" =0.
N—o0

n=01,...
The convergence y satisfies the following conditions:

n) If s nd 1 *
(n;) jnjl,}?,,“manoo and  Um |lw,—x,[*=0, then there ewists an ele-

Dg->c0

ment x, such that x,%x,.

(nz) If "rnl)ml]: then “a’0”\<\ lim ”‘z‘n“
o

The space P, is a particular case of a space X in whi
convergence [1] is defined, viz. if in a lineir space m‘:’:l):]Lle?; Zrzwge?izzg
twc? nqrms llzll and |=|* such that Iz}l -0 implies [jz,[*—0, we ma
define in this space a convergence y by the condition (4). Le;; us ca,llz
functional & in X y-linear if it is additive and @, Lo, implies &(2,) > &(a,)
We may ask under what conditions the space X iy such that 7;;he ].iII;)ii.]
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of a convergent sequence of y-linear funetionals is y-linear. It may
easily be shown that the conditions (ry) and (n?) fhl()}le‘ do not sutﬁge;
this property, however, is fulfilled if the space X satisfies the following

condition in which § stands for the set E{Hm“gl} ([1], theorem 4.1):
¥ .
(ng) Given any x,eS and &>0, there is & 6>0 such that lell* < 8,2e8 tmp-
lies x=a' —a' with =', 2" €8S, ||z, —x'||<e, |lz,—"||<e.
2.4. THROREM. The space Py has the property (n4)?).
Proof. Let us write o= {a}}, M= sup D tigl, n=2/(2M +5).

iJe=0,1,... g0

Choose n so that
3 2y,

max(py)>n

by Lemma 2.3 there exists an element 2= {2y] such that |zg/< |oy/<1
and
0
Tk
Zip= { 0

[ A (@) — Ay ()| <7

for 4,k<n,
for max(i,k)>n-+p,

for i,k=0,1,...

Then |jm,— 2" <3n. Now let ||jz|<1, Hm|l*<2“‘:'+mn, Z= ‘{)ﬂ%k}- Then
@y <2 H|l2]" < <L for i,k<n-+tp. Since min(|al+ Zul, lwn— 2al)<1,
there exist sy=—-1 such that |zf,+ e®yl<1. Now set

Bt ety LE<n4p, =1,
Tip= 1 i dk<ntp, ep=-1,
Ty elsewhere,
Zik it dk<nt+p, ep=1,
o= tpt ety i i k<ndp, ep=—1,
0 - elsewhere,
’ "
o= {-’”tk}a o= {mtk .
"
Then g <1, i<, o=1 —z'" and
[Ag(a")— Ay (=) < @it Byl - | D)

max{ ) >0+

b)

min{z0)ysn-p

min(yp)y<n+p

0
g M 77+| 2 a’ik/wmlwt + |a’""l”’ml";l
0

ny=

<2Mn-+| Ay ()| <2My+ |

%) For the case of single sequences this was proved in [8], p. 248.

icm
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le—a|"= 3 27® e, —a! |1 sup |Ag(e)— Ady(2)|
=0 ik=0,1,...

< 5 2t 4 23 + ol < 20l + 230n< 2 (M4 1)1,

=0
llo — ' [|* < flog— 2" + e — | < 35+ 2(M + 1) < .
Similarly |lmy— o[l <<(2M+4)n<e.

3. Consistency theorems.

3.1, THEOREM. Let the method A fulfil the condition (ro) and let every
sequence regularly comvergent to 0 be B-summable to 0. If every bounded
sequence perfectly A-summable to 0 is B-summable, then B-Lm £y=0.

i.J—00

1.
Proof. Let the method B correspond to the matrix B=(by,,)-

)
The functionals B (®)= 3by.,.x, are linear in the space P,, whence
’ o,r=0

the functionals

By (#)= 3 byt

o=0

and B, (#)=lmB,, (x)
1300

are also linear. By hypothesis, B., (#)=0 for every sequence regularly
convergent to 0, and since these sequences form a dense set in Py (lemma
2.3), B..(%)=0 in P,. '

3.2. THEOREM. Let the methods A,, fulfil the condition (ro) forn=0,1,...,
and let any sequence regularly convergent to 0 be B-summable to 0. If
every bounded sequence perfectly summable to 0 by all the methods A, is
B-summable, then B-lim ,,=0.

1,

Proof. The theox{:a—r? may be proved by a similar method to that
used in Theorem 3.1. We must merely replace the space P, by the space
P of all bounded sequences m={xlk} which are simultaneously perfectly
4,-summable to 0. The second norm must be defined now as

sup

#y=12,.

ol = 3 2Ry 4 S sup |A9()I 1+

=0 g0

14D @)1,

1%

A%(z) denoting the (#yv)th transform of # obtained by the method A
Then a lemma analogous to 2.3 holds, which shows that the sequences
perfectly convergent to 0 lie dense in Pp. It is not difficult to prove
the condition (n,) also for the space P,

3.3. THEOREM?®). Let the method A be completely permanent, and
let every regularly comvergent sequence be B-summable to its limit.

‘) This theorem was proved by Hill [4] under the additional hypothesis that
the method A is reversible.
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If every bounded sequence m=|ury} regularly A-swmmable is B-swmmn-
able, then -

A -lim @,= B - lim @,
i koo k00

Proof. Consider the sequences z = [z} and y —= |y} with the terms
A; (@) for kzi,
A(z) for i>k,

Rip =
Yir= Bige— Zire+

The sequence z converges regularly to A _(z), and 4, (¢)= A; (@), 4 ,(2)=
= A4 ,(2) by the complete permanency of the method 4, whence the
sequence y is perfectly 4-summable to 0. By Theorem 3.1 B-lim y;=0;

iy Je— 00
by hypothesis B-lim z;=A4_ (x); it follows that B-L ]kim 2y, exists
i,k—> 00 4,k—c0

and is equal to
B-lim yu+ B-lim z3=A4 ().
i,k—o00 4,00
Theorem 3.2 leads in a similar manner to

3.4, TEEOREM. Let the methods A, be completely permanent for
n=0,1,... and let every regularly convergent sequence be B-swmmable to
“its limit. If every bounded sequence x reqularly summable by all the methods
A, to the same value is B-summable, then A,-lim @,=B-lim z;.

ik—>00 1,le—00

4. Transformations reducing the degree of multiplicity of the
sequence. Now let us consider double-to-single sequence trangformations
defined by a three-dimengional matrix

A:(am), typ,v=0,1,...

oo ) '
with the transforms 4;(#)= D @;,%,, such methods map double se-
up=

quences upon single ones. We define A-summability as usual, the gene-
ralized limit will be written 4 -lim xy, or simply A (). The method A

4,k—>00
will be said to fulfil the condition
(po) if it tramsforms every sequence perfectly convergent to 0 into a sequen-
ce convergent to 0.
For the methods under consideration the following statements ana-
logous to the conditions of section 1 are valid: '
(1) The method A transforms every sequence perfectly convergent to 0 into
a convergent one if and only if the following conditions are satisfied:

(i2) S 3 | <o,

T=0,... o=
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(i;) there exists lima,,=a,, for u,v==0,1,...
1—>00

(i) The method A satisfies the condition (1,) if and only if the conditions -
(i) and (i;) are satisfied and a,=0.

(i) The method A tramsforms every sequence regularly convergent into
& convergent one if and only if the conditions (i), (iy), and the following
are satisfied

(ili;) there ewist

o0 o0 N o0
im Ya,=8, Lm Ye,=8,, lm D =8
00 p=0 i—>00 »=0 00 pw=0
(iv) The method A transforms every regularly convergent sequence into a se-
quence convergent to the same limit if and only if the conditions (i),
(i), (iil;) are satisfied and

a,=8,=8,=0, 8. =1
If the method A satisfies the conditions of (iii), then

4= 3 0p,t 3 (1.~ S a0, + 3(8.~ Sa,)e.,
= v= =

Jy=0 y=0
for every regularly convergent sequence. The number

3

6(A)=8_ — a,,
ny=0

will be termed the characteristic of the method A. Let A'=(a;,) be
another method satisfying the conditions of (iii); for this method denote
the numbers defined by the conditions (i,) and (iii,) by a,,,8,,8,,8
respectively. The methods 4 and A4’ are called consistent for regularly
convergent sequences if A (v)=A'(w) for every regularly convergent
sequence. It may easily be shown- that the methods 4 and A’ are con-
sistent for regularly convergent sequences if and only if a,= a.'m,,
8,=8, 8,=8,,8_=48 for u,y=0,1,... In this case c(Ad)=c(4").

Supposing that the method A has the property (Do), We introduce
in the space of bounded sequences A-summable to 0, which will be
denoted by P, two norms

o= sup |zwl, @l = 3 2-Plogl+ sup |4;(a).

k=01, i,k=0 2=01,...
Then by a method similar to that applied in section 2 we may prove
the following
4.1, LeMma, Let the mothod A fulfil the condition (p,). If the sequence
z={z;} belongs to P,, then for every e>0 and n there ewists a p and
: 12%
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a sequence z= |2y} satisfying the conditions (1) and (2) of 2.3 and such

that

|4;(2)— 4A;(2)|<<e  for i=0,1,...

This lemma States that the sequences with a finite number of terms
different from 0 form a dense set in the space P, with the two norm con-
vergence; moreover, by the same proof as in section 2, we can.show
that the space Py fulfils the condition (n;). Hence follows, as in section 3,

4.2. THEOREM. Let the methods A and B satisfy the condition fPu?-
If every bounded sequence x, A-summable to 0 is B-summable, then it is
B-summable to 0.

The following theorem requires a separate proof.

4.3, TEBOREM. Let ¢(A)#0, and let the methods A and B be consis-
tent for regularly comvergent sequemces. If every bounded A-summable se-
quence ts B-summable, then A- hm mlk—-B hm %c

Proof. The methods A’ and B’ deﬁned by the matrices
B'= (b3, —b,,,)

transform every sequence perfectly convergent to 0 into a sequence con-
vergent to 0, and every bounded A’-summable sequence is .B’-summable.
‘Write

4'= (a‘i/,w— a‘.;w)}

1
= C(E[ ”-”Z_' a‘ﬁww/w]
The sequence zy= {z;—r} is A'-summable to 0, for .
A (2')= — Z‘moa_mwm.—rc(A).
ny=
By theorem 4.2 B'(»')=0; since B(x)=4A(z) for regularly convergent
sequences, ¢(4)= (B) and a,=>5,, whence
0=DB'(2')=B (x) MZ b %, —7¢(B)

=B (@)— )‘a i —16(A)=

.u,ﬂr“

B (z)— 4_().

By the method indicated in section 3 we can prove the following
generalization of Theorem 4.1

4.4. THEOREM. Let ¢(4,)#0 and let every regularly convergent se-

quence x={my} be summable to the same value by oll the methods
B, Ay, Ay,... If every bounded sequence A,-swmmable to the same value
for n=1,2,... B-limay, for n=0,1,...

18 B-summable, then A,-limaz, =
4 =00 i, —ro0

icm
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