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Theorem IT enables us also to prove Littlewood’s desideratum and to
prove the following theorem: if gy= fy+ 70 for B,221/2 is a non-trivial
zero of £(s), then for 7> ¢, and T > e we have

log T log log log T
Jog* o8 log

max |4 ()] > TFe™" ~ Tloglog?

e T
Here ¢;; and ¢, are numerical constants whose values can be given expli-
¢itly. To get finer results in this way we should need the one-sided refi-
nement of our theorems mentioned in the first part.

The list of applications is still incomplete. But perhaps those discussed
above already show that the way of inferpretation of Dirichlet’s and
Kronecker’s theorems which we have systematically followed, is a fruit-
ful one. I hope T have also succeeded in showing that this theory is at
the very beginning of its development and many more applications can
be expected.
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ON A THEOREM OF F. AND M. RIESZ
BY
HENRY HELSON!) (NEW HAVEN, Conn.)

The theorem in guestion is the following ([3], or [4], p.157-158):
Let

Fre®) = 3 a, "™
T=0
be an analytic function defined in the unit cirele, and suppose that
2
of [f{re™) da

is bounded for r<1. Then there s & summable function fo(6%) defimed on
the boundary of the cirdle and summable, such that

lim [ 1y (6%)— J (o) da=0,

1 0

and the Fourier series of fy is

=
fold®)~ 3 0 6.
7n=0

The statement of the theorem and its original proof are function-
-theoretic. The purpose of this nobe is to give a new proof from & different
point of view, which is closer to the spirit of some of the applications
of the theorem?).

We shall have to consider bounded complex-valued measures defi-
ned on the field of Borel subsets of the interval (0,2x). Associated with
such a measure g is a function of bounded variation on the interval de-
fined by

ple)=p (L),

where I, is the sef of y satisfying 0<<y<{w. It will be clear from the con-
text whether a symbol is being used to denote a measure or the corres-
ponding function of bounded variation.

1) Jewett Fellow of the Bell Telephone Laboratories.
) The author expresses his indebtedness to Dr. 8. Kakutani and Dr.
J. Wermer for conversations about the subject of this note.
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We are going to prove the Riesz theorem in this form ([2], p. 21):

Let u be a bounded Borel measure on (0,22) with Fourier - Sticltjes

coefficients ’
1=

= -— | ™" qu(a

" S (')J du(w)

(n=0, +1,...).

If a,=0 for all n<<0, then w is absolutely continuous with respect to Debes-
gue measure,

This assertion is equivalent to the Riesz theorem (see ¢. g. [4], . 158
and p. 162).

Lemma 1. Under the hypothesis, p vanishes on sels conaining a single.

point.
Indeed, decompose y into a discretie part consisting of o sum of poing
masses, and a continuous part vanishing on sets of one point:
f=fig+pe.
For the corresponding Fourier-Stieltjes coefficients we have
a
Oy = O+ "‘:,
A well-known theorem of Norbért Wiener states that

1 N
3 2
lim oY g Jayl =10,
N—oo <~ =N

and so also

1 [
lim — al*=0.
Jm ;Nl al
But a2+ aS=0 for n< 0, so that .
1 0
lim - ali? =0,
Nereo N ngN‘ "

The coefficients of a diserete measure always form an ﬂylm(’)st—pm'iodic
sequence, 'so the last equation is impossible tnless all the terms vanish.
Hence u is a continuous measure.

LeMmaA 2. Let

p=pstp,
be the Lebesgue decomposition of p dnto a singular and an absolutely conti-

nuous part. Suppose ¢ is 4 comtinuous funciion of the form

p@)= 3 be™,  Y|b,i<oco.

=1

_ iom°®
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Then
Jop (@) A () =— [p(@) Gug ().

Since the series for @ converges absolutely, we can write '

ol an@)= 3 b e dp ()= 3 bpt_n=0,

since @, vanishes for negative indices. The fact that u i orthogonal to
@ is equivalent to the statement of the lemma.

TBach of the measures u, and u, defines a linear functional on the
space of all continnous functions on the boundary of the unit circle, and
Lemma 2 shows that for a certain class of functions these functionals
differ only in sign. We are to show that this impossible unless the singu-
lar measure vanishes.

LM 3. Denote by » the total variation of us:

i

»(t)= [ ldus(@).

0

There is an analytic function @(e) in the unit gircle having the properties
(a) 0<lp(a)| <1 (Je}<1),

(b) limegre®)=0 . e (»).
r—1
Of course, ¢ can have radial limits equal to zero at most on a seb
of Lebesgue measure zero, but the exceptional set may carry all the mass
of the singular measure », and this is the kind of ¢ we have to construct.
We form the non-negative harmonic function

2
w(r,s)= ;l;f‘P(T;w—?/)d"(y);

=0
where
1—4°
P(r,o)= 1—9%rcosx+1

The classical theorem of Fatou states that w(r,) has radial boundary
value ¥ (#) at every point where this derivative exists. A modification
of the proof of Fatou’s theorem (as in [1], p. 148-151) shows that u{r,®)
tends to infinity at each point where #'(z)=oco. ‘We assert that »(x) has
infinite derivative almost everywhere (»).

To see this, let y(3) be any function satisfying

w(y(t))=1 (0t v(2m)).
8*
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Thus y is the inverse. of v at any point where that exists uniquely; at
other points y(#) is to be chosen in fhe corresponding interval of con-
stancy of ». Then y is a non-decreasing function, possibly having points
of discontinuity. We use the same symbol to denote the associated measure
on the interval (0,(2x)). Evidently »'(#)=¢0 if #=y(t) and y'(t)=0.

Now the variation of » over an interval (e,f) is »(8)—v(a), or the
Lebesgue measure of the image of (a,f) under the mapping ». This prop-
erty persists for arbitrary Borel sets. So to show that +'(#)=oco almost
everywhere for the measure v, it is enough to prove that y’(¢)= 0 almost
everywhere for Lebesgue measure.

Let F be the image under » of the null-set on which the mass of »
is coneentrated. Then F has full measure in (0,v(2z)); but evidently
the variation of y over F is zero. Thus the mass of y is carried on the com-
plement of F, which is a Lebesgue null-get, and the assertion. is proved.

We have constructed » non-negative harmonic function «(r,#) in
the unit circle and proved that «(r;z) has infinite radial boundary values
except possibly in a null-sel of » Let v(r,») be conjugate o u(r,»), and
form the analytic function

(p(,rei:v)=6—(u+iu) (7.<1).

Evidently ¢ satisfies the conditions of the lemma?).
Define a function ¢, on the boundary of the circle by the formula

() =g (r67) (r<1).
Then ¢, is continuous, has an absolutely convergent Fourier series, and
its coetficients all vanish for negative indices. Indeed, if the power series
expansion for ¢ is

0
(P(“,u:) — 2 (,,n],7161)1x

n=0

(605%0),

then the same series is the Fourier series of ¢,.

JE g (6) dps () =

As r increases to one, @, converges boundedly to zero almost everywhere
for the measure u,. On the other hand, the Fatou theorem states that ¢,
tends to a limit function almost everywhere for Lebesgue measure; call
this limit @,(€"). Applying the Lebesgue convergence theorem to emch
integral, we obtain

By Lemma 2,

— [ g, (F)dug (@) (r<ljm==1,3,..).

fe*in,a:¢0(e'£x)dﬂa(£):0 (7@:1,2,...).

%) The method used to construct ¢ is of course familiar.
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Since g never vanishes, ¢'/™ is analytic in the circle and has boundary

values with the same properties as those of g. Repeating the argument
above, we have
fe'inzq]‘l),/nz(eix

is uniquely defined as

Y (2)=0 (m,n=1,2,...),

where @'™

(Pélm(giz) = lim e-—(u-{-iu)[m..
r—1 .
Evidently (recalling the construction of «(r,z)), we have for almost all »

lim gp/™ (%) =1.

M—oQ
So letting m increase indefinitely and applying the Lebesgue convergence
theorem once more, we obtain

[ €™ duag{m)=0 (n=1,2,...).

That is, the coefficients of u, vanish for negamlve indices, and consequently
the same holds for u,.
LeMMA 4. If the coefficients of a singular measure vanish for nega-
tive indices, then the measure is the null measure.
This is of course a special case of the Riesz theorem. Making use
again of the boundary properties of ¢ we can write
Ozhmf‘pr(eiz)dﬂs(m) =lim 2 On'rnfeimd/“s(m)= 0o
71 r—1n=0 .
where af is & coefficient of u,. Since oo;é() we conclude that aj==0. Con-
tinue by replacing ¢.(e) by e g (F) n the same computations; we
obtain af==0. Repeating the process, it appears that all the coefficients
of u, vanish, and the lemma is proved.
~ We have shown that the singular part of u=p,+ g, vanishes and
s0 w is absolutely continuous, as was to be shown.
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