REMARKS ON THE CONVERGENCE OF MEASURABLE SETS
AND MEASURABLE FUNCTIONS™)
BY
E. MARCZEWSKI (WROCLAW)

In the Measure Theory and the Probability Theory one deals with
different kinds of convergences of a sequence of funetions, in particular
with the convergence almost everywhere (convergence a.e.) and the
convergence in measure (convergence i.p.)%).

Many logical connexions between them are well known, e.g., con-
vergence a.e. implies convergence i. p. and, more precisely, a sequence
{f.) of measurable functions converges i. p. to f if and only if every
subsequence of {fn} possesses a subsequence convergent a. e. to f.

The purpose of this paper is to investigate when conwvergence i.p.
implies convergence a. 6. or, respectively, convergence everywhere. (That
ig a development of an idea of Professor Josef Novék who has proved?)
that, if a o-measure defined in a o-field of sets is strictly positive, then
the convergence i. p. of a sequence of sets implies the convergence of this
sequence in the sense of the General Theory of Sets, 4. ¢. in the sense of
the equality (2)). The angwer to this question is easily obtained here by
2 simple analysis of the motion of atom of a measure.

Incidentally I treat some questions concerning the siochastic indepen-
dence with respect to purely atomic measures.

1. Atomless and purely atomic measures, In Sections 1-3 and 5
I denote by u a finite ¢-measure (4. e. a countably additive and non neg-
ative set. function) defined in a o-field (3. e. countably additive and
complementative class) M of subsets of a fixed abstract set X. Sets be-
longing to M are called measurable. Any real function f defined on X is
called measurable if f~'(G)eM for every open set G.

A set AeM is called an atom of w, if u(4)>0 and if, moreover, the
relations ADBeM imply either u(B)=0 or u(d)=u(B).

*) Presented to the Polish Mathematical Society, Wroclaw Section, on
January 30, 1953.

1y 1 write i p. (=in probability) instead of i. m. (=in measure) to avoid
confusion with the convergence in the mean.

) In a conference On the convergence of random events, held in Wroclaw, on
December 15, 1952.
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It is easy to see that
(i) For every atom A, every measurable function is constont a. e. on A.

If a set B contains no atom, then B and the measure x on B are
called atomless. B. g. the Lebesgue measure is atomless. It is easy to see
that

(ii) There is a decomposition of X into disjoint sets:

X=X0+X1+ Xz+---’

where Xy 18 either void or an atomless set of positive measure, and each of
the sets Xy,25,... is either a void ser or an atom. ‘

This decomposition will be used several times in this paper. If X,
is void, then u is called purely atomic. E.g. any finite o-measure defined
in the field of all subsets of an almost denumerable set is purely atomic.

The following “intermediate value theorem” is valid for atomless
measures?®):

(iii) If p 1s atomless, then for every BeM and every number ¢ with
O<<e<<pu(B) there is a set OeM such that BOC and u(0)=e.

Theorem (iii) implies the following one:

(iv) If w is atomless and u(X)=1, then, for every sequence p, with
0<{p, <1, there emists a sequence {E,,} of stochastically independent sets
with u(E,)= py. ’

To prove this, let
(1) - B'=X-F.

for every set ECX.

By (iii) there is a set By, with u(E\)=p,. If B; are already defined
for j<n, and if they are stochastically independent sets with u(E;)=p;,
then there is, in view of (iii), a set E,,; such that

E'=E

BB By By) =P p (B .. B

for every system 4,,%,...,%, of numbers 0 and 1. It is easy to see that
{E,} is the required sequence.

Theorem (iv) is important for subsequent proofs.

2. Convergence im measure and convergence almost everywhere.

We adopt the current definitions of these notions for sequences of measu-
rable functions. Next, let us denote by ¢p the characteristic function of

the set B. We say that a sequence of sets {En} converges in measure (con-

8) Cf. e. g. H. Hahn and A. Rosenthal, Set IFunctions, Albuquerque
1948, p. 51 and P. R. Halmos, Measure Theory, New York 1950, p. 174 (2).
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verges i. p.) to B if the sequence |og,} converges i.p. to ¢, or, in other
terms, if p(B=E,)—09). )
We write, as usual,

oo

I\
s

limE,=

n

B, IimB=][] 3B,
k=1n=k

I n

I

k=1n

and we say that a sequence {En} of sets converges to F if and only if

5 B =lim E,= lim B,.
(—") “ L)
A sequence {En} converges to E if and only if the sequence of fune-
tions {GEn} converges to og everywhere.
‘We say that a sequence {En} of sets converges a. e. to I, if the sequence

of functions {og,] converges a e. to cg, or, in other terms, if
p(B = lim B,) = pu(B= lim B,)=0.
3 n

‘We shall prove that

(i) The convergence i. p. of & sequence of measurable functions {fn}
o a measurable funciion f implies the convergence of {fn} to f a. e on every
atom 4 of p.

Tt follows from 1(i), that there is an atom A*C A sueh that u(4—A4%)
—0 and that f,,,fs,... are constant on A% Let ’

sz(ﬁ), "In:fn(w) for CUvGA*.

Since f, converge i.p. to f, there is, for every ¢>0, a number n,
such that
(@) —Fl@)|<<e  for a>>mny

outside a set Z, with u(Z,) < u(4"). Consequently
leg,—e¢l<<e  for n>mng,

which implies convergence of f, to f a.e. on 4, ¢.e d.

(i) If u is atomless, then there is o sequence {En} of measurable sets
convergent 4. p. to the void set and such that

lim B, =0, limE,=X.
= n
‘Without any loss of generality we may suppose u(X)==1. By 1 (iv)
there exists a sequence {B,} of Bernoulli trials (4. e. a sequence of sto-

4) A=B denotes the symmetric difference of 4 and B. For this kind of conver-
gence see e. g. Hahn and Rosenthal, 1. e, p. 32
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chastically independent sets with the same measure) with p(B,)=1/2.
Denoting by B’ the complement of B, the sequence .

By, By, BiBs, BiB,, B.B;, B1 By, B, Ba Bs, BB, By, . .
obviously satisfies the conditions of the thesis®).

It follows easily from (ii) that

(iii) If convergence 4. p. of measurable seis implies their convergence
a. 6., then p 8 purely atomic.

Combining (i), %\1 (i) and (iii), we obtain

TrrorEM I. The following statements are equivalent:

(ay) p 18 purely atomic;

(b,) comvergence . p. of measurable functions implies their conver-
gence &. 6.3

(¢,) convergence i. p. of measurable sels implies their convergence 6. ¢.

3, Strictly positive measures. If u(N)=0 implies ¥=0, then g
iz called strictly positive. :

(i) If u s strictly positive, then it is purely atomio®).

Tet us suppose that u is not purely atomie, or, in other terms, u(X,)>0,
and let us conmsider a c-measure » defined in X, as follows:

v(E):—i——,u(E) for X, DEeM.
2#{Xo)

The measure » is an atomless o-measure in X, with »(X)=1. Thus,
by 1(iv), there exists a sequence {B,} of Bernoulli trials with »(By)=1/2.
By using the notation (1) we have :

X,= Y BiB2...

where {@"} runs over all infinite sequences consisting of the numbers 0 and 1.
_Consequently there is a sequence {in} such that BEBP...70. It follows
from the definition of Bernoulli trials that the meagure » vanishes for this.
intersection, whence the measures » and x4 are 1ot strictly positive.
The following theorem is obvious:
TemorEM II. The following statements are equivelent:
() po 48 strictly positive; .
(by) convergence a. e. of measurable functions smplies their convergence
everywhere;
5) This is a modification of a well-known construction. Cf. e. g. Halmos, 1. c.,
. 94 (6): .
? “)( ’)I‘his theorem fails for Boolean o-algebras. See section 4.


GUEST


122 COMMUNTIGCATTIONS

(¢x) convergence a. 6. of measurable sets implies their convergence.
© Combining this theorem with 3(i) and 2(i), we obtain
TeEOREM IIL. The following statements are equivalens:
(ag) w18 strictly positive;
(bs) convergence i. p. of measurable functions implies their convergence
everywhere;
(ca) convergence 1. p. of measurable sets implies their convergence’).

4. Convergences in Boolean algebras. If we replace the o-field
M of sets by a Boolean c-algebra B with a finite o-measure p, we can
also consider different kinds of convergences of sequences consisting
of elements of B.

Theorems 3(i) and IIT cannot be extended to Boolean algebras. In
fact, the ordinary Lebesgue measure in the algebra L|N of Lebesgue
measurable sets modulo sets of measure zero is an atomless and strictly
positive o-measure. Obviously, in view of 2(ii), in this algebra conver-
gence i. p. does not imply convergence (in the sense of the equality (2)).

Nevertheless, by using the same arguments as in the preceding sec-
tions, we obtain the following theorems for Boolean o-algebras:

THBOREM I*. 4 is purely atomic if and only if convergence 5. P. implies
convergence . e.

TueorREM II*. p is strictly positive if and only if convergence a. e.
implies convergence.

THEOREM II1*. 4 dis purely atomic and strictly positive if and only
if convergence 4. p. implies convergence.

5. Atoms and stochastic independence. In connection with Theorem
L it seems interesting to investigate the properties of purely atomic measu-
res. Theorem 1(iv) states that, for every atomless g, there is & sequence
of stochastically independent sets with prescribed measures, in partic-
ular a sequence of Bernoulli trials. In this section I shall prove that the
existence of a sequence of sets having prescribed meagures {p,l} and sto-
chastically independent with respect to a purely atomic measure depends
on arithmetic properties of {pn} In particular there exists no sequence
of Bernoulli trials. with respect to a purely atomic measure (which follows
dirvectly from (i)).

Let us put for every number p with 0Lpgl:

pO=1-y,
Py=min(p,1-—p),

=p,
p*=max(p,1—p),

7} The implication (a,)~>(c;) was proved by Professor Novalk; of. the intro-
duetion and the footnote 2).
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Ohvionsly p,—+p*=1, and the conditions

) f}j’ (podemce. [125=0

are equivalent. The following conditions are equivalent too:

(p)a<<oo,  []pa>0.

1 =1

T8

4)

I shall prove

() If p(X)y=1, if the sets E,eM are stochastically independent and
if the sequence p,=p(H,) satisfies (3), then p s atomless.

For every sequence {zn} consisting of numbers ¢ and 1 we have:

P ERER. )= (B) p(BY)... = pi il

.y

whence, by (3), u(ERER...)=0. . .
Leé A be an atom of u, and let us put 4,=0 or i,=1 according as

W(AB)=0 or u(A—E,)=0. Then
p(A—ELER. . )=0

whence p(d4)=0,

(1) If u(X)=1, if {B,} is a sequence of sets such that M is ﬁ?e o-field
spanned by |B,} and if the sequence p,=u(E,) satisfies (4), then u is purely
atomic.

At first we shall prove that there exists a sequence '{h"} consisting
of numbers 0 and 1 such that

() plim B =1.

n

Since (4), there is a sequence {gn} consisting of 0 and 1 and such
that

o0
2, pi<oe.
n=1

Then, it suffices to consider the sequence {E%} and to make the
following simple statement:

(8) it 3 p(M,)<oco, then pu(lim M,)=08).
n=1 n

8) Cf. e. g. Halmos, 1. ¢, p. 40 (6).
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Then putting h,=1-g,, we obtain (3). Consequently, denoting by J the
set of all sequences {j,} consisting of 0 and 1 and such that j,=h, for
sufficiently large », we have
ul Y EPER. )=p(imBl)=
Gnyed wT

Now, let us denote by J* the set of all {in) ed such that u(BLBE...) > 0.
Since the set J is denumerable, the preceding equality implies the follow-
ing one:

ra 2 BRER..
{in¥ed*

It follows from the hypotheses, that every set belonging to M is the
sum of a family of disjoint sets of the form ER2E2..., whence every set
BRER... with {j,)eJ* is an atom of p. Therefore, in view of the prece-
ding formula, x is purely atomie.

Combining (i) and (ii) we obtain

THLEOI.EEM IV. There is a purely atomic measure y and a Sequonce
of stochustically independent sets {E,L} with w(B,)=p,, if end only if

J=1.

o0

(9 ' 2 (Pa)a<<209).

n=1

The nécessity of this condition follows directly from (i). To prove

the sufficiency, it suffices to consider the Lebesgue measure in the
unit interval, to apply 1(iv) and to define M as the o-field spanned by

{B,). It follows from (i) that the Lebesgue measure, considered on M -

only, is purely- atomie.

°) This construction of a sequence of sets independent with respect to a purely
atomic measure was found also by S. Zubrzycki.
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ON THE AXIOMATIC TREATMENT OF PROBABILITY
BY
J. LOS (TORUYN)

The calenlus of probability is a branch of mathematics whose founda-
tions have so far not been fully investigated. There are of course, many
such branches, but the caleulus of probability is unique among them as
regards the speeific course of the development of its fundamental prin-
ciples. This is bound with what prof. Steinhaus calls the “tavern”
origin of the calculus of probability. A theory of gambling games at first,
it gradually extended its range of applicability, becoming finally a mathe-
matical theory of great practical and theoretical importance.

It was at a very early stage of the development of the calenlus of
probability that mathematicians felt the need of formulating ity founda-
tions more precisely. The first attempt in this direction was probably the
definiton of “classical probability” given by Laplace. However it was the
introduction of axiomatic methods, which made it posmble to investigate
the principles of probability along new lines.

The first axiomatic of probability was given by Bohlmann [2]
about the year 1904. Since that time there have appeared (and still appear)
numerous axiomatics, suggesting new methods of treatment or — more
frequently — distorting treatments already known by means of the
terminology which they adopt.

In principle it is the aim of every axiomatic of the calculus of proba~
bility to answer the following two questions: :

1° What are events, 4. ¢. what are those objects supposed to be
probable?

2° What kind of function of events should probability be?

Rather a paradoxical point of view could be ventured, namely, that
the answers to the above-mentioned questions should not be given by
probabilists. The first should be answered by algebraists and the other by
real function specialists.

And even if it were mot true, experience shows that certain parts
of algebra (lattice theory, and especially the theory of Boolean algebras)
and certain parts of the theory of functions (measure theory) comtrol
the foundations of probability to such an extent that they almost ab-
sorb them. This is a useful process of complete mathematization of the
calenlus of probability.
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