THE LIMITING DISTRIBUTION OF A FUNCTION OF TWO IN-
DEPENDENT RANDOM VARIABLES AND ITS STATISTICAL
APPLICATION
BY
M. FIS7Z (WARSZAWA)

1. We consider pogitive random wvariables &(4) with finite mean
value m{A) and varianee o”(2) 0 where the parameter A can take values
belonging to an unlimited set 4 of positive numbers. Let us suppose that
the distribution function F(s,1) of £(i) can depend not only upon A
but also upon other parameters. However the values of these parameters
are the same for all considered random variables.

DEFINITION 1. We say that the random variable £(1) converges sto-
chastically to & number ¢ if the followmg relation is satisfied for an arbitrary
e>0:

(1) lim P([£(A)—¢|>e)=0, where LeA.
A—»o0 .

DrrFINITION 2. We say that the random variable &(A) 48 asymptotio-
ally normal N[wu(A)iv(A)] if there emist such functions w(l) and v(4)>0
that for each real « the following equality holds:

E(A)——u(l) e
v(l)» l'/—T”‘ ’ dir = &(x),

(2) lim P (

A

where Ae .

Let 4, and 4, be some subsets of A and let & (4,) and £,(4,) be two
independent random variables where hedy, Aeds. We shall denote,
for r==1,2, :

Er::f'r(}'r)y mr=E(§r); gf‘:Dﬁ(fr)’

PR a,

"/""'V“E"‘O'gy /qr:"r“ .
’l/!

The following théorem?) will be proved:

TaBOREM. If

(a) the variable £(2)/m(2) is stochastically convergent to the number 1,
(b)-the variable £(A) is asympiotically normal N [m(A;0(2)],

') ‘The assumptions of this theorem have been formulated by] the author in
a discussion with A. Rényi and J. Lukaszewicz.

icm
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(¢} the variables & and &, are independent and the following relation
holds:
My

1 - =1,
® e T
Ap—>00
then the varigble
&—&
4 L, )= ————
(4) (A5 4) Gl 6

where p 15 an arbitrary positive number, is asymptotically normal

My~ M,
N[( by 1 v

7 5|, when  A—>o0, ly—>o0.
Myt Mg’ T (g my)]

In the formula (4) we understand by (& + &) the real and positive
value of this expression.

'Proof. In the first plaee we shall prove two lemmata.
Lemma 1. If &(A)[fm(A
then

(5) : limP(

Mp—roco
Ag—>00

is stochastically convergent to the number 1,

1> =0,

where, e>0 is an arbitrary positive number.

Proof of lemma 1. From the assumption of the lemma it follows
that for sufficiently large values of 4, and 4, the probability of the occur-
rence of each of the following two inequalities:

hta
Ny~ Ny

(6) ’ an(l—s) <Er< 7nr(l+8) (T':l!z)

iz greater than 1—¢, where §>0 i3 a given arbitrarily small number.
The probability of the occurrence of both inequalities (6) is —in view
of the independence of £ and & — greater than (1—4)°. As the prob-
ability of the occurrence of the relation

(1) (g ) (L) < &y - By (12 -+ 15) (1)

is at least equal to the probability of the occurrence of both inequalities
(6), and & can be arbitrarily small, the assertion of the lemma is proved.

LemwaA 2. If &(1) is asympiotically normal N[m(1);0(A)] then the
variable & —§&, is asymplotically normal N [me— my;w] when 4— o0, ly—-00.
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Proof of lemma 2. The assumption of the lemma is eguivalent to

the relation

13
8 lim — m(LYit{e(A) » (__ 7») . —* /2 — 0'
(8) Hw[ 7\t ;

where ¢(¢,4) is the characteristic funetion of the variable &(A) and the
convergence is uniform in each finite interval of t. Let us denote

Lo

2mh—
34

(9 )= (g 9iig)

The characteristic function g (f,4:,4;) ‘of 77(71,/q) is of the form

(10) Bty dg) = 0" g ( z) ’”“"”'7(_"’,1.1)
L P }

=4, (¢, Aty zz)ilﬁ(tvllvﬂﬁ):AlAza

where

any iy t Ny t
A1=4‘11(5711a32)=(’-“11”1 ‘7’(“ " 1'11) = ]ﬂlll/qlfp(—”(‘;' ﬁl:;ﬂ)
1

: 1
= a_“hﬂllt/ﬂl(p (; ﬁl 7}'1 ) 3

1

o t
AZ:AE(!‘:, ),1,).2)26_”12”/1/'(]7 ( v 1)\2) :(,"m’ﬁ‘“/a-'(p( ! ) ﬂ Jz) .
Let us denote
By= o (r=1,2).

As the convergence in the relation (8) is wniform in cach finite inter-
val and 0< f,.<1, it follows from (8) that the following relation holds:

(11) lim (d,— B,)==0 (r==1,2)
hoe
and thus
lim{[(4;— By)(dy—By)]=
hae ,
= lm[4,4,— By By—B,(4,— By)~B (4, —By)]=

Ay ~»00
Ao, ~» 00
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Taking into account .the relations (11) and {10) we obtain

: ) , —(f+ )0
12) lim (4 dy—B; Bo)=lim {g (i, 4, %) —2
IS i
— Tim [y (£, A A — € PT= 0.
Al 00
Jo—ro0
The assertion of Lemma 2 follows immediately from the last relation.
Let us further denofe
2] My — iy
S T )P
(13) (A, hy)= o

( Wy - Ty )

— (41g —M7) mu——ml ( L+é ) ]
7 'ml—}—ono

-5

- (ﬂ)

Mg~ Mg

My — M &+& Y
1 (k) + 1[1~( : )]
_ Vs Hjivnl—{—mg
. ( §1+§2 )“
My
where %(4;,4,) is given by the formula (9).

The assumption (a) implies — in view of Lemma 1 — the relation
(8), which is equivalent to the relation
‘ > a] =0.

»
lim PH (f_tti_) 1
Ay—r00 M1+ My
Jg—>00
TLet us now consider the expression on the right side of formula (13).
From (14) it follows that its denominator converges stochastically to
the number 1. The assumption (b) and Demma 2 imply that the distri-

bution funetion of the variable 7(4,4) converges to the funetion @(z),
defined by (2). Let us further write

T

(14)

g — Ty

I P T i
e (1—yP)=——— (p+H(1—¥) o, (p+ @ ol o)
where

E4& &+ & — (my 1 my)
=—,  elhk)=—
My - Mo P


GUEST


142 ' COMMUMICATIONS I

is a function of y and &0 when y—1. Tt is easily seen that & conver-
ges stochastically to 0. Let ¢>0 and 6>0 be arbitrary given numbers.
We have

Plla|>e)=P(Ja]>s][9]>0) P (19> 8)+ P(|s|> 8] 19/ < 8) P (9] < 8);

; "y — oy |
P(|z.>s;w'|<6><1°({m‘ (p+wme(zl,zz)1>alim<a)
My~ iy |
<P(jm, (p+a>\e<zl,m|>s||m<(s).

From the stochastical convergence of @ to 0 follows the relation

(15) P(|:1>5][9]>8) P(|9]>8)—0.

Since g(4,4,) is — as can be shown by a slight modification of the proof
of Lemma 2 — asymptotically normal ¥ (031), the asswmption (¢) implies

the relation

Hhg — 1y

My -+ Mg |

(15) P(

(P+0)] 02, o) > o] |0 < 8] 0.

From the last two relations it follows that #z is stochasti
a shasticall verge:
to the number 0. v convergent

'A' well ];nown theorem given by Oramér?) implies that the distri-
bution function of the random variable 7(4,4) converges to &(z). Our
theorem is thus proved. ’

2. We shall give some examples of the application of the theorem
proved.

Exampre 1. The random variable §(4) has a Gamma distribution
whose characteristic function is

(16) ()= (1 - .;t_)",‘

?

where A>0, b>0. One can eagily find

()= Z , (A=

S =

2 . )
) H. Cramér, Mathematical methods of statistics, Princeton 1946, § 20.6.
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‘We have
[4 AN .
lim tp[——-— ,/l] =lim (1 ———) = ¢¥,
(17) amon LM(A) PR A

- mits i A1 . @b _ I ?
log[a (z)/mw(m,/.)]*—I/Mtw).log(l-ﬁ =—5 thlg]

From the last formuila follows
(18) . Hm [6—771(}')“/0“)(}7 (__t‘__ , l):l — 6._{3/2_
A—ro0 o(4)

The assumptions (a) and (b) of our theorem are thus satisfied. Consequently
if the assumption (o) is satisfied, the variable {(4;,4,) defined by (4), is
for A-—+»o0, Ay—>oo asymptotically normal

M—k 1 _1]
[ - pPH.
¥ I:(Az"f‘ll)p VISR

Let us consider the variable

n 1 n N
2 Y2 h
0y = Z Ly — — W

k=1

where #;, (k=1,2,...,%) are independent and equally normally distri-
buted N (m;o). The variable ns® is a special case of a variable distribu-
ted according to (16) for i=(n--1)/2, b=1/24". Thus if the assumption
(e) is satisfied, the variable {(#y,n,), defined by the formula

Ty 83— 11 S5
(1283 +7083)°
where s, and s, are independent, is asymptotically normal

N[ Tog — My 1 ]/5 1 ]

{034 My — 2)7 (Uz)ﬂ_l ’ (g~ g — 2)19—0,5 (0'2)11—1

Let us suppose that the variances o} and o in two normal populations
are not known and we want to test the hypothesis H,(o;= ;). We then
find n,8; and #,s; from two samples chogsen from the considered popu-
lations, where n, and %, are the numbers of elements in the samples.
Thus if the hypothesis H,(o,=y0,) is true and », and n, are sufficiently
large and the quotient #,/m is near 1, the variable {(#;,n,) defined
by (19), with p=1 is asymptotically normal

~ g — Ny / 2
nytng—2 ' Ny %y —2 ’

(19) L(my,0y)=
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This distribution is independent of o and the hypothesis Hy(o,= 0,) can
be tested. For n;=n,=n we have i
8587

si+s3

The variable ¢ (ﬂ,n)]/ n—1 i3 asymptotically normal N (0;1)%).

Table 1 shows that the convergence of the distribution function
of C(n,n)]/%—l to the funetion @(x) given by (2) is very rapid. This
table has been constructed in the following way: For some values of p
the values of z, have bheen found from the relation

{20) (n,n)=

Pla>a,)=y
where @ 15 normally distributed N(0;1). Ifor some values of n, the values
of a, satisfying the equality

. lqb(7t—3)/2 11— {(n—3)2 -

a=P[{(n,n)Vn—1> @, ]= f——(——“) S
i n—1 a—1

Bt P

2 &

where
o L i n—1
2 .’

have been found from Pearson’s tables?).

TABLE 1
! [
S
- \
] Nn=>5 n=10 =17 n==37
g,ggg 0,406 0,403 0,400 0,401
0 0,308 ; 0,304 0,302 0,300
,200 0,204 ! 0,202 0,202 Co0.201
0,150 0,146 | 0,147 0,150 i 5
0150 | . 15 | 0151
0100 ; 0,086 1 0,008 0,088 [ 0,009
0.050 \ 0,022 | 0,041 0,045 | 0048
, ‘ - 0,015 0,020 L0023
0,010 - oo
0.010 : | 0,002 0,006 0,008
,00¢ ; — ; 0,001 0,002 0,004

b e see i the I 1 N ark )} ()
From table we see that the ap nroximation 2
2 | CIarKa g

! Y O(

®) This fact can also be deduced f ) i ) i
Bota Hiny et om the asymptotical normality of the

1) % { ]
) K. Pearson, Tables of the incomplete Beta-function, Uambridge 1984,

A
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Let us observe that it is convenient to take in (19) #,=n, and p=0,5
if we want,to test hypothesis H, (o, =0,==0), Where ¢ i3 a specified number.
The variable £(n,n) is then asymptotically normal N0y 2).

ExAMPLE °. £(1) is a Poisson variable wwhose characteristic fune-
fion is

glt, 1) =e""D,
We have here
m(A) =0 (A) =A.

Tt can easily be found that the assumptions (2) and (b) are satisfied.
Thus if the assunption (e) is satisfied, the variable £ (A1,%) is asympto-
fically normal

7\*[ do—h 1 ]
LA (2P
Consequently if A =4,=4, the limiting distribution is N[0;1/(24° 7],
Let us suppose that the values of the parameter A of two indepen-
dent Poisson variables are not known. Then the hypothesis Hy(h=A)
can be tested by observing the value of the variable
£—&
, Va+é
which — if the hypothesis Hy(4,=1,) is true — is asymptotically normal %)

N (0;1). On the other hand the hypothesis H, (4 =A,=A1), Where 2is some
gpecified number, can be tested by observing the variable - :

C(zlalz)=

5(11732):’

which — if the hypothesis H; is true — is asymptotically normal N (0517 22).

One can give many other examples of the application of the theorem
proved. We shall limit ourselves to mention further two examples
without going into details.

Bxivpre 3. Two independent random variables £ (m,) (r=1,2) are
hinomially distributed :

. (AN »

P[Er(“’r)zf']: ( ?r) wyr(l_'wr)m j;

5)This fact, surmised by J. Oderfeld, was the starting point of the problem

dealt with by the author.
10

Colloquium Mathematicum 11T, 2
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?Nhere wl' ?.nd w, are unknown. The hypothesis Hj(w,=w,=w), where w
Is a specified mumber, can be tested by observing the variable {(n,,n,)
def?ne.sd by (4), which — if the assumption (c) and the hypothesis H, a,re;
satisfied — is asymptotically normal
Ny — N
N 2 1 30,5 —D
[ (M +mp)? " ] ‘

) EX.ANEPI:E 4. The variable £(1) is distributed according to the neg-
ative binomial law, given by the formula

1-p, ]/l —w
T (my g0

. AN
P[5(1)=7]=(—1)1(~ j) w (1—w),
where j=0,1,2,..., i>0, 0<w<1. Here we have

wi
(1—w)®

- T.he vafriable {(4, %) defined by (4)—if the assumption (e) is
satistied — is asymptotically normal

[%—% W' [ A w]P
(24P (1—w)™? " (1—e0)'~? ]

Mm(A)=—; ()=

Our .theorem can thus be applied in particular to festing parametric
hy.poth-esmf concerning Pascal variables since they have a negative bino-
mial distribution with an integer value A

icm

STATISTICAL ESTIMATION OF PARAMETERS IN MAREOV
PROCESSES

BY
0. LANGE (WARSZAWA)

1. Methods of estimation. Consider a simple Markov process with
the transition function

(1.1) Fltay @03 t5, x5 01, Oy - 0).

The transition function expresses the conditional probability (for discrete
processes), or the conditional probabiliby density (for conftinuows proces-
ses), that the random variable &(2) will assume the value at the mo-
ment #, if its value is @, at the moment %,. This function contains cer-
tain parameters @,,0,,... the values of which have to be determined
from statistical observation.

In Markov processes this can be done by the method of maximum
likelihood, which consists in choosing the estimators of the parameters
6,,0,,... so as to maximize the probability or probability density of
an observed set of realizations of the stochastic process. The method
of maximum likelihood can be applied in several ways.

Tf the realizations of the stochastic process can be repeated many
times (as, for instance, in the laboratory or in industrial production}
we take n independent realizations of the process and perform on each
realization a pair of observations at the moments, say, % and #). The
superscript r stands for the 7-th realization (r=1,2,...,n). Denote
by #” the result of the observation carried out on the r-th realiza-
tion at the moment 7, where i=0,%. Since the pairs of observations
are independent, their Lkelihood function is

n
(1.2} Iy=[]105, of; , 2’5 01, 6,,...).
r=1
The estimators of @y, @,,..., which will be denoted by él s (:)2,.. ., are .de-
termined from the condition I;=max.
This way of using the method of maximum likelihood will be called
eross section estimation, or space estimation (over the space of realizations

of the process). The estimators thus derived will be called cross section
or space estimators.
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