any elements of B, such that $x \cap y = 0$ and y contains x_1 atoms, then there is no σ -homomorphism defined on the Boolean algebra $[u|u \in B, u \subseteq y]$ onto the Boolean algebra $[u|u \in B, u \subseteq x]$.

It is possible that the quotient-algebra Q of B in theorem 9, modulo the σ -ideal of all elements $x \in B$, which are the union of at most \aleph_0 atoms, does not admit any σ -homomorphisms. (This would follow from a result of R. Sikorski [12] if the heterogeneous set M which generates B were a Borel-set of real numbers. But, by theorem 4 there is no such M). In this connection note the ingenious construction of B. Jónsson [3] of a Boolean algebra which admits no automorphism except the identity. His algebra is of very high cardinality.

7. The rather ingenious use of well-orderings, employed to prove the fundamental lemma 1, has often been used to derive pseudo-antinomious results about the continuum. It seems to originate with G. Hamel, who devised it to show the existence of a base for the reals.

References

- [1] B. Dushnik and E. W. Miller, Partially ordered sets, Am. Jour. of Math. 63 (1941), p. 600-610.
- [2] F. Hausdorff, Die Mächtigkeit der Borelschen Mengen, Math. Ann. 77 (1916), p. 430-437.
- [3] B. Jónsson, A Boolean algebra without proper automorphisms, Proc. Am. Math. Soc. 2 (1951), p. 766-770.
- [4] C. Kuratowski, Sur les théorèmes topologiques de la théorie des fonctions de variables réelles, Comptes Rendus 197 (1933), p. 19-20.
 - [5] Sur le prolongement de l'homéomorphie, Comptes Rendus 197 (1933) p. 1090-1091.
- [6] Sur la puissance de l'ensemble des nombres de dimension au sens de M. Fréchet, Fund. Math. 8 (1926), p. 201-208.
- [7] Sur l'extension de deux théorèmes topologiques à la théorie de ensembles, Fund. Math. 34 (1947), p. 34-38.
- [8] W. Sierpiński, Sur l'extension des fonctions de Baire définies sur les ensembles linéaires quelconques, Fund. Math. 16 (1930), p. 81-89.
- [9] Sur un problème concernant les types de dimension, Fund. Math. 19 (1932), p. 65-71.
- [10] Sur une décomposition d'ensembles, Monatsheft für Math. und Phys. 35 (1928), p. 239-242.
- [11] Sur les types d'ordre des ensembles linéaires, Fund. Math. 37 (1950), p. 253-264.
- [12] R. Sikorski, On the inducing of homomorphisms by mappings, Fund. Math. 36 (1949), p. 7-22.
- [13] A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fund. Math. 12 (1928), p. 188-205.

Reçu par la Rédaction le 8.7. 1953

On a problem concerning completely regular sets

b

J. Novák (Praha)

Słowikowski and Zawadowski have raised the following problem: A topological space R has the property a if every function defined and continuous on R is bounded. Does the property a always imply the compacticity of any completely regular space R?

We are going to prove that the answer to this question is negative. Let $\beta(N)$ be the Čech bicompactification of an infinite isolated point-set N — for instance the set of all naturals. Let $N = \bigcup_{k=1}^{\infty} N_k$ where N_k are infinite subsets of N disjoint from one another. Let us identify in the space

$$\beta(N) - \beta \left[\bigcup_{k=1}^{\infty} \beta(N_k) - N \right] \bigcup_{k=1}^{\infty} \beta(N_k)$$

every set $\beta(N_k)-N$ with a new element $a_k \equiv \beta(N_k)-N$, the symbol β indicating the closure in the space $\beta(N)$. In such a way we get a new topological space R. The closure of the set A in R will be denoted by \overline{A} .

Some remarkable properties of the space R.

Clearly, the set N is isolated and dense in R.

Further, there is an open basis of R consisting of neighbourhoods which are ambiguous, i.e. open and closed in R. We have to prove that in every neighbourhood O(x) of any point $x \in R$ there is an ambiguous neighbourhood $U(x) = \overline{U(x)} \subset O(x)$. As a matter of fact, for $x \in N$ we can put U(x) = (x) and for $x = a_k$ we can choose $U(x) = O(x) \cap [N_k \cup (a_k)]$. Now, let $x \in [N \cup \bigcup_{k=1}^{\infty} (a_k)]$. Then

$$x \in (R - [N \cup \bigcup_{k=1}^{\infty} (a_k)]) \cap (\beta(N) - \beta[\bigcup_{k=1}^{\infty} \beta(N_k) - N]).$$

Since $\beta(N)$ is a normal space there is a set G open in $\beta(N)$ such that $x \in \beta(G) \subset O(x)$ and such that

$$\beta[\bigcup_{k=1}^{\infty}\beta(N_k)-N]\subset\beta(N)-\beta(G).$$

J. Novák

As N is dense in $\beta(N)$, we have $\beta(M) = \beta(G)$, where $M = G \cap N \subset N$. Therefore $\beta(M) \cup \beta(M-N) = \beta(N)$ and $\beta(M) \cap \beta(N-M) = 0$, N being a normal 1) space. From this it follows that the set $\beta(G)$ is ambiguous in $\beta(N)$. Now, we can put $U(x) = \beta(M) \cap R$.

For any infinite subset $K \subset N$ we have $\overline{K} - K \neq 0$. Indeed, there is a point $y \in \beta(K) - K$. Then we have $a_k \in \overline{K} - K$ for $K \subset N_k$ and $y \in \overline{K} - K$ otherwise.

The space R is completely regular.

This follows instantly from the fact that the open basis of R consists of ambiguous neighbourhoods.

The space R has the property a.

Suppose, on the contrary, that g(x), $x \in R$, is a continuous function and $X = \bigcup_{k=1}^{\infty} (x_k)$ a set of points $x_k \in R$ such that $g(x_k) > k$ for k = 1, 2, ... The set X is isolated and closed in R.

Consequently, there is a disjoint system of ambiguous neighbourhoods $U(x_k)$ such that g(x) > k for any $x \in U(x_k)$, g(x) being continuous on R. Let us choose points $n_k \in N \cap U(x_k)$. Since $g(n_k) > k$, we have $\overline{K} - K = 0$ where $K = \bigcup_{k=1}^{\infty} (n_k)$; this is a contradiction.

The space R fails to be compact.

Evidently, the set $\bigcup_{k=1}^{\infty} (a_k)$ has no point of accumulation in R.

Note. Since the property a implies the compacticity of any normal space, the space R constructed above cannot be normal. As a matter of fact the sets $\bigcup_{k=1}^{\infty} (a_k)$ and $R - \bigcup_{k=1}^{\infty} \overline{N}_k$ are both closed and disjoint, but they cannot be separated by any two disjoint open sets in R.

Reçu par la Rédaction le 15. 6. 1953

On completely regular spaces

by

S. Mrówka (Warszawa)

In the preceding paper J. Novák 1) has shown the existence of a non-compact, completely regular space X, on which all continuous real functions are bounded. Our purpose is to obtain that result in a more direct way.

LEMMA. Let N be the set of all natural numbers, and \Re the family of all its infinite subsets. There exists a family $\Re_1 \subset \Re$ such that:

- (1) The family \Re_1 is infinite,
- (2) for every $N_1, N_2 \in \Re_1$ the product $N_1 N_2$ is finite,
- (3) for every $N' \in \mathbb{R}$ there exists a $N'' \in \mathbb{R}_1$ such that the product N'N'' is infinite.

Proof. Let $N=N_1+N_2+...+N_k+...$, where N_k are infinite and disjoint sets. Let us put the family $\Re-\{N_1,N_2,...,N_k,...\}$ in a transfinite sequence

$$N_{\omega}, N_{\omega+1}, \dots, N_{\alpha}, \dots$$

Hence

$$\Re = \{N_1, N_2, \dots, N_{\omega}, N_{\omega+1}, \dots, N_{\alpha}, \dots\}.$$

We define the family \Re_1 by transfinite induction:

- 1) $N_1 \in \mathfrak{R}_1$,
- 2) $N_a \in \Re_1$ if and only if for every $N_\beta \in \Re_1$ ($\beta < a$) the product $N_a N_\beta$ is finite.

It is obvious that the family \Re_1 , so defined, satisfies the conditions (1)-(3).

Now, let us put $X=N+\Re_1$. The neighbourhoods in X are defined as follows:

- 1º If $x \in N$ then $O(x) = \{x\},\$
- 2º if $x \in \Re_1$, i. e. $x=N' \subset N$, then $O(x)=\{x\}+N'-S$ where S is an arbitrary finite subset of N'.

¹⁾ See E. Čech, On bicompact spaces, Annals of Mathematics 38 (1937), p. 833-844.

¹⁾ J. Novák, On a problem concerning completely regular sets, this volume, p. 103-104.