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Pour les autres couples ¢%¢? on construit des arcs H; et des ensem-
bles V; d’une maniére analogue. On voit que dans la projection de V;
est contenue uniquement la projection de H;. Il résulte des considéra-
tions antérieures que la projection de H; n’a pas de points communs

avec les projections des ares ¢, ¢;. Done la réunion des arcs H, et des

"

ares Q;T/TQJ forme un arc & projection simple sur X entre a et b, c. g. f. d.

(e théoréme ne résout pas le cas de M — non-connexe, sur X (com-
parer ’exemple 129).

Si la dimension de X est plus grande que 1, il peut arriver que dans
un ensemble non-connexe sur X, tous les couples de points peuvent &tre
joints par des arcs & projection simple (voir par exemple la fig. 7). .

Si X est une droite, on peut. résoudre le probléme partiellement —
pourvu que M soit un domaine. Soit W Iensemble de tous les # tels que
S[M,x] soit non-connexe (voir la fig. 9). Si W ne contient pas un in-
tervalle, on peut montrer que la construction de la démonstration du
Théoréme 6 peut é&tre faite. -

Du Théoréme 1, du Théoréme 2, -du Théoréme 6 et du lemme du
début de ce paragraphe résulte le

THEOREME 7. 8i la transformation continue et biunivoque @ est définie
{i(ms le domaine M connexe sur X et transforme tous les ares CM & pro-
yepiiovz simple sur X en des arcs & projection simple sur X*, il faut et il
suffit que la condition W soit vérifiée. ‘

Lorsqu’il s’'agit de transformations dans des domaines quelconques
nous pouvons seulement affirmer que la condition W est suffisante e1:

1 N I v
qu’il est nécessaire que, dans chaque sous-ensemble connexe et connexe
sur X, la transformation g vérifie la condition W.

Regu par la Rédaction le 13. 9. 1953
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On a problem of P. Turan concerning graphs
by

K. Zarankiewicz (Warszawa)

The purpose of this paper is the solution of a problem put forward
by P. Turan. The problem is to define the smallest number of inter-
section points of the sides of a graph, defined in Theorem I. The problem
was derived from the following question. In a brickworks the bricks
are made in burning-ovens. When they are burnt out, they are carried
away to storerooms by workers on small trucks rolling on rails. The
trucks move easily and fast except when they pass a crossing of the
rails. Here the trucks are usually derailed a great loss of time and bricks
occurs and the traffic is hindered on all rails crossing that point. This
loss will be reduced to minimum when the number of intersections of
the rails is as small as possible and no three rails intersect each other
at an inner point. Theorem I1) gives the solution of this problem. Theo-
rem II gives the minimum number of regions into which the above
graph cuts the plane. :

TaeorEM 1. If

(«) in the Euclidean plane two sets of points, A and B, are given, A con-
sisting of P POINIS @y, Gs, g, -.., Ay, aRd B consisting of g points by,by,ybgy.. by
(p and q are natural numbers);

(8) for each pair of points a;, b;, where i=1,2,3,...,p, j=1,2,3,...,q,
there exists a simple arc lying in the plane and having the points a;,b; as
its end points;

(Y) the arcs lie in such a way that no three arcs have an interior point
(i.e. a point that is mot an end point) in common;

(8) E(p,q) denotes the smallest number of intersection points of ares;
then the following formulas hold:

(1) K(2k,2n)=(k*—k)(n*—n),
2) E(2k,2n+1)= (B—k)n2,
(3) K(2k+1,2n41)=k*n2. .

1) This theorem was proved at the same time, quite independently, by K. Urbanik
(Wroelaw).
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Before .proceeding to prove the theorem let us introduce certain termg
and notations and prove two lemmata. k
A simple are having x and ¥ as its end points will be denoted by xy
. The sum of all the arcs a;b;, where i=1,2,3,...,p and j=1,2,3,. g
will be called the graph G{p,q); so that we can write T

() = 5 wb;.
iyJ

The set of interior points of the arc a;b; (4. e. the point :
that are not its end points) we shall eall a.[ sjid(e of the glz(e)m;nl? 'l(zflet};?)ii;?
@1y G50y, y Op ADA by, by, by, b, Will be called vertices of the gra )lh i
) The set consisting of the énterior points of each of the arecs ic/z for
7=1,2,3,...,k, will be called & fan with the vertex z and the end' JZ)in?
yl,yg,%,...,yk,. which we shall denote by Wy(z). Consequently, nﬁ,ithei
a{;flky(m(f the points ;,¥s,¥s,...,¥x nor the point z are incmded in the fan

It follows from the definition of the number K(p,q) that
K(p,q)=K(q,p)-

L . ' . . A

threempoimgl'a If three fan;s with different vertices by,b,,b, have the same
110,03 a8 their end points, at :

4 point in commn, D y b least two of those fans have

Proof. Let us as
such that sume that the fans Wy(b,), Wy(b,) and Wy(b,) are

{4) Wi(by) Wa(b,)= 0, Wilb) Wy(bg)=0, Walbs) Wy(by) = 0.

?oetTt}lls d‘r-aw a circle H; with the centre @, and a radius so small that:
e circles H; have no common points with the set -

j,Zk’ ;b + b1ak+a’ib2+‘ bytx—-a;by+ byar

Whii)l‘;} tjh:.r? 7; ta;e ?11 the values 1,2,3 except the value 4

20 ¢ ircles H;, for i=1,2 h

it o tone oo é_ »2,3 are disjoint from one another — which

Let e . } .

i ;tﬁi,; 1:3 E}Iie fJ.I‘SC point of the simple arc b,q,, going from b, to

roint i e b e cu:lee H,; t]llen b-6ys 13 a simple arc which hag orrﬂy 01;«;

on with the circle H,, namely its end point e,,. Let R
rs rs

be a i
Wmesgf:l;}ﬁlﬁesfeﬂ;e xrajdms of the circle H,, with érs 28 one end point
o ot Suner mxlln poml;Ch#as; let that segment be so -small that it ha;
; on with the set Y a.b;, where § ;
t ]
1,2,3 except the value s. T F it ol e valne
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The continua
Ts: bse’sl + bseﬂ + b:esﬁ+Rsl+R52 +R53

for s=1,2,3 are disjoint, aceording to the assumption (4), each of them
has points in common with each circle H; for i=1,2,3, and none of them
cuts any of the circles. This is impossible on the strength of a theorem
of mine?). Consequently, (4) cannot hold and at least two of the fans
have a point in eommon, q.e. d.

LEmMA 2. In the graph G{(p,3), which is the sum of three fans with
the vertices by,bg,bs, each of which has the same end POINES Gy, da, gy .-y Apy
ithe intersection points of the sides amount to at least

{B) —k when p=2k,

{6) k2 when p=2k-+1.

Proof by induction. For k=1 Lemma 2 is true on the strength
of Temma 1. Let is be assumed that Lemma 2 is true for the number k:
we shall prove that the intersection points of the sides of the graph

@(p,3) will amount to at least

B4k when p=2k42
and

(k+1) when p=2k+3.
Let us consider the confinua

Cy=W(a)+ @+ b+ bo+bs for i=1,2,3,...,p.

If each pair from among the continua C; had one point in common,
distinet from by,by,bs, then, for different pairs of the continua C;, those
points would be distinet from one another according to the assamption (v);
therefore, the number of intersection points, distinet from one another,
of the sides on the graph G(p,3) would be at least as high as the number
of ditferent pairs of the continua Gy, i. e. it would be equal to at least
p(p—1)/2=m. But in the case of p=2k-+2 we have m=2k2+3k+1,
which is greater than k*-%, while in the case of p=2k+3 we have
m=2k>+ Bk 3, which is greater than (k-4-1)?; thus the induction pre-
mise would be fulfilled and the Lemma would be proved.

Tet us assume, therefore, that there exists a pair of continua Cj
and €, which have no points in common except the points by,be,b;-
Then, on the strength of Lemma 1, each continuum C; for iy 71551, must

2y (. Zarankiewicz [1]. Cf. also C. Kuratowski et C. Zarankiewicz [2].
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have a point, distinet from &,,b,,b;, in common with the set Oy +Cyy,
different C; baving with 0;+0C;, common points, distinct from onze
another — according to the assumption (y). Therefore, in the set Cy,+0C,,,
the number of intersection points, distinet from one another, of t112e
sides of the graph G(p,3) is at least as high as the number of continua
C; for i,5%15~4,; thus, those intersection points of the sides amount to
at least p—2. '

The graph @(p,3) can be represented as the sum

G(p,3)=(f‘.~]+0f2+.#§” =0, +Ci, + Hp—2,3);
i #iFiy
the number of intersection points of the sides on the graph G{p,3) will
be at least equal to the number of intersection points of the sides of the
graph G(p—2,3) with the continuum Cy,+0C;, plus the number of inter-
section points of the sides on the graph G(p-2,3). Let us assume that
the number of intersection points of the sides on the graph G(p—2,3)
is expressed by formulas (5) and (6); in that case, the number of inter-
section points of the sides in the graph G(p,3), when p—2=2%k, will be
at least 2k+k—Ek=12+k, and when p—2=2k-+1, that number will
be at least 2k+ 14 k2= (k1) Our induction premise has been proved
and, consequently, Lemma 2 has been proved. ’

Proof of the Theorem 1. For k=1 and n=1 the Theorem 1 is
true on the strength of Lemma 2. Let us assume that formulas (1), (2), (3)
remain valid for any graph &(p,q); we shall prove, that they will remain
valid for the graphes @(p,q+1), G(p-+1,q), G(p+1,q+1).

Let any graph G{p,q-+1) be given. That graph may be regarded
‘m the sum of the graph G(p,q) and one continuum V, which is a fan
with the vertex b,.; and the end points Gy 3Gy Gy ..., completed by its
vertex and its end points; so that ) i

V=Wp(bq+1)+ bq+1+a1+ag+a3+ .

Qn the other hand the graph G(p,q) can be regarded as a sum of his
VEFUCQS and of g fans with vertices by1,by,bg,...,b,, having the same end
po{mt§ @158y, 0y, ..., 4, But the same graph can also be treated ag the sum
of pairs of fans (plus one fan when ¢ is an odd nwmber), because if ql= 2n

we ean write

~ — & 2

) 60,0 =3[V, 0u)+ W, (b)) + S+ 3,
and if g=2n--1 -

®) 6P:0) = 3 TWylbay) + Wy (baso1) ]+ Wy barsr) + S s 5,
] i=1 r=1
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The number of intersection points of the sides on the graph G(p,q+1)
will be equal to the number of intersection points of the sides on the
graph G(p,q) plus the number of intersection points of the fan W,(bg+1)
with the graph &(p,q).

On the strength of Lemma 2 the fan W,(b,4+,) must have with each
pair of fans appearing in the graph G(p,q) at least 2*—F points in com-
mon when p=2k, and at least x> points in common when p=2k-+1.
Since n different pairs of fans appear in the graph G(p,q) (both when
¢=2n and when g=2n-1), those intersection points are distinct from
one another and amount to at least '

n(k2—Fk)

when p=2k

and
nk?
If we assume, therefore, that on the graph G(p,q) the minimum
number of intersection points of the sides is expressed by the formulas
(1), (2), (3), then, for the graph &(p,¢-+1) that minimum number of
intersection points of the sides will be expressed by

when p=2k+1.

K(2k,2n+1)=K(2k,2n) + n(k*—k)= (B —k) (#* —n)+ w(F*—k)
(k2 —k)n2,

K(2k,2n+2)=K(2k,2n+ 1);}— n(k2—k)=(B2—k)n2+ n{k*—k)
=(B—k)[(n+1pP—(n+1)],
E(2k+1,2n +1)=K(2k+1,2n)+nk=K(2n,2k- 1)+ nk?
= (n2—n)k2+ nk?=Ekn2,

E(2k 41,20+ 2)=K(2k+1,2n+ 1)+ nk?=k*n*+ nk*
=[(n+1p—(n+1)]k=E[2(n+1),2k+1].

We can see that the validity of formulas (1), (2), (3) for the numbers
% and n involves their validity for the numbers k-1 and n--1; thus,
the theorem is proved, q.e.d.

Tor each pair of natural number p, ¢ it is possible to construct a mi-
nimum graph in which the number of intersection points of all its sides
is expressed exactly by formulas (1), (2), (3); that means that K(p,q)
has been reached.

Minimum graph. If p=2k the set 4 consists of the points on
the z axis whose abscissas are

—k,—(k—1),...,—2,—1,1,2,...,k;

if p=2k+1, the set A consists of the points on the » axis whose ab-
scissas are
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ey (b —1)y ey —2,—1, 1,2, By B 1
it g=2n, the set B consists of the points on the y axis whose ordinates are
-n,—('n—l),...,——2,—1,1,2,...,%;

if g=2n-1, the set B consists of the points on the y axis whose ordi-

nates are
_.n’._(n-—]_)’ .,,,—-2,-—171,2,... ,‘I?/,WL+ 1.

By joining with a line segment each point of the set A with each point-
of the set B, we obtain & minimum graph, in which the number of inter-
section points of the sides is expressed exactly by formulas (1), (2), (3),
which can easily be checked.

Let us observe, by the way, thatb the assumption (y) is essential.
If we reject it, K(p,q)=1 for any pair of number p >3 and ¢>3. Indeed,
taking any point # of the plane, we can join it by means of simple arcs
with each of the points of the set A-+B in such a way that those arcs
should have only one point in common, namely the point x; then the
assumption (@) is observed and the number of intersection points of all
the ares is 1.

TaeorEM II. If the cond’lﬁons (@), (B) (v) of Theorem I are observed,
and if -

(c) L(p,q) denotes the smallest number of regions into which the plane
is cut by all the simple arcs, then the following formulas hold:

(9) L(2k,2n)= (& —F) (n?—n) -+ dnk—2(n+ k) + 2,
(10) L(2k,2n+ 1) = (K2 —Ek)n?+4nk —2n+1,
(11) L(2k+1,20+1)=kn®+ 4nk+ 1.

The proof by induction will be based on a Theorem of Straszewicz?).
Let k=1 and n=1.

(i) The graph (2,2) may be regarded as thé sum of two continua,
each of which is a fan completed by its vertex and its two end points.
Those continua have two points in common, consequently, according
to Theorem ITI, &(2,2) cuts the plane into at least two regions — thus,
formula (9) is valid.

2) This theorem can be formulated as follows: :

TeroreM ITI. Ij the continua M and N lie in the plane, the continuwm M cuts the
plane into m regions, and M- N consists of n points, then the continuum M +N culs the
plane into.at least m--n—1 regions.

See 8. Straszewicz [3].

On a problem of P. Turan 143

(ii) The graph G(2,3) may be regarded as the sum of two continua:
the graph G(2,2) and the continuum which is a fan ‘completed by its
vertex and its two end points. Those two continua have at least two
points (the end points of the fan) in common; consequently, their sum,
according to Theorem IIT, cuts the plane into at least 2 +2—1=23 regions;
thus formula (10) is valid.

(i) The graph G(3,3) may be regarded as the sum of three continua
W,, W,, W3, each of which is & fan completed by its vertex and its three
end points. On the strength of Lemma 1, at least two of those fans have
a point in common, distinet from their end points; let them be called
continua W, and W,. The graph G(3,3) may be regarded as the sum
of W, and (W,+W,); the continuum W,+W; cuts the plane into at
least 3 regions (as W,W; consists of at least 3 fan end points), accord-
ing to Theorem IIT; while W, has at least four points in common with
W,+W,. Therefore, in view of Theorem I, W,+W,+W,=G(3,3) cuts
the plane into at least 34-4—1=6 regions; thus formula (11) is valid.

Let us assume that formulas (9), (10), (11) remain valid for any
graph G(p,q); we shall prove, that they will remain valid for the gra-
phes G(p,q¢+1), Gp+1,9), Glp+1,¢+1)

Let any graph G(p,¢+1) be given. That graph may be regarded
as the sum of the graph G(p,¢) and one continuum ¥V which is a fan
W,(bg+1) with the vertex b,,, and the end points a;,a,,ds,...,4;, cOm-
pleted by its vertex amnd its end points.

Let us calculate how many points in common have the continmum ¥V
and the graph G(p,q). The graph G(p,q) may be represented as the sum
of pairs of fans (plus one fan when ¢ is an odd number) according to
formulas (7) and (8). According to Lemma 2, the fan W,(b,1,) has with
each pair of fans at least

k*—k  points in common when p=2k
and
k* points in common when p=2k41.

Ag there are n pairs of fans in the decompositions (7), (8) (both when
¢=2n and when g=2n-1), therefore, the fan W,(b,:,) and the graph
G(p,q) have at least

n(k*—%k) points in common when p=2k
and .
nk? points in common when p=2k-41.

In that case the continuum V and the graph G{p,q) have at least

n(k®—k)+2k points in common when p=2k
and
nk?+2k+1 points in common when p=2k-41.
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Therefore, aceording to Theorem IIT, if we join the continuum V to
the graph G(p,q), the pnumber of regions into which the plane will be
cut by the graph G(p,q+1) will be increased by

n(k*—k)+2k—1  when p=2k
and

Ak 2k+1—1  when p=2k+1

in relation to the number of regions into which the plane is cut by the
graph G(p,q)-
Thus we can write:
L2k, 2n+ 1)=I(2k, 2n)+ n(k*—k)+ 2k —1
= (n2—n) (B2—k)+ dnk—2(k+n)+ 2+ n(k—k)+ 2k —1
=k —k)+dnk—2n-+1,

L(2k, 20+ 2)=I(2k,2n+ 1)+ n(k2—Fk)+ 2k —1
— [ 1 — (DR k) + 4+ 1)k —2(k+ n+1)+2

I(2k+1,20+ 1)=L(2k+ 1,2n)+nk?+2k+1—1
=I(2n,2k+1)+nk>+ 2k
= IA(n2—n)+dnk—2k+ 14 nk®+- 2k
=k ++4nk+1,

L(2k+1,20+2)=L(2k+1,2n+ 1)+ nk24 2k
= K22+ dnk+ 14 w2+ 2k
=R+ 12— (n+1)]+ dh(n+ 1)— 2k 1.

We can see that the validity of formulas (9), (10), (11) for the num-
ber k and n involves their validity for the number k41 and n+1; thus
the theorem is proved.

Note 1. Let us observe that all the theorems will remain true when,
instead of simple ares joining the points e; and b;, we take any continua
M;; joining those points, provided M;;—a;—b; is & connected set. This
agsumption enters into the proof of Lemma 1.

Note 2. As has been found by K. Urbanik and noticed by A. Rényi
and P. Turan, independently of one another, formulas (1), (2) and (3)
can be written in the form of a single formula

K0~ (p-1-2(2) B ) (i-1-z (32 (3,

where E(x) denotes the greatest integer <. In this case formulas (9),
(10) and (11) can be written in the form of a single formula

Lip,)=K(p, )+ (p—1)(¢—1)+1.
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