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To complete the proof we shall show that the projection = of Y
onto & is open (clearly = is continuous). It suffices to prove that
n(Z/'(GxV))=G for every open GC& and for every open interval V40,
VCR.

Obviously 2(¥Y (G xV))C@. If x € G, then, by (1), there is an re Ry-V.
Consequently « e (Y -(G xV)), which yields GCa(Y (GxV)), q. e. d.

The problem whether every Hausdorfl space with an enumerable
basis is an interior image of a separable metric space is unsolved *).

Notice that (H) implies easily (H,).
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On existential theorems in non-classical functional
calculi 1)

by

H. Rasiowa (Warszawa) and R. Sikorski (Warszawa)

) Let &, be the Heyting propositional caleulus, and let S be the Hey-
ting functional ealculus. The individual variables of the system S; will
be denoted by ,#,,..., the quantifiers — by 3 and []. The formulas

*p

o xp
from &; will be denoted by the letters «, f. If « is a formula from Sy
- &, :
then a(;) denotes the formula obtained from « by replacing each free

¢4
occurrence of x, by 2, (each bound occurrence of x, should be replaced
earlier by x which does not appear in a, 17#gq).
Godel ?) formulated (without proof) the following theorem:

(xo) Let o, = be two formulas from the Heyting propositional calculus Sy
If the disjunction o7 is a theorem of Sy then either o or T is a theorem of 8.

Theorem (x,) was later proved by MecKinsey and Tarski [2] by an
algebraical method. Another algebraical proof was given by Riegers3).

The purpose of this paper is to prove the following theorem (x) which
is an extension of (y,) over the Heyting functional caleulus §?. The second
part of Theorem (y) shows that the Heyting functional caleulus is the
well formalization of Brouwer's ideas concerning existential theorems.

(x) If the formula a+f is provable in Sy, then either a or B are pro-
vable in Sy. If the formula 3 a is provable in &%, then there is a positive

*p
tnteger q such that the formula a(z") is provable in S}.
P

Clearly if the sequence Zigy oy, contains all the free variables which
appear in a, the integer ¢ can be chosen among the numbers Byyeneylne
If « contains no free variable, then ¢ is an arbitrary integer, e. g. g=p.

1) Presented at the Seminar on Foundations of Mathematics in the Mathematical
Institute of the Polish Academy of Sciences in November 1952.

%) See K. Godel [1]. See also G. Gentzen [1].

®) See L. Rieger [1], p. 29.
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We notice that . .

(x*) Bach formula from & without quantifiers is provable in &% if and
only if it is @ substitution of a theorem of the Heyting sentential caleulus S,.

Since the caleulus &, is decidable*), we infer from (y) and (x*) that

(') Bach formula B from Sy of the form
e o

(+) =5 B ..2a

xpl xpz xpn
where o contains no quantifier and % 48 either the sign 3 or [| (i=1,..,n),
is decidable.

Theorem (x) is a simple application of the results obtained in our paper
on Algebraic Treatment of the Notion of Satisfiability ®) cited hereafter
as [AT]. The main idea of the proof (the extension of the space X to
the space X, — see p. 24) is essentially due to MeKinsey and Tarski[4].

The knowledge of [AT] is assumed in the sequel. Terminology and
notation are the same ag in [AT], therefore they will not be explained
here 8).

Theorems analogous to () hold also for the other non-classical func-
tional calculi examined in [AT]. More exactly, we shall prove the fol-
lowing theorems where o and 8 denote formulas from the functional
calculus under consideration:

(m) If the formula a--B is provable in the positive functional caleulus?) Sx,
then either a or B is provable in &y. If the formula 3 a is provadle in S,
*p
then there is an integer q such that a(i") is provable in Sx.
P

(w) If the formula a+f is provable in the minimal functional calcu-

lus ®) Sy, then either a or f is provable in Sk. If the formula 3 « is provable

*p

T\ . .
w“) is provable in &,.
P,

(v) If the formula a+pf is provable in the fumctional caleulus SF°?),
then either « or § is provable in &S If the formula 3 a is provable in S¥,

*p

then there is an integer q such that a(z") is provable in Sy,
—————— e e ) P

‘) See e.g. 8. Jatkowski [1], G. Gentzen [1], M. Wajsberg [1], J. C. €, Me¢ Kin-
sey and A. Tarski [3], L. Rieger [1].

%) SBee References at the end of this paper. Theorem (y) can be also deduced from.
a fundamental theorem of G. Gentzen [1].

‘) The Heyting functional caleulus is exactly described in [AT] § 11,

) [AT] § 12.

%) [AT] § 13.

%) [AT] § 14.

in S, then there is an integer g such that a(

e
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(A) If the formula Ia-+1B is provable in the Lewis functional calou-
lus 1) 8%, then either a or § is provable in SF. If the formula Y la is pro-

P

vable in SF, then there is an imteger q such that « (z") is provable in 7.
P/

Notice that the formulation of Theorem (3) is somewhat different
from the formulation of Theorems (), (=), (&), (v).

Theorems (x), (=), (w), (v) can also be formulated in a purely
algebraical way. The first part of these theorems asserts that the class R
of all non-provable formulas forms an ideal I in the corresponding Lin-
denbaum algebra ') I; (i=y,7,u,v). The second part asserts that the
ideal I is enumerably additive in the following sense: if all components

of an infinite sum corresponding to the quantifier Y (i e. of the sum
* X,

P -
[AT] 4.3 () are in I, then the sum also belongs to I. Clearly I is the
unique maximal ideal of Z;.

Clearly theorems analogous to (y,) are also true for the positive pro-
positional caleulus &, the minimal propositional calculus ,, the pro-
positional calculus &,, and for the Lewis propositional calculus o;12).
In the case of &1, 0+ v should be replaced by Io-+Ir.

Theorem (x*) is a particular case of the following general theorem.

() Let & be the propositional caleulus described in [AT]§ 1, and let $*
be the functional caleulus determined by & ([AT] § 2). Suppose that S has
the extension property (E)*). A formula aeS* without guantifiers is pro-
vable in §* if and only if a is a substitution of a theorem of the propositional
caleulus .

In particular, Theorem (x) is true for all the systems examined in
Part II of [AT]. The hypothesis that ¢ has the property (E) seems to
be inessential.

Since each formula from the Lewis propositional calculus &; is de-
cidable ), we infer from (1) and (*) that

1) [AT] § 10.

1) See [ATI], p. 81, 85, 88, 90, 92.

1) In the case of & this theorem follows from the fact that a formula cedx is
provable in & if and only if it is provable in S (see Hilbert-Bernays [1], p. 450).
The proof of this theorem in the case of &, and &, is similar to that of §y. See
MecKinsey-Tarski [2] and [3]. It is based on the algebraic interpretation mentioned
in [AT] §§ 8, 18, 14. For the proof of this theorem in the case of &1, see MecKinsey-
Tarski [2].

13) See [AT], p. 69.

“)y MeKinsey [1].
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(\) Bach formula f from the Lewis functional caleulus SF, such that

L e o
=58 &..Ha
*p1 *pa Fpy
o
where a contains no quantifier and % is either the sign ST or [] (¢ vy )y

is decidable.

Since a formula « frem the functional calculus Sy i provable in S
if and only if « is provable in & ¥%), and since each formula from the
sentential caleulus o, is a theorem of &, if and only if it is a theorem
in &,%), we infer that Theorem (x’') remains true if we replace &
by S

Proof of (). By [AT] 11.2 there is a topological space X such that
the Heyting algebra ) H(X) of all open subsets of X is an ;-extension 18)
of the Lindenbaum algebra L,¥), i. e. there exists an J)-isomorphism 20)
h of L, into H(X).

Let z, be a fixed element, z, non ¢ X, and let X;=X- (z,). We shall
treat the set X, as a topological space with the following definition of
topology: open subsets of X, are open subsets of X and the whole space X,.

There is exactly one open subset of X, which contains the element m,,
viz. the whole space X, Consequently

(s) if GreH(X,) and X,=) Gy, then there is a ¢ such that G,=X,.
k
Sinee X is the open subset of X, the formula
g(Ad)=AX for AeH(X,)

defines an o,-homomorphism %) of the &y-algebra H(X,) onto the &;-al-
gebra H(X). The homomorphism ¢ preserves all infinite sums and
products.

Let ¢k e F*(I1),H(X,))®) (k,m=1,2,..) be the mapping defined as
follows: |

Pk (g ey ) =B Py oy )] fOT ey e I

15) [AT], Theorem 15.5.

1) Bee Hilbert-Bernays [1], p. 450.

17) [AT], p. 85.

) [AT], p. 7L

©) [AT], p. 85.

20) [AT], p. 70.

2y [AT], p. 68.

2) See [AT], p. 71. I, always denotes the set of all positive integers (see [AT],
p. 65).
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Suppose that the formula a+ g e 8} is provable in J;. By [AT] 5.1
and 5.3 %)

(Tor H(Xo) ®a({i}, {g) + (Lo, H(Xo)) B5({3}, g })
= (Lo, H(Xy)) Pu ({3}, gk })=X,—the unit of H(X,).
By (s) either

(a) (Lo, H (X)) ®. ({5} {0k }) =X,
or
(b) (o, H (X)) B5({1}, {0k }) = X,

Suppose that, for instance, the equation (a) is true. Since 9ok =pk
we have by [AT] 5.5 and 5.2

X = g(Xo) = g((Lo, H(Xy) Ba( (i}, {ek}) = (Lo, H(X)) Bal {3}, {53) = M| ).

Since h is an isomorphism, we infer that |a| is the unit element of L,
i. e. that « is provable in ; (see [AT] 4.2).
The first part of (y) is proved. The proof of the second part is similar,
Suppose that =23 a <87 is provable in Sf. By [AT] 5.1 and 5.3
*p

3 (Toy H(X o)) @ul {3 (p}) = (o, H (X)) B ({3}, )
xps 0 .
=X,=the unit of H(X,),

where {7}’ denotes the sequence {7} where the p-th term is replaced by z,.
By (s) there is an integer ¢ such that the ¢g-th component of the sum
on the left side is equal to X,, 4. e.

(1o, H(X o)) @a( i}y i =X,
where j;=4 for i%p and j,=g.
Let é—a( _p) By [AT] 5.4
(Zo, H (X)) ®s ({3}, {0k }) = (Lo, H(Xo)) Bul i} {75 ) =X
Since gqk=g¢* we obtain from [AT] 5.5 and 5.2 that
X =g(Xo) = g((1o,H (X)) @s({i}ig 1)) = (Lo, H(X)) B ({3}, {5 1) = h(]8])-

Since % is an isomorphism, we infer that || is the unit of L,, 4. e. that

6:(1(2") is provable in & (see [AT] 4.2).

P.
Proof of (=) is completely analogous to that of (y).

=) {i} is the sequence of all positive integers.
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Proof of (p) is analogous to that of (x). Only the following supple-
ment is needed.

Tet B=~X in the &¢-algebra H(X). We define the operation ~ in
the $}-algebra H(X,) by the formula

~A=A->B for AcH(X,)
where — on the right side is taken in H(X,) (not in H (X))- Clearly g is
an &,-homomorphism of the &}-algebra H (X(,) onto the Si-algebra H(X).

Proof of (v) is analogous to that of (y). Qnly the following supple-
ment is needed.

We define the operation — in H(X,) as follows: if A ¢ H(X,), then =4
(in the &r-algebra H(Xo)) is the set —(4X) where = is taken in the
S*-algebra H(X). Clearly g is an &,-homomorphism of the S-algebra
H(X,) onto H(X).

Proof of (A)is also analogous to that of (y). Instead of H(X) and
H(X,) we should write everywhere C(X) and G(X,) respectively. The
mapping g is an §-homomorphism of C(X,) onto C(X) since X is open
in X, %) .

Remarks. Theorem (x) can be directly deduced from Theorem (y)
and [AT] 15.5. Theorem (x) follows directly from (1) and [AT] 15.2.

In the proof of (x) we can replace H(X) by any other &y-extension H
of I,, which need not be the Heyting algebra of all open subsets of
a topological space. The Heyting algebra corresponding to H(X,) must
then be somewhat differently defined ).

Proof of (+). Let Z be Lindenbaum algebra constructed for the
system &. The exact definition of Z is completely analogous to the Lin-
denbaum algebra L(R) described in [AT] § 4 (where RB=the empty set).
Elements of Z are classes [of (o e8) of equivalent formulas, i. e. ve|o]
if and only if the formula r=o0 is a theorem of &§ (7,0 ¢ 8). The definition
of algebraic operations is the same as in [AT] § 4.

Clearly Z is an S-algebra, and |o| is the unit element of £ if and only
if o is a theorem of &.

Let £* be an S*-algebra containing £ as a subalgebra %),

Let v be a one-to-one transformation of the et of all primitive for-
mulas F% (@1yy ey y) onto the seb (ay,ay,...) of all sentential variables
(see [AT] §§ 1-2). If o e 8* contains no quantifier, we shall denote by o,
the formula obtained from o by replacing formulas F% (@1 y---y¥y,) by the

gentential variables w(F (#iy---y%;,)) Tespectively. Clearly (raeS and « i8
a substitution of o,

#) Sikorski [1].
%) See McKingsey-Tarski [3].
) The unit of £* is the unit of .
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Now let ¢ e F%(I,,£*) (k,m=1,2,...) be defined as follows:

@ (G -vey i) = W ( w,l, o M for iy, .dkel,.
It is eagy to prove by induction with respect to the length of « that

(Lo £*) @a( {3}, {gk}) =] e -

Consequently, if a is provable in &§*, then |o.| is the unit of £ ([AT] 5.3),
i. €. 04 i8 a theorem of &.

Proof of (y ) The expression a( ") described in [AT] § 4 (p. 69-70)
Lr

was not uniquely determined. However, it will be uniquely determined if,

for instance, we require the integer I (see the definition in [AT], p. 70)

to be the least positive integer such that I5£p and « contains neither x

nor ¥ mnor [J. In the sequel we assume the definition of a(z”) from
'k,

*1 >
[AT] § 4 with the above correction. Hence a(i”) is uniquely determined.
3
If =1 ae S}, then we shall denote by Z(B) the set of all formulas
*p

@, . .
a(w") where either g=p or a contains at least one occurrence of x,.
P

It f=[]ae8}, then Z(B) is the set containing only one element:

the formula a.
More generally, if RCS; is a set of formulas # of the form

ﬂ:xZa or ﬁ=ya,

then Z(R) is the union of all sets Z() where 8 ¢ R. Clearly Z(R) is finite
if R is finite, and the number of elements of Z(R) can easily be estimated
from the above.

Suppose now that e Sy is a formula of the form (+). Let R,=Z(p)
and, by induction, Bx=Z(Rs—) (k=2,...,n). It follows from (y) that f
is provable if and only if R, contains at least one provable formula.
By an easy induction with respect to %, we find that f§ is provable if and
only if R; contains at least one provable formula. Consequently £ is
provable if and only if R, contains at least one provable formula. How-
ever, all formulas in R, contain no quantifier. Hence, by (x*), we can
decide by a finite method whether there is a provable formulas in E,.

Proof of (') is completely analogous to that of (x).
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Sur le phénoméne de convergence de M. Sierpinski
par

J. Popruzenko (L4dz)

M. Sierpinski a démontré en 1928 le Théordme suivant:

(T) 84 8, =2%, il existe une suite convergente de fonctions fo(x) (n=1,2,...),
définies pour 0<La<<l, qui converge non uniformément sur tout en-
semble non dénombrablel).

Nous appelons phénoméne de convergence de Sierpinski la singularité
qui se présente dans la thése du Théoreme (T), & savoir la convergence
non uniforme dans fout ensemble indénombrable d’'un certain champ de
convergence.

Si P’on abandonne 1’hypothése du continu, la question de l’existence
des singularités de ce genre reste ouverte; la méthode de M. Sierpinski,
essentiellement liée & ’hypothése du continu, ne donne aucun renseigne-
ment sur ce sujet.

L’étude approfondie du Théoréme (T) et des problémes qui s’y rat-
tachent m’a conduit & mettre en évidence une singularité connexe dont
lexistence dans les espaces d’une certaine puissance indénombrable peut
étre démontrée sans prémisses hypothétiques.

Dans la Note présente, je m’occupe de cette démonstration, puis je
donne certaines applications du résultat acquis & la théorie de la mesure
abstraite.

1. Préliminaires
Btant données deux suites infinies d’entiers positifs a=(a,,a,,...)
et b=(by,b,,...), convenons d’écrire
(py) a<<h 8 a;<<h; pour i=1,2,..;
(e} a<2b siYon a ¢;<<h; & partir d’un certain indice i=1,.

Nous dirons qu'une famille & de suites infinies d’entiers positifs est
bornée, resp. finalement bornée, lorsqu’il existe une suite fixe d’entiers
positifs qui majore toutes les suites de & au sens de la relation (p;), resp.

(p2)-

1) W. Sierpiniski [1] et [2], p. 52, Proposition C,.
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