48- . A, Granas

Trom the definition of b§" and b;"(a,F) and by lemma 2, ‘wé infer
that in the case of FCS,41
- (17) BE" = b (@, ) +1.
From (17), (1), (2), (16) and (16) we obtain the following
THEOREM. If & € F=F C 81, then the number of components bo(a, Spiy—F)

in which the set F decomposes the (n-+ 1)-dimensional sphere Spe1 at the'

point a is determined by the local cohomotopy number b,(a,F) of I at the
point a by the formula

(18) bo(t, Bnia—T) = bn(a, F)+ 1.

Since the number b,(a,F) is topologically invariant, we obtain the

following

COROLLARY. The number of components bo(a,Sp—F) in which a closed
set FC8,yy decomposes the (n- 1)-dimensional sphere 8,1 at the point
a el is topologically invariant.
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Effectiveness of the representation theory for Boolean

algebras 1)

by
J. Eo$ (Torui) and C. Ryll-Nardzewski (Warszawa)

Stone calls Fundamental Existence Proposition of Ideal

Arithmetic the lemma according to which:

(I) In every Boolean algebra there is a prime ideal.

This lemma plays a chief part in the demonstration that

(R)
which is the most important result of Stone’s representation theory.

According to Stone, (R) is effectively equivalent?) to (I). It was
a long time ago noticed 3), that (I) holds only with the help of trans-
finite methods. All the known proofs of it (S. Ulam?), A. Tarski?),
M. H. Stone?)) are based upon the principle of choice (or well-ordering
theorem). A problem arises, whether the proposition (I) is really de-
pendent on the prineiple of choice, and especially whether some parti-
cular cases of that principle?) are the consequences of the above-men-
tioned proposition.

A partial solution of this problem is given by W. Sierpinski?). It ig
known that the result of (I);, without the use of transfinite methods,
is that in the field of all subsets of an arbitrary infinite set B, there
exists a two-valued measure which vanishes for one-point sets. Sier-
pinski has proved that the existence of such a measure in the set of

any Boolean algebra is isomorphic with a field of sets,

1) Presented to the Polish Mathematical Society, Warsaw Section, on May 12, 1950.

2) (f. [8], Fund. Exist. Prop., p. 78; Theorem 67, p. 106 and Theorem 70, p. 110.

3) Cf. [9], p- 812.

4 [11].

5) [10], Lemma 1, p. 43.

) [8], Theorem 63, p. 100.

7) By particular cases of the principle of choice we mean those forms of this prin-
ciple in which the family of sets {M:}rer is subject to some restrictions e. g. that every
M; is finite, or that it is a bicompact space, ete.

5 7).
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integers allows us to construct a non measurable function in the sense
of Lebesgue. It proves that (I) is at least of the same degree of ineffec-
tivity, as the existence of such a funetion.

In this paper we give a full solution of the above mentioned problem.
We demonstrate that (I) is effectively equivalent to other theorems,
among others to the theorem of consistent choice®). From this imme-
diately results the principle of choice from finite sets, and even the or-
dering principle, therefore the problem is solved.

The problem whether the choice prineiple is independent of (I) i
not discussed here; it remains open. We suppose that it shall have a po-
sitive solution. '

Definitions and lemmas. A Boolean algebra is a set A of cle-
ments (denoted by a,b,...) with three operations: addition (a--b), multi-
plication (a-b) and complementation (a'), satisfying the well-known
axioms. The relation a-b=>, denoted by aCb, partly orders the set A.
This partial order has the least and the greatest element in A4; those
elements are denoted by 0 and [A] respectively. If X is a subset of A4,
then the smallest subalgebra of 4 containing X exists; it is denoted
by [X];. The fields of sets are examples of Boolean algebras. An s-ideal
[d-ideal] of the algebra A is a proper subset J of 4 satisfying the fol-
lowing condition:

at+bed
[a-bed

An s-ideal {d-ideal] J, of A4 is called prime if, additionally, for every
aeA either aed, or a' eJ,.

If J, is a prime s-ideal [d-ideal] of A then A —J, is a prime d-ideal
[s-ideal] of A. The following lemma is obwouq 10y,

Lemua 1. If XCA and a+ap+ ...+ a,# | 4] [0y @y e @y 5= 0] for
each @y,0s,...,0,¢ X, then there exists an s-ideal [d-ideal] J of A, which
includes X.

By a measure in the Boolean algebra 4 we mean & non- negative
real function x on A which is additive (i. e. wa4-b)= pu(a)+ u(db) for
a-b=p, a,beA and u(|4])=1. It XCA, f is a function on X, u a mea-
sure in 4 and fla)=pu(a) for a X, then u is called emtension of { from
X to A4.

The measure x in A is two-valued if u(a )=1 or u(a)=0 for aec4d.

The following lemmas give a connection hetween prime ideals and
two-valued measures.

if and only if a,bed
if and only if a,beJ].

®) [6], Theorem 2, p. 235-236.
%) See e.g. [1], Theorem 1, p. 22.
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Lemma 2. If p is a two-valued wmeasure in A, then F [u(z)=0] is

a prime s-ideal and [ [u(z)=1] a prime d-ideal of A.

LemMa 3. If J, is a prime s-ideal, then the function

1 for zed—d,

is a measure in A.
0  for zed,

w() =

These lemmas allow us to translate some propositions from the lan-
guage of Boolean algebra to the language of the measure theory.

In this paper by a fopological space we always mean a Hausdorff
space (i. e. & space in which for all pairs of different points py,p., two
exclusive neighbourhoods @; and @, exist, so that p, ¢ @; and p, e @).
The notions of compact (= bicompact) space and product space always
have the usual meaning ).

If M={M}er is a family of topological spaces, then the relation
a(p;,p,) defined for p;,pse Zj: M, is called a relation of consistency for

te

the class S if it is symmetrical (i.e. o(ps,ps)=10(ps,p,)) and the set
A [a P1sPa)s Pre My, poe My is closed in every product space of dif-

{p1,p2>

ferent spaces M., M, e M.
A set XC 2 M, is called a partial choice-set from sets of M, if X - M, <1

teT
for every te T; if X-M,=1 always for teT, then the set X is called
a choice-set from M. The choice-set (or partial choice-set) X is o-con-
sistent, if o(p,,p,) for py,p,e X 2).

1. Method. The method of this paper is non axiomatie. It may
easily be seen that all proofs could be formalized in every sufficiently
large system of axiomatic set theory (e. g. in the system X of Bernays-
Gadel 13)), without the axiom of choice.

‘2. Results. We deal here with six propositions, the Fundamental
Existence Proposition of Ideal Arithmetic (I) and the following five:

(I1) If J is an s-ideal [d-ideal] of a field of sets A, there is a prime
s-ideal [d-ideal] J, of A, which contains J.

(II*) If A, is a sub-field of a field of sets A, and yu; a two-valued mea-
sure in A, there ewists a two-valued measure u in A, which is an
extension of uy.

(III) The product space of non-empty compact spaces is non-empty and

compact.

1) Cf. [1], Definition 1, p. 59 and Definition. 1, p. 42, 43.
12) Those notions are introduced in [6], see (3,1), (3,2), (3,3).
2) Cf. [2].
4*
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AV) If M={M}er is a family of compact spaces, o « r.elation of con-
sistency for the class M, and if, moreover, for every finite set T,CT
there exists a o-consistent choice from the class {Mi}er,, then there
exists a c-consistent choice from the whole class M.

(V) If A is a Boolean algebra, A a subset of A, | a real valued func-

tion o A and W a closed subset of the [0,1] interval, and if, mo-
reover, for any finite XCA there em’sts a measure v i [X), such
that v(a) e W, for ae[X], and »(a)=f(a), for acd X, then there
exists a measure p in the whole alg Jebm A, which 8 an extension
of f, and u(a)e W for every a <A, ‘

Evidently (IT*) is a translation 4) of (II) from the language of Boo-
lean algebras into the language of the measure theory so as for instauce
the proposition
(I*) in every Boolean algebra, there is o two-valued measure
is a similar translation of (I). Therefore (I), (II) and (I¥),
respectively equivalent.

The proposition (ITI) is the well known theorem of Tychonoff ©5)
with the addition of the condition of non-emptiness of the product space.
This condition is equivalent to the choice principle from compact spaces,
which implies the choice principle from finite sets.

The proposition (IV) is the prineiple of consistent choice, it was dis-
cussed in our previous paper ),

Finally (V) is a theorem of extension of measure. It follows from
the known theorems of A. Horn and A. Tarski?) and from one theorem
of BE. Marczewski 8).

The main result of this paper is that all propositions (I)-(V) are
effectively equivalent.

(I1T*) are

8. The implication (I)->(XI). This implication is known. Let A
be a field of sets and J an [s-or d-] ideal of 4. It results from (I) that
in the quotient algebra A=A /J 1¥) there exists a prime ideal J; by setting
Jp= E [[#1¢3] we obtain a prime ideal J, of A.

4. Proof of the implication (II)—(III). One part of this impli-
cation is due to N. Bourbaki®). He has remarked that (I 1) has the
following theorem as its consequence:

1) Cf. lemmas 2 and 8, p. 51.

1) Cf. [1], Theorem 2.

) [6], Theorem 2, p. 235.

1) Bee [3], 1. Measure and partxal measure, p. 469-480, especially Th. 1
%) [5], Theorem 1, p. 269 and (i), p. 270.

®) This is the algebra of the class of abstraction of J.

20) See [1], § 10, especially p. 59-63.

1.22, p. 477.
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(4,1) Any topological space M is compact if and only if for every two-
valued measure u, defined for all subsets of M, there emists precisely
one point p e M such that u(G)=1 for every neighbourhood @ of p,
and that from (4,1) and (II) it follows that

(4,2) the product space of compact spaces is compact.
Therefore it is sufficient to show that from (II) it results that:
(4,3) The product of non-empty compact spaces is non empty.

Let M={M }cr be a family of compact spaces; we set

(4,3,1) E=F[XCY M, and X -1, <1 for every teT],
% ter

(4,3,2) = E[X-Jl,:l].

& is evidently the family of partial choice-sets from the sets of M,
and C; the family of such partial choice-sets which have one element
in common with M,. Clearly we have
(4,3,3) []C,#0  for every n and tyly,..,tne T
i=1
and in view of lemma 1 there exists an d-ideal J of the field H of all
subsets of &, such that C,eJ for all ¢e T. But in consequence of (II)
we conclude that there exists a prime ideal J, which includes J. The
function
0 if BeA—dJ,,

1,3,4
(£,3:4) 1 if Eed,

uE) ={
is a two-valued measure in A 2) such that

w(C) =1

because C,eJCJ,, for all teT.
Denoting by O(p) the set F[peX] for pe M,, we find that
Xe&

(4,3,5) for every teT

(4,3,6) if p,ged; and ps£gq, then O(p) Og)=
(47357) 2 0(29)=
peM,;

It follows therefore that the function

(4,3,8) me(B)=p (pg); O(p))

2) See Lemma 3, p. 51.
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defined for all BECM,, is & two-valued measure. But in view of (4,1)
every such measure distinguishes in M, one and only one point whose
every neighbourhood has the measure 1.

The set of all those points is evidently a choice-set from the class M.

5. The implication (III)-(IV). The proof of this implication was
given in our previous paper ). .
As the proposition (IV) may be interesting, we algo give other for-
mulations of it:
@AVH) If P={(a5,bs)}ses s & family of pairs and T(%y,%,,%5) @ totally
symmetrical relation (i. e. such that v(@y,®,,®,) implies (@, y Luy ) 2ay)

for every permutation oy, ¢y, ag 0f 1,2,3) defined for @y, y,5; € ;;(a:,bs),
s

so that for every fiwite set 8,C S there is a choice-set X from {(as,b5)}ses,
such that ©(@y, %y, %) for all @, y,2s € X, then there exists a choice-sel
_from the whole P, with the same property.

The proposition (I) follows from (IV+) by substituting P={(%,%)}xcx
(where A is a Boolean algebra) and w(m;, %y, @)= (%1, %, %37 0).

Since every finite set can be looked upon as a bicompact space, there-
fore (IV) holds true if every set M, of SM is finite. That particular case
of (IV) in which every set M, is precisely of the power m (where m i3
a finite cardinal number) we denote by (IV@).

We obtain (IV+) from (IV®) by substituting T'=38* (the set of all
ordered pairs {s,,8,>, where s;,s;¢8),

M(slg-‘ﬂ): (<a':17a':2>7 <a‘sl y bse>7 <bs1 ’ as2>7 <bx17bs2>)

and o{<@y, 2, By, 25) it and only if w(m,,,,,,) for k<l<n<4.

It is easy to see that the implication (IV™)—(IV®) holds true if
m>=k, and so the propositions (I)-(IV), (IV+) and (IV(™), m=4,5,... are
effectively equivalent.

6. Proof of the implication (IV)—~(V). Let 4, 4, f and W be
respectively: a Boolean algebra, a subset of 4, a function on 4 and
a closed subset of the [0,1] interval. Suppose that 4, 4, f and W fullfil
the conditions of (V). Let & be the family of all finite subsets of 4 and
let My for X € & be the set of all real functions on X with values in W
which are extensions of f from X-A4 to X. Evidently M={Mx}xex 18
a family of compact spaces. For X,, X,¢& and Pre My, o€ My —0(1,0)
denotes that the functions ¢, and ¢, are additive respectively in
X,, X, and g(w)=gpy2) for zeX,-X, o appears to be a relation of
consistency for the class M and, in consequence of (IV), there exists

) [6], see the proof of Theorem 2, p. 235.
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a o-consistent choice-set @ from M. From o-consistency of @ it follows
that for every aed and ¢,,p;e®, p(a)=g,(a) if only ¢, and @, are de-
fined. for o (i.e. if @, e @ - My, g, e P - My, and ae X, X,). Therefore
we can set u(a)=gq(a), where ¢ e ®DMyy. 1 is a measure in A with the
required properties.

7. Proof of the implication (V)—(I*). If in (V) 4 is the empty
set, f the empty function and W.the set which consists of two numbers 0
and 1, then (V) may be expressed in the following form
(V%) If in every finite subalgebra A, of the Boolean algebra A there exists
a two-valued measure, then also in the whole algebra A there ewists
such a measure.

The antecedens of (V°) holds for every algebra A and therefore so
does the succedens, which is (I*).

8. Table of results. We have proved that all the propositions
(I)-(V) are effectively equivalent. Let us denote by (VI) the theorem
of extending partial order to order %), by (VII) the ordering principle,
by (VILI) the principle of choice from finite sets and finally by (0) the
axiom of choice (without restrictions). We demonstrated previously the
implication (IIT)—(VI)?24), therefore we obtain the following table

I
- TN
(0) €< 11 === (R)—= (V) —=(VI]) —= (V1]

/
w
V/

Nevertheless we do not know, whether any implication outside those
resulting from this table is valid for any pair of the propositions (0)-(VIII).

9. Remark. In a previous volume of this Journal J. L. Kelley )
showed that the theorem of Tychonoff for Kuratowski's closure spaces
(i. e. the spaces in which the closure of every set is defined, fulfilling
the known axioms of Kuratowski; those spaces need not be Hausdorff’s
spaces) implies the axiom of choice (0).

This result is not astonishing, because the theorem (4,1) of Bourbaki
is valid only for Hausdorff’s spaces, and this compels us, when proving
the theorem of Tychonoff for Kuratowski’s spaces, to use once more,

23) See e, g. [6], Theorem (2.1), p. 234.

) [6], it is easy to see that in the proof of (2.1) only the theorem of Tychonoff
is used, besides, of course, that of Theorem 1 of [6], which is effective.

2) Kelley [4].
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additionaly, the principle of choice. But the method of Kelley permits
us to demonstrate that the theorem of Tychonoff in the form (4,2) (for
Hausdorff’s spaces) implies the principle of choice for compact (Haus-
dorff’s) spaces: (4,3).

Let SM={M}:er be a class of compact spaces, and let p, none ) M,,
teT

We set Mf=M+ (p,) and SM*={M}}er. If we consider the point p, as

isolated in A, then every M} is a compact space, and M, is closed in M¥,-

Each set F,0=,;'[X-vﬁff=1 for te T jand X-MICM)]is a closed

subset of the produet space of M* and ¥, ..F, 0 for every finite‘

number of # e 7. Therefore [[F, is non empty, but it is the product
teT )

of M. We have demonstrated that (4,2) is equivalent to each of the
propositions (I)-(V).
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Intersections of prescribed power, type, or measure
by
F. Bagemihl (Princeton, N. I.) and P. Exrdds (Notre Dame, Ind.)

In 1914, Mazurkiewicz [5] showed that there exists a set of points
in the plane, which intersects every straight line in the plane in precisely
two points. Recently, Bagemihl [1] proved a general intersection theo-
rem in the theory of sets, which, when applied to the plane, yields the
following generalization of Mazurkiewicz’s result: With every straight
line s, associate a cardinal number q,>>2 so that the sum of fewer than
9% of the numbers g, is always less than 2%. Then there exists a set
of points which intersects every straight line s in exactly qs points.

In the present paper, after extending the general intersection theo-
rem alluded to above, we obtain several theorems dealing with plane
point sets which intersect every straight line in a set of prescribed power,
order type, or measure. In particular, we show that the aforementioned
qs may be chosen arbitrarily in the range 2 < 0, < 2%. Free use is made
of the well-ordering theorem.

THEOREM 1. Let o be an arbitrary, fized ordinal nwmber, and S be
a set with
(1) S<8a.

To every se S let there correspond a set Ls such that, for every 8'CS8—{s}
with S'< N, »

(2) Ly— 2 Ly>sa,
s'es’
and put P= 3 L.
s€S

Suppose that for every seS there exists a cardinal number L, with
1L R,y Such that the following holds: If DCP, D< 8, and Sp is the
set of elements s'e S for which ly<s, and LD=1y, then

3 Sp<Ma.
With every:seS et there be associated in an arbitrary wmanner a ocar-
dinal number g satisfying '

(4) L< < 8. ' o
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