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To this end, associate with each element § of I, the set u; consisting of
all elements & of A such that jeS(z), and let U be the class of all such
sets uj, j e I,. We assert that this class U satisties the required conditions.

First let #,...,2, be any finite number of elements from one of the
sets u;. Now S(@)op...008(2,) 70, since je8(@y)o;...0;8(x,). But § is an
isomorphism, so ml;..co,,;é 0. Thus condition (Ui) is satisfied.

Next consider any ze A, #+#0. Since § is an isomorphism, S(x)70,,
and so there exists a §j in 8(z). But then @ eu; so condition (Uii) is
satisfied.

Finally, (Uiii) is an immediate consequence of our assumption on the
cardinality of I,, since the cardinality of U clearly does notexceed that of [,.

This completes the proof of our theorem.

5. We do not know whether the theorem of part 4 can be proven
from the Godel-Malcev (propositional) theorem without using the axiom
of choice. However, without the axiom of choice we can show by Stone’s
method that the possibility of representing a given hboolean algebra a
by a boolean algebra of sets @, whose unit element has smaller cardi-
nality than that of A, is equivalent to the existence of a non-empty
class V satisfying the following conditions:

(Vi) Every element » of V is a maximal ideal of a.
(Vii) The intersection of all the elements » of ¥V is empty.
(Viii) The cardinality of V is less than that of 4.

Using the axiom of choice, one can give a direet proof that the exis-
tence of a class U satisfying (Ui)-(Uiil) is equivalent to the existence
of a class V satisfying (Vi)-(Viii). '
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On the existence of totally heterogeneous spaces

by
J. R. Biichi (Ann Arbor)

The main purpose of this note is to prove the existence of a set M
of real numbers, which is heterogeneous in the sense that every Borel-
function defined on a subset X of M into M is trivial. Some conse-
quences and related facts are pointed out in notes at the end of the
paper.

We first state the following fact:

(1) Let f be a veal valued measurable function defined on a measurable
set X of real numbers. Then the set D of all y, for which ) s of
positive measure, is at most of cardinality Ro.

Now we prove,

Leama 1. Let F be a class of real valued measurable functions, de-
fined on measurable sets of real numbers, and suppose the cardinality of F
is ;. Then there ewists a set M of real numbers, which is of cardinality %y,
such that the sets [f(z)|xe M, f(x) e M, f(z)7#®] are at most of cardinality N,
for all members | of F.

Proof. Let o, be the first ordinal of cardinality s,. By hypothesis
the class F can be arranged into a o,-series [f¢& <w,]. Let De=[y[fs Hy)
of positive measure] and define a o,-series of real numbers xz; by the
following induction.

Choose any real number as z,. If the x, are already defined for all
n<é& then choose x; such that the following conditions are satisfied:

(o) re#x, for all n<&,
(B) re#fy(z,) for all n<é and »<§,
(v) f(xe)#£m, or f.lx:)eD, for all n<¢ and »r<&.

That such an element & exists one shows as follows. To realize («)
and (8) one has to avoid a set of cardinality less than s, only. As for
the realization of (y) note first that in case z,¢ D, the condition (y) is
void. In the alternative case the pair (»,7) is such that x,¢ D,. Then, by
definition of D,, f,*(x,) is of measure 0. Therefore, for any pair (7,7),
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one can satisfy (y) by avoiding a set of measure 0 only. But & <w,, and
therefore the conditions («), (B), (y) can be realized simultaneously by
avoiding a set of measure 0. Thus, the o,-series [z]f <w,] is well-defined.

Now by (8), z,= /(%) implies n<v or n=2¢ or n<&. By (), @=/.(¢)
and 5~<& implies f,(@¢) € D, or n<<v. We conclude that x,=/,(z;) implies
Ny Or @y= ¢ Or f,(2¢) € D,. Or, if we now define M=[wgé<w,], e M
and f,(z)e M and f,(z)7#2 implies f,(x)e[x,|n<r] or f,(x)eD,. But both
sets D, and [x,|n<»] are at most of cardinality x,, as it follows from (1)
and v<<w;. Thus the set M clearly satisfies the conditions in lemma 1.

THEOREM 1. If 2%=u,, there ewists a set M of real numbers, such
that M is of cardinality 2%, and such that the sets [f()|f(z) 2] are at most
of cardinality Ry, for all Borel-measurable functions f: XM, defined on
arbitrary subsets X of M.

Proof. Let ¥ be the class of all real valued Borel-measurable funec-
tions, defined on Borel-sets of real numbers. The cardinality of F is 2.
Thus, by 2®=y, and lemma 1, there exists a set M of cardinality 2%,
such that [g(»)|z e M, g(x) e M,g z)#®] i3 at most of cardinality xo,
for all members g of F. Now suppose X is a subset of M and f is any
Borel-measurable function of X into M. It is known, (see [4] and [8]),
that such an f can be extended to a function g, which is a member of 7.
Since [f(2)|f(x) 2] is a subset of [g(x)lze M, g(z)e M, g(z)7#a], it follows
that the cardinality of [f(z)|f(z)7=] is at most 8, This proves theorem 1.

Some notes and further results

1. Theorem (1) strengthens a result of B. Dushik and E. W. Mil-
ler [1], who proved it with Borel-measurable functions replaced by strictly
monotonic functions. A similar result can be proved without assummg
the continuum-hypothesis. (See theorem 2).

2. It does not seem to be easy to eliminate the assumption 2%= g,
from theorem 1. We do not know how to do this, even if we restrict
our attention to continuous functions. However, by an obvious variation
of the proof of lemma 1 we can get, without agsuming 2%=x,.

Lemma 2. Let F be a class of real valued measurable functions, de-
fined on measurable sets of real numbers. Suppose the cardmalu‘y of I 45 2%
and, for every f in F and every real number Y, f* 8 either of positive
measure or at most of cardinality 8,. Then there emsts a set M of car-
dinality 2%, such that the sets [f(x)|w e M, f(x) e M, fle)#5] are of car-
dinality less than 2%, for every member f of F.

An example of a class F which satisfies the conditions in lemma 2
consists of all real valued weakly monotonic functions, defined for all
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real numbers. Furthermore, every weakly monotonic function defined
on any set of reals can be extended to a member of this class F. We
obtain at once :

THEOREM 2. Without assuming 2% =y, it is possible to prove the
existence of a set M of real numbers, such that the cardinality of M is 2%,
but the cardinality of [f(z)|f(x)£x] is less than 2%, for every weakly mono-
tonic fumction f, which maps a subset of M into M.

Another class F which satisfies all conditions of lemma 2 is the set
of all generalized homeomorphisms (one-to-one mappings, which are
Borel-measurable in both ways) between Borel-sets of real numbers.
According to a result of C. Kuratowski [5], every generalized homeo-
morphism between any two sets of real numbers can be extended to
a member of this class F. It follows that
(2) Without assuming s,=2" one can show the existence of a set M of

real mumbers, such that the cardinality of M is 2%, and such that the
set [z|f(z)#x] is of cardinality less than 2%, jor every generalized
homeomorphism f between two subsets of M.

This theorem has been proved by W. Sierpinski [9], with the word
generalized removed. By taking two disjoined subsets of 2, both of car-
dinality 2%, it follows that
(3) Without assuming =2 one can show the existence of two sets N,

and N, of real numbers, both of cardinality 2%°, such that there is no
set Z of cardinality 2% which can be mapped into N, and N, by ge-
neralized homeomorphisms.

3. The set M of theorem 1 has in particular the property that no
two exclusive subsets of it are homeomorphic, except, when they are.
of power less than 2™. This suggests

Definition. A set M of real numbers which has cardinality 2% is
totally heterogeneous, if for every Borel-function f of a subset X CM into
M the set [f(x)|f(z)£ 2] is of cardinality less than 2.

Now, a subset of cardinality 2% of a heterogeneous set is clearly
heterogeneous. Thus by theorem 1 we have

THEOREM 3. If 2%=x, there exist 2" totally heterogencous sets of real
numbers.

Next we note,

(4) Every perfect set contains an order-isomorphic image of the set of all
reals. Every Borel-set of cardinality greater than s, contains a perfect
set (see Hausdorff [2]).

Now, Cantor’s sets if a perfect set of measure zero and of first ca-

tegory. Together with (4) this yields another improvement of theorem 1.
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TemoreM 4. If 2%=y,, there ewists a totally heterogeneous set in every
Borel-set of power greater than s, (in' every perfects set). Furthermore,
there exist totally heterogemeous sets which are of measure zero and of first
category.

But (4) implies the following negative results, also.

THROREM 5. A totally heterogeneous set cannot be a Borel-sel and is
always of inner measure zero.

Nevertheless in the sense of outer measure, a heterogeneous set may
be thick.

TuEOREM 6. If 2%=w,, there ewists a totally heterogeneous set M of
real mumbers which has the outer measure oo, and even stronger, the outer
measure of MOE is equal to the measure of B, for every measurable set .
Such a set M is automatically of second category.

Proof. Since 2%=g,, we can arrange the Borel-sets of real numbers
which have a positive measure into a w;-series [Be|é <w,]. Now we refine
the proof of lemma 1 by choosing % in B, which can be done, because
B; ig of positive measure and the conditions («), (), (y) eliminate a set
of measure 0, only. The heterogeneous set M=[2¢|{<w,] then clearly
intersects every set 4 of positive measure. Now let E be any measurable
seb. It MNECXCE, then (F—X)N M=0. Therefore, if X is measur-
able, we conclude by the property of M that the measure of F—X must
be 0, and therefore the measure of X is equal to the measure of L. It
follows that the outer measure of M NE is equal to the measure of .

To prove or disprove the existence of totally heterogeneous sets of
second category appears to be difficult.

4. We say that the set V is a Borel-image of the set U, if there is
a Borel-measurable function f defined on U, such that f(U)=V. Now,
every Borel-measurable function f: X—Y can be extended to a Borel-measu-
rable function f: X'+ Y’ where X' and Y’ are Borel-sets of reals. Fur-
_thermore, if ¥ is of cardinality greater than v, then ¥’ is automati-
cally of cardinality 2™ (see Hausdorff [2]). By a theorem of C. Ku-
ratowski [7], and theorem 1, we conclude:

THEOREM 7. Without assuming 2%°=x,, we can show the existence of
2% sets M, of real numbers, such that no Borel-image f(M,) of cardinality
greater than s, of any M, can be contained in a different M,. )

) We define a Borel-invariant to be a class I of sets, which together
with any set contains all its Borel-images. As a corollary to theorem 7

we then get the following improvement of a theorem by €. Kuratow-
ski [6].
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CoOROLLARY. Without assuming 2=y, one can show the exisience of L
Borel-invariants of the space of real numbers.

As another obvious corollary to theorem 7 we get the following
improvement of a theorem by W. Sierpifiski [11].

COROLLARY. Without assuming 2=y, one can show the evistence of 2°%

sets M, of real numbers, such that none of the M, is generalized homeo-
morphic to any subset of any different one of the M,’s.

To get W. Sierpifiski’s result, replace “229”” by “more than 2%
and replace ‘“‘generalized homeomorphic”’ by “order-isomorphic”’.

If we now assume the continuum-hypothesis, we can improve theo-
rem 7 to ’

THROREM 8. If 2=y, and 2=, then there exist x, seis of real
numbers M,, such that no subset of cardinality s, of L, is a Borel-image
of any subset of M,,, where M, 71,

Proof. By a theorem of W. Sierpiniski [10] (see A. Tarski [13]),
if 3[ is a set of cardinality m, then there exists a class K of subsets M,
of 3, such that K is of eardinality greater than m and such that M, M,,
is of cardinality less than m, whenever I, and JI,, are different mem-
Dbers of K. Thus, under the hypotheses 2=y, and 2%=s,, theorem 8
clearly follows from theorem 1. :

Note that similarly we ean prove from theorem 2 and (2), without
assuming 2%=x, or 2%=g,, that there exist more than 2% gets of real
numbers M,, such that no subset of M, of cardinality 2% i a mono-
tonic image of {(generalized homeomorphic to) any subset of M,,.

5. In the proof of lemma 1 we can choose all numbers z; from a given
set of positive outer measure. Thus, in every set of real numbers X which
has positive outer measure, there exists a totally heterogeneous subset M.

It is clear that all our results can be proved if we replace the set of
real numbers by a complete separable metric space, for which there is
a o-measure on the Borel-sets, which is not identically 0.

6. The following fact has been proved by R. Sikorski [12]. Let B;
and B, be the ¢-complete fields of all Borel-sets of separable metric
spaces X; and X, and let k be a ¢-homomorphism of B, into B;; then
there exists a mapping f of X, into X,, such that WU)=f"(U) for every
member U of B,. In other words, every o-homomorphism % of B, into B,
iy generated by a Borel-measurable function f of X, into X,. From theo-
rem 1 we obtain at once

TeEOREM 9. If 2%=un,, there exists a c-complete Boolean algebra
with %, atoms, which is heterogeneous in the following sense. If x and y are
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any elements of B, such that zNy=0 and y contuins X, atoms, then there
is no o-homomorphism defined on the Boolean algebra [u|ueB, uCy] onto
the Boolean algebra [u|u e B,u Cux].

It is possible that the quotient-algebra @ of B in theorem 9, modulo
the o-ideal of all elements ¢ B, which are the union of at most &, atoms,
does not admit any o-homomorphisms. (This would follow from a result
of R. Sikorski [12] if the heterogeneous set M which generates B were
a Borel-set of real numbers. But, by theorem 4 there is no such 3).
In this connection note the ingenious construction of B. Jénsson [3]
of a Boolean algebra which admits no automorphism except the identity.
His algebra is of very high cardinality.

7. The rather ingenious use of well-orderings, employed to prove
the fundamental lemma 1, has often been used to derive pseudo-anti-
nomious results about the continuum. It seems to originate with G. Ha-
mel, who devised it to show the existence of a base for the reals.
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On a problem concerning completely regular sets
by
J. Novak (Praha)

Stowikowski and Zawadowski have raised the following problem:

A topological space R has the property o« if every function defined
and continuous on R is bounded. Does the property o always imply
the compacticity of any completely regular space R?

We are going to prove that the answer to this question is negative.
Let A(N) be the Jech bicompactification of an infinite isolated point-

set N — for instance the set of all naturals. Let N= U N, where N are

infinite subsets of N disjoint from one another. Let us identify in the
space

A —pL 0 () —N] G v

every set f(Ny)—N with a new element ax=f(Ni)—J, the symbol §
indicating the closure in the space S(N). In such a way we get a new
topological space R. The closure of the set A in R will be denoted by 4.

Some remarkable properties of the space R.

Clearly, the set N is isolated and dense in E.

Further, there is an open basis of R consisting of neighbourhoods
which are ambiguous, i. e. open and closed in R. We have to prove that
in every neighbourhood O(x) of any point z e R there is an ambiguous
neighbourhood U{x)= U(x) CO(x). As a matter of fact, for e N we can
put U(z)=(x) and for x=a; we can choose U(z)=0(z) N[NV (ax)]-

Now, let xe [Nug (ax)]. Then
=1
o e(R—130 O (@) 0 (B0 —BL D BNV — ).
k=1 k=1 .

Sinee p(N) is a normal space there is a set G open in B(N) such that
€ B(G)C O(x) and such that

Al k@ BN —N]C B(N)—B(G
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