To this end, associate with each element j of  $I_1$  the set  $u_j$  consisting of all elements x of A such that  $j \in S(x)$ , and let U be the class of all such sets  $u_j$ ,  $j \in I_1$ . We assert that this class U satisfies the required conditions.

First let  $x_1,...,x_n$  be any finite number of elements from one of the sets  $u_j$ . Now  $S(x_1) \circ_1 ... \circ_1 S(x_n) \neq 0_1$  since  $j \in S(x_1) \circ_1 ... \circ_1 S(x_n)$ . But S is an isomorphism, so  $x_1 ... x_n \neq 0$ . Thus condition (Ui) is satisfied.

Next consider any  $x \in A$ ,  $x \neq 0$ . Since S is an isomorphism,  $S(x) \neq 0_1$ , and so there exists a j in S(x). But then  $x \in u_j$ , so condition (Uii) is satisfied.

Finally, (Uiii) is an immediate consequence of our assumption on the cardinality of  $I_1$ , since the cardinality of U clearly does not exceed that of  $I_1$ . This completes the proof of our theorem.

- 5. We do not know whether the theorem of part 4 can be proven from the Gödel-Malcev (propositional) theorem without using the axiom of choice. However, without the axiom of choice we can show by Stone's method that the possibility of representing a given boolean algebra a by a boolean algebra of sets  $a_1$  whose unit element has smaller cardinality than that of A, is equivalent to the existence of a non-empty class V satisfying the following conditions:
  - (Vi) Every element v of V is a maximal ideal of a.
  - (Vii) The intersection of all the elements v of V is empty.
  - (Viii) The cardinality of V is less than that of A.

Using the axiom of choice, one can give a direct proof that the existence of a class U satisfying (Ui)-(Uiii) is equivalent to the existence of a class V satisfying (Vi)-(Viii).

#### References

- [1] M. H. Stone, The theory of representations for boolean algebras, Transactions of the American Mathematical Society 40 (1936), p. 37-111.
- [2] K. Gödel, Die Vollständigkeit der Axiome der logischen Funktionenkalkille, Monatshefte für Mathematik und Physik 37 (1930), p. 349-360.
- [3] A. Malcev, Untersuchungen aus dem Gebiete der mathematischen Logik, Recueil Mathématique, n. s. 1 (1936), p. 323-336.
- [4] L. Henkin, The completeness of the first-order functional calculus, Journal of Symbolic Logic 14 (1949), p. 159-166.
- [5] Some interconnections between modern algebra and mathematical logic, Transactions of the American Mathematical Society 74 (1953), p. 410-427.
  - [6] A. Robinson, On the Metamathematics of Algebra, 1951.
- [7] H. Rasiowa and R. Sikorski, A proof of the Skolem-Löwenheim theorem, Fundamenta Mathematicae 38 (1951), p. 230-232.
  - [8] D. Hilbert and P. Bernays, Grundlagen der Mathematik, erster Band. Berlin 1934.

Reçu par la Rédaction le 6. 7. 1953



# On the existence of totally heterogeneous spaces

b

### J. R. Büchi (Ann Arbor)

The main purpose of this note is to prove the existence of a set M of real numbers, which is heterogeneous in the sense that every Borel-function defined on a subset X of M into M is trivial. Some consequences and related facts are pointed out in notes at the end of the paper.

We first state the following fact:

(1) Let f be a real valued measurable function defined on a measurable set X of real numbers. Then the set D of all y, for which f<sup>-1</sup>(y) is of positive measure, is at most of cardinality ℵ₀.

Now we prove,

LEMMA 1. Let F be a class of real valued measurable functions, defined on measurable sets of real numbers, and suppose the cardinality of F is  $\aleph_1$ . Then there exists a set M of real numbers, which is of cardinality  $\aleph_1$ , such that the sets  $[f(x)|x \in M, f(x) \in M, f(x) \neq x]$  are at most of cardinality  $\aleph_0$ , for all members f of F.

Proof. Let  $\omega_1$  be the first ordinal of cardinality  $\mathbf{x}_1$ . By hypothesis the class F can be arranged into a  $\omega_1$ -series  $[f_{\xi}|\xi < \omega_1]$ . Let  $D_{\xi} = [y|f_{\xi}^{-1}(y)]$  of positive measure] and define a  $\omega_1$ -series of real numbers  $x_{\xi}$  by the following induction.

Choose any real number as  $x_1$ . If the  $x_\eta$  are already defined for all  $\eta < \xi$ , then choose  $x_\xi$  such that the following conditions are satisfied:

$$(\alpha)$$
  $x_{\xi} \neq x_{\eta}$  for all  $\eta < \xi$ ,

(
$$\beta$$
)  $x_{\xi} \neq f_{\nu}(x_{\eta})$  for all  $\eta < \xi$  and  $\nu < \xi$ ,

$$(\gamma) \qquad f_{\nu}(x_{\xi}) \neq x_{\eta} \quad \text{or} \quad f_{\nu}(x_{\xi}) \in D_{\nu} \quad \text{for all} \quad \eta < \xi \quad \text{and} \quad \nu < \xi.$$

That such an element  $x_{\xi}$  exists one shows as follows. To realize  $(\alpha)$  and  $(\beta)$  one has to avoid a set of cardinality less than  $\mathbf{x}_1$  only. As for the realization of  $(\gamma)$  note first that in case  $x_{\eta} \in D_r$ , the condition  $(\gamma)$  is void. In the alternative case the pair  $(\eta, r)$  is such that  $x_{\eta} \in D_r$ . Then, by definition of  $D_r$ ,  $f_r^{-1}(x_{\eta})$  is of measure 0. Therefore, for any pair  $(\eta, r)$ , fundamenta Mathematicae. T. XLI.

one can satisfy  $(\gamma)$  by avoiding a set of measure 0 only. But  $\xi < \omega_1$ , and therefore the conditions  $(\alpha)$ ,  $(\beta)$ ,  $(\gamma)$  can be realized simultaneously by avoiding a set of measure 0. Thus, the  $\omega_1$ -series  $[x_{\xi}|\xi<\omega_1]$  is well-defined.

Now by (3),  $x_n = f_{\nu}(x_{\xi})$  implies  $\eta \leqslant \nu$  or  $\eta = \xi$  or  $\eta < \xi$ . By  $(\gamma)$ ,  $x_n = f_{\nu}(x_{\xi})$ and  $\eta < \xi$  implies  $f_{\nu}(x_{\xi}) \in D_{\nu}$  or  $\eta \leq \nu$ . We conclude that  $x_{\eta} = f_{\nu}(x_{\xi})$  implies  $\eta \leqslant \nu$  or  $x_r = x_{\xi}$  or  $f_r(x_{\xi}) \in D_r$ . Or, if we now define  $M = [x_{\xi} | \xi < \omega_1], x \in M$ and  $f_{\nu}(x) \in M$  and  $f_{\nu}(x) \neq x$  implies  $f_{\nu}(x) \in [x_{\nu} | \eta < \nu]$  or  $f_{\nu}(x) \in D_{\nu}$ . But both sets  $D_{\mathbf{r}}$  and  $[x_{\mathbf{r}}|\eta < \nu]$  are at most of cardinality  $\mathbf{x}_0$ , as it follows from (1) and  $\nu < \omega_1$ . Thus the set M clearly satisfies the conditions in lemma 1.

THEOREM 1. If  $2^{\aleph_0} = \aleph_1$ , there exists a set M of real numbers, such that M is of cardinality  $2^{80}$ , and such that the sets  $[f(x)|f(x)\neq x]$  are at most of cardinality  $\aleph_0$ , for all Borel-measurable functions  $f: X \to M$ , defined on arbitrary subsets X of M.

Proof. Let F be the class of all real valued Borel-measurable functions, defined on Borel-sets of real numbers. The cardinality of F is  $2^{\aleph_0}$ . Thus, by  $2^{\aleph_0} = \aleph_1$  and lemma 1, there exists a set M of cardinality  $2^{\aleph_0}$ . such that  $[g(x)|x \in M, g(x) \in M, g(x) \neq x]$  is at most of cardinality  $x_0$ for all members g of F. Now suppose X is a subset of M and f is any Borel-measurable function of X into M. It is known, (see [4] and [8]). that such an f can be extended to a function g, which is a member of F. Since  $[f(x)|f(x)\neq x]$  is a subset of  $[g(x)|x\in M,g(x)\in M,g(x)\neq x]$ , it follows that the cardinality of  $[f(x)|f(x)\neq x]$  is at most  $x_0$ . This proves theorem 1.

#### Some notes and further results

- 1. Theorem (1) strengthens a result of B. Dushik and E. W. Miller [1], who proved it with Borel-measurable functions replaced by strictly monotonic functions. A similar result can be proved without assuming the continuum-hypothesis. (See theorem 2).
- 2. It does not seem to be easy to eliminate the assumption  $2^{\aleph_0} = \aleph_1$ from theorem 1. We do not know how to do this, even if we restrict our attention to continuous functions. However, by an obvious variation of the proof of lemma 1 we can get, without assuming  $2^{\aleph_0} = \aleph_1$ .
- LEMMA 2. Let F be a class of real valued measurable functions, defined on measurable sets of real numbers. Suppose the cardinality of F is 2 no and, for every f in F and every real number y, f-1(y) is either of positive measure or at most of cardinality so. Then there exists a set M of cardinality  $2^{\aleph_0}$ , such that the sets  $[f(x)|x \in M, f(x) \in M, f(x) \neq x]$  are of cardinality less than  $2^{80}$ , for every member f of F.

An example of a class F which satisfies the conditions in lemma 2 consists of all real valued weakly monotonic functions, defined for all



real numbers. Furthermore, every weakly monotonic function defined on any set of reals can be extended to a member of this class F. We obtain at once

THEOREM 2. Without assuming  $2^{\aleph_0} = \aleph_1$ , it is possible to prove the existence of a set M of real numbers, such that the cardinality of M is 2 %. but the cardinality of  $\lceil f(x) | f(x) \neq x \rceil$  is less than  $2^{\aleph_0}$ , for every weakly monotonic function f, which maps a subset of M into M.

Another class F which satisfies all conditions of lemma 2 is the set of all generalized homeomorphisms (one-to-one mappings, which are Borel-measurable in both ways) between Borel-sets of real numbers. According to a result of C. Kuratowski [5], every generalized homeomorphism between any two sets of real numbers can be extended to a member of this class F. It follows that

(2) Without assuming  $\aleph_1 = 2^{\aleph_0}$  one can show the existence of a set M of real numbers, such that the cardinality of M is 200, and such that the set  $\lceil x \mid f(x) \neq x \rceil$  is of cardinality less than  $2^{\aleph_0}$ , for every generalized homeomorphism f between two subsets of M.

This theorem has been proved by W. Sierpiński [9], with the word generalized removed. By taking two disjoined subsets of M, both of cardinality 2<sup>80</sup>, it follows that

- (3) Without assuming  $\aleph_1 = 2^{\aleph_0}$  one can show the existence of two sets  $N_1$ and  $N_2$  of real numbers, both of cardinality  $2^{\aleph_0}$ , such that there is no set Z of cardinality 2" which can be mapped into N1 and N2 by generalized homeomorphisms.
- 3. The set M of theorem 1 has in particular the property that no two exclusive subsets of it are homeomorphic, except, when they are of power less than 2 this suggests

Definition. A set M of real numbers which has cardinality  $2^{\aleph_0}$  is totally heterogeneous, if for every Borel-function f of a subset  $X \subseteq M$  into M the set  $[f(x)|f(x)\neq x]$  is of cardinality less than  $2^{\aleph_0}$ .

Now, a subset of cardinality 2<sup>80</sup> of a heterogeneous set is clearly heterogeneous. Thus by theorem 1 we have

Theorem 3. If  $2^{\aleph_0} = \aleph_1$  there exist  $2^{\aleph_1}$  totally heterogeneous sets of real numbers.

Next we note.

(4) Every perfect set contains an order-isomorphic image of the set of all reals. Every Borel-set of cardinality greater than so contains a perfect set (see Hausdorff [2]).

Now, Cantor's sets if a perfect set of measure zero and of first category. Together with (4) this yields another improvement of theorem 1. Theorem 4. If  $2^{\aleph_0} = \aleph_1$ , there exists a totally heterogeneous set in every Borel-set of power greater than  $\aleph_0$  (in every perfects set). Furthermore, there exist totally heterogeneous sets which are of measure zero and of first category.

But (4) implies the following negative results, also.

THEOREM 5. A totally heterogeneous set cannot be a Borel-set and is always of inner measure zero.

Nevertheless in the sense of outer measure, a heterogeneous set may be thick.

THEOREM 6. If  $2^{\aleph_0} = \aleph_1$ , there exists a totally heterogeneous set M of real numbers which has the outer measure  $\infty$ , and even stronger, the outer measure of  $M \cap E$  is equal to the measure of E, for every measurable set E. Such a set M is automatically of second category.

Proof. Since  $2^{\mathbf{x_0}} = \mathbf{x_1}$ , we can arrange the Borel-sets of real numbers which have a positive measure into a  $\omega_1$ -series  $[B_{\xi}|\xi < \omega_1]$ . Now we refine the proof of lemma 1 by choosing  $x_{\xi}$  in  $B_{\xi}$ , which can be done, because  $B_{\xi}$  is of positive measure and the conditions  $(\alpha)$ ,  $(\beta)$ ,  $(\gamma)$  eliminate a set of measure 0, only. The heterogeneous set  $M = [x_{\xi}|\xi < \omega_1]$  then clearly intersects every set A of positive measure. Now let E be any measurable set. If  $M \cap E \subseteq X \subseteq E$ , then  $(E - X) \cap M = 0$ . Therefore, if X is measurable, we conclude by the property of M that the measure of E - X must be 0, and therefore the measure of X is equal to the measure of E. It follows that the outer measure of  $M \cap E$  is equal to the measure of E.

To prove or disprove the existence of totally heterogeneous sets of second category appears to be difficult.

**4.** We say that the set V is a Borel-image of the set U, if there is a Borel-measurable function f defined on U, such that f(U) = V. Now, every Borel-measurable function  $f: X \to Y$  can be extended to a Borel-measurable function  $f': X' \to Y'$  where X' and Y' are Borel-sets of reals. Furthermore, if Y is of cardinality greater than  $s_0$ , then Y' is automatically of cardinality  $2^{s_0}$  (see Hausdorff [2]). By a theorem of C. Kuratowski [7], and theorem 1, we conclude:

THEOREM 7. Without assuming  $2^{\aleph_0} = \aleph_1$ , we can show the existence of  $2^{\aleph_0}$  sets  $M_r$  of real numbers, such that no Borel-image  $f(M_r)$  of cardinality greater than  $\aleph_0$  of any  $M_r$  can be contained in a different  $M_r$ .

We define a Borel-invariant to be a class I of sets, which together with any set contains all its Borel-images. As a corollary to theorem 7 we then get the following improvement of a theorem by C. Kuratowski [6].



COROLLARY. Without assuming  $2^{\aleph_0} = \aleph_1$  one can show the existence of  $2^{\aleph_2^{\aleph_0}}$ . Borel-invariants of the space of real numbers.

As another obvious corollary to theorem 7 we get the following improvement of a theorem by W. Sierpiński [11].

COROLLARY. Without assuming  $2^{\aleph_0} = \aleph_1$ , one can show the existence of  $2^{2\aleph_0}$  sets  $M_r$  of real numbers, such that none of the  $M_r$  is generalized homeomorphic to any subset of any different one of the  $M_r$ 's.

To get W. Sierpiński's result, replace "22<sup>80</sup>" by "more than 2<sup>80</sup>" and replace "generalized homeomorphic" by "order-isomorphic".

If we now assume the continuum-hypothesis, we can improve theorem 7 to

THEOREM 8. If  $2^{\aleph_0} = \aleph_1$  and  $2^{\aleph_1} = \aleph_2$ , then there exist  $\aleph_2$  sets of real numbers  $M_r$ , such that no subset of cardinality  $\aleph_1$  of  $M_{r_1}$  is a Borel-image of any subset of  $M_{r_2}$ , where  $M_{r_1} \neq M_{r_2}$ .

Proof. By a theorem of W. Sierpiński [10] (see A. Tarski [13]), if M is a set of cardinality m, then there exists a class K of subsets  $M_r$  of M, such that K is of cardinality greater than m and such that  $M_{r_1} \cap M_{r_2}$  is of cardinality less than m, whenever  $M_{r_1}$  and  $M_{r_2}$  are different members of K. Thus, under the hypotheses  $2^{\aleph_0} = \aleph_1$  and  $2^{\aleph_1} = \aleph_2$ , theorem 8 clearly follows from theorem 1.

Note that similarly we can prove from theorem 2 and (2), without assuming  $2^{\aleph_0} = \aleph_1$  or  $2^{\aleph_1} = \aleph_2$ , that there exist more than  $2^{\aleph_0}$  sets of real numbers  $M_r$ , such that no subset of  $M_{r_1}$  of cardinality  $2^{\aleph_0}$  is a monotonic image of (generalized homeomorphic to) any subset of  $M_{r_2}$ .

5. In the proof of lemma 1 we can choose all numbers  $x_{\varepsilon}$  from a given set of positive outer measure. Thus, in every set of real numbers X which has positive outer measure, there exists a totally heterogeneous subset M.

It is clear that all our results can be proved if we replace the set of real numbers by a complete separable metric space, for which there is a  $\sigma$ -measure on the Borel-sets, which is not identically 0.

**6.** The following fact has been proved by R. Sikorski [12]. Let  $B_1$  and  $B_2$  be the  $\sigma$ -complete fields of all Borel-sets of separable metric spaces  $X_1$  and  $X_2$  and let h be a  $\sigma$ -homomorphism of  $B_2$  into  $B_1$ ; then there exists a mapping f of  $X_1$  into  $X_2$ , such that  $h(U)=f^{-1}(U)$  for every member U of  $B_2$ . In other words, every  $\sigma$ -homomorphism h of  $B_2$  into  $B_1$  is generated by a Borel-measurable function f of  $X_1$  into  $X_2$ . From theorem 1 we obtain at once

THEOREM 9. If  $2^{\mathbf{s_0}} = \mathbf{s_1}$ , there exists a  $\sigma$ -complete Boolean algebra with  $\mathbf{s_1}$  atoms, which is heterogeneous in the following sense. If x and y are

any elements of B, such that  $x \cap y = 0$  and y contains  $x_1$  atoms, then there is no  $\sigma$ -homomorphism defined on the Boolean algebra  $[u|u \in B, u \subseteq y]$  onto the Boolean algebra  $[u|u \in B, u \subseteq x]$ .

It is possible that the quotient-algebra Q of B in theorem 9, modulo the  $\sigma$ -ideal of all elements  $x \in B$ , which are the union of at most  $\aleph_0$  atoms, does not admit any  $\sigma$ -homomorphisms. (This would follow from a result of R. Sikorski [12] if the heterogeneous set M which generates B were a Borel-set of real numbers. But, by theorem 4 there is no such M). In this connection note the ingenious construction of B. Jónsson [3] of a Boolean algebra which admits no automorphism except the identity. His algebra is of very high cardinality.

7. The rather ingenious use of well-orderings, employed to prove the fundamental lemma 1, has often been used to derive pseudo-antinomious results about the continuum. It seems to originate with G. Hamel, who devised it to show the existence of a base for the reals.

#### References

- [1] B. Dushnik and E. W. Miller, Partially ordered sets, Am. Jour. of Math. 63 (1941), p. 600-610.
- [2] F. Hausdorff, Die Mächtigkeit der Borelschen Mengen, Math. Ann. 77 (1916), p. 430-437.
- [3] B. Jónsson, A Boolean algebra without proper automorphisms, Proc. Am. Math. Soc. 2 (1951), p. 766-770.
- [4] C. Kuratowski, Sur les théorèmes topologiques de la théorie des fonctions de variables réelles, Comptes Rendus 197 (1933), p. 19-20.
  - [5] Sur le prolongement de l'homéomorphie, Comptes Rendus 197 (1933) p. 1090-1091.
- [6] Sur la puissance de l'ensemble des nombres de dimension au sens de M. Fréchet, Fund. Math. 8 (1926), p. 201-208.
- [7] Sur l'extension de deux théorèmes topologiques à la théorie de ensembles, Fund. Math. 34 (1947), p. 34-38.
- [8] W. Sierpiński, Sur l'extension des fonctions de Baire définies sur les ensembles linéaires quelconques, Fund. Math. 16 (1930), p. 81-89.
- [9] Sur un problème concernant les types de dimension, Fund. Math. 19 (1932), p. 65-71.
- [10] Sur une décomposition d'ensembles, Monatsheft für Math. und Phys. 35 (1928), p. 239-242.
- [11] Sur les types d'ordre des ensembles linéaires, Fund. Math. 37 (1950), p. 253-264.
- [12] R. Sikorski, On the inducing of homomorphisms by mappings, Fund. Math. 36 (1949), p. 7-22.
- [13] A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fund. Math. 12 (1928), p. 188-205.

Reçu par la Rédaction le 8.7. 1953



# On a problem concerning completely regular sets

b

### J. Novák (Praha)

Słowikowski and Zawadowski have raised the following problem: A topological space R has the property a if every function defined and continuous on R is bounded. Does the property a always imply the compacticity of any completely regular space R?

We are going to prove that the answer to this question is negative. Let  $\beta(N)$  be the Čech bicompactification of an infinite isolated point-set N — for instance the set of all naturals. Let  $N = \bigcup_{k=1}^{\infty} N_k$  where  $N_k$  are infinite subsets of N disjoint from one another. Let us identify in the space

$$\beta(N) - \beta \left[ \bigcup_{k=1}^{\infty} \beta(N_k) - N \right] \bigcup_{k=1}^{\infty} \beta(N_k)$$

every set  $\beta(N_k)-N$  with a new element  $a_k \equiv \beta(N_k)-N$ , the symbol  $\beta$  indicating the closure in the space  $\beta(N)$ . In such a way we get a new topological space R. The closure of the set A in R will be denoted by  $\overline{A}$ .

Some remarkable properties of the space R.

Clearly, the set N is isolated and dense in R.

Further, there is an open basis of R consisting of neighbourhoods which are ambiguous, i.e. open and closed in R. We have to prove that in every neighbourhood O(x) of any point  $x \in R$  there is an ambiguous neighbourhood  $U(x) = \overline{U(x)} \subset O(x)$ . As a matter of fact, for  $x \in N$  we can put U(x) = (x) and for  $x = a_k$  we can choose  $U(x) = O(x) \cap [N_k \cup (a_k)]$ . Now, let  $x \in [N \cup \bigcup_{k=1}^{\infty} (a_k)]$ . Then

$$x \in \left(R - [N \cup \bigcup_{k=1}^{\infty} (a_k)]\right) \cap \left(\beta(N) - \beta[\bigcup_{k=1}^{\infty} \beta(N_k) - N]\right).$$

Since  $\beta(N)$  is a normal space there is a set G open in  $\beta(N)$  such that  $x \in \beta(G) \subset O(x)$  and such that

$$\beta[\bigcup_{k=1}^{\infty}\beta(N_k)-N]\subset\beta(N)-\beta(G).$$