On some metrizations of the hyperspace of compact sets
by

K. Borsuk (Warszawa)

1. Set-theoretical metric o,. Let I he a mefric space and
let o denote the distance-function defined in M. By 2™ we denote the
class of all non-empty compaecta !) Iving in /. 1t is known ) that, setting

(1) 0l X.¥)=Max [Bup o, Y), Supoly, X)] for ever(\" A, Y 2™
xeX xeY

we obtain -a function g, which can be considered as a distance-function
in 2 (called in this note set-theoretic metric). The metric space obtained
from 2% in this manner will be denoted by 2¥. This space constitutes
a useful tool in the investigation of the compact sets lying in M. If W
is a complete space?), then also the space 2 is complete 4). This is the
ground for the application of 2¥ to some existential proofs ), based on
the well known theorem of Baire on the category.

The set-theoretical distance o(X,Y) constitutes a measure of the
difference between X and Y only from the set-theorvetical and metric
point of view. But it does not measure the difference between the top-
ological structures of them. It is clear that o(X,Y) can be arbitrarily
small, though the topological structures of X and Y are completely
different.

It is the purpose of this note to construet other two metrics tor
compacta: one called metric of continuity o, and the other metric of homo-
topy op. The first of them has a rather auxiliary character. Its definition
is ximple and intuitive and it sets off the topological differences between
compacta—but unfortunately it is not complete. The second metric o
has a clear topological sense only for the ANR-sets (= absolute neigﬂ-

1} By a compactum we uuderstand a compact metric. space,

2) Bee Hausdorff [9], p. 203.

3y A metric space is complefe if every Cauchy sequence of its points has a limit,
#) See Kuratowski [12], p. 314.
5y ¢f. Mazurkiewicz [15].
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bourhood refracts) ) lying in M. By the metric g, the class of all ANR-
_sets lying in a compactum M of & finite dimension is complete, and for
those sets the metric g, seems to be an adequate measure for the dif-
ference of their topological structures.

2. Metric of continuity o.. For every X,Y ¢ 2" we define g,(X,Y)
as the lower bound of the numbers >0 such that there exists a con-
tinuous mapping @ of X into ¥ and a eontinuous mapping p of ¥ into X
satisfving the conditions

9(93;9?(117)) <t for every weX,
elyw(y) <t for every ye¥.

One sees at once that the funetion o.(X,¥) is non-negative and
that it satisfies the conditions
0(X,¥)=0 if and only if X=7F,
Qc(X;Y)=9c(Y7-X)s
Qc(X)Y)+Qc(Y>Z)>Qc(X7Z)

forevery X,Y,Z e oM Hence o.{X,Y) constitutes a distance in the set JM.
The metric space obtained in this manner from 2M il he Qenotedi b.y 2,7

Teet us observe that for every number ¢ satisfying the inequalities (2)
we have o,(X,Y)<t. Hence

(3) Qs(X7Y)<Qc(X7Y)‘

It follows that the identical mapping in 2™ induces ] continuous map-
ping of 2¥ onto 2¥ But the converse is not true. For lpst-ance, den(?tlng
by X the set constituted by the numbers 0,1/k,2/k,...,(k—1)/k,1,
:1;141 by X, the closed interval <0,15, we see at once that

. . 1
L gs( Xz Xo)=0 and lm 0l Xi, Xo) =5 -
k—»och k-0 -

Using the terminology due to Mazurkiewiez?) we shall say that
the metrie o, is more restrictive than the metric o;. v

Let us consider some examples to illustrate the contents of the me-
trics os and o.. We denote by E, the n-dimensional Euclidean space and by
O t»h(: 2-dinensional cube, defined as the set of all points (2y, Ly -, Ta) € B
satisfying the inequalities

|l <1 for i=1,2,...0.

¢ By ANR-sel we understand here every coP.\pactum - such Trhz}.t }f u 1s ]fi) me-
trie ﬂpa,cé and B a subset of A homeomonfhie with 4, then n}xere em:t:. a neigl 0};:‘;
hood U of B in M and a continuous function r (ca]le(.i retraction of U to B) mapping
I/ onto B in such a manner that for every ze B it is r{x)=2x.

7) See Mazurkiewiez [16].
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(vp,x2) €1

we obtain a sequence of simple arcs lying in @,. This sequence is con-

vergent in the space 922 and also in the space 22 to the closure of the

set F [ay=cos o @y, Oy <1]. It follows that in 22* the set composed
{xy, %)

of all locally connected continua, and also the set composed ot all AR-

-sets (== absolute retracts)s), is not closed.

Example 2. Let B, denote the closure of the set

r [;rgzoos z, 0< ]y <.1]C()._,.
(1, %) oI

Let us observe that for every arcwise connected continuum B3 we
have g,(By,B)>1/2. Otherwise there would exist a continuous map-
ping ¢ of B into B, such that g(p,(p(p))<1/2 for every peB and a con-
tinuous mapping v of B, into B such that g(q,w(q))<1/2 for every geB,.
Then the abscissa of the point gp(l,—1) would be positive and the ab-
scissa of the point gy(—1,—1) would be negative. But this is impossible,
because the arewise connected continuum ¢(B)CHB, joins the points
gp(l,—1) and gy(—1,—1), and B, does not contain any simple are joining
two points of abscissae with different signs.

Example 3. Let us set

Du:]«l‘[ﬂl-3—k<i<(2’+1)-3"‘]} k=1,2,..., 120,1,...,.1(3k-{ )’
t

)
@F-nf2
Dp= 12 Dy, H=<0;1>—Dy, By =Dy -Hy,
=0
o0
A=(0;1yx<0;1))— X (H xHy?).

E=1
Evidently 4 is identical with the well known locally connected
curve of Sierpinski?®), universal for plane curves. Setting

Ap= A [(Fex0513)4- (€05 1) > F)],

) By AR-sef we understand here every compactum A such that for every me-
tric space if B is a subset of M homeomorphic with 4, then there exists a continuous
funetion r (retraction of M to B) mapping M onto B in such a manner that r(n) =z
for every « € B.

®) The symbol x denotes the Cartesian multiplication.

10y See Sierpinski [17], p. 620.
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we easily see that 4, is a 1-dimensional polyhedron, and that the sequence
{4y} converges in 22 40 A. Tt follows that in 22 the limit of a sequence
of ANR-sets can be a continuum not locally contractible at each of its
points.

Example 4. If {4;} is a sequence of compacta convergent in aM
to a set 4 containing only one point, then {4} converges to 4 also in
the space 2

Example 5. Let us set

dy= F [r=costja,=xsint; 0 <t < 2],

(%1, %)

A=

(X1, %2)

[.rl o co&t;.r.z:sint;% L 2.—:] for k=1.,2....
Evidently 4p—4 in the space 22 hut 4, ~}» 4, in the space
because every continuous mapping ¢ of the circle 4, into A4;5 4, is not
homotopic to the identity, and consequently there exists a point ped,
such that g(p,(p(p)) =2, Hence g, (Ady,dz)>2 for every F=1,2,..

On the other hand it is evident that the sets A, constitnte in Ef?
a Cauchy sequence. It follows that the space 222 is not complete.

9@z
~c

3. Properties of the metric o.. The examples just given show
that the metric of continuity ecannot be regarded as adequate for our
aims. But the metric of continuity is simple and intuitive, and it will
be useful to construet another metrie (metric of homotopy). Therefore
we shall state some of its properties.

It is known 1) that for every n-dimensional compactum X there
exists an e >0 such that for every continuous mapping ¢ of X satisfying
the inequality
reX

Q(.z‘,gr,(x)')<e for every

we have dim@(X)>n. It follows that

If dim X >n, then there evists an e>0 sucl that o (X,T)-<e implies
dim Y = n.
We infer that

oM

() The set composed by all X e2g with dim X > n is open.

Now let ug show that there exists a relation between homological
properties of two compacta X and I' and their distance o (X,Y). Let »
be a non-negative integer. We denote by p#(.X) the upper bound of the

uy (f. for instance Kuratowski [13]. p. 64.
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integers & for which there exists an x>0 such that for every #>0 a sys-
tem of k homologically e-independent n-dimensional #-cycles les in X ),

{6y If p{X)>m, then there exists an & >0 such that 0{X,Y)<<e implies
p(Y)>m.

Proof. Let e, be a positive number such that for every >0 there
exists in X a system of m g-cycles homologically en-independent in Y.
e shall show that for e=g,/6 the proposition (6) is satistied.

If p,(X,Y)<e, then there exists @ continuons mapping ¢ of X into T
and a continuous mapping v of ¥ into X such that

olr,p(x)|<e  for every relX,
(

oly ¥ y))<e for every yel.

Since ¢ and y are uniformly continuous on the compacta X and Y, there
exists a positive 7 such that

s a1 P AR !
(7) ola,@)<n implies o{p(r),pa’))<gem and olvg(t)ype(e)|<gen

for every x,2 X,
(8) elyy)<n implies o{p(y)w(y ))<§sm for every y,y €Y.

Leb ¥1,¥a5 03 Pm De & system of n-dimensional #-cycles homologically
en-independent in X. By (7) the function ¢ maps them onto some n-di-
mensional ¢,/3-cycles yig,Vepy---; Vmp Lying in ¥, and the funection y maps
the last cycles onto some n-dimensional en/3-Cyeles yig;Yepns s Vmp
lying in X. But

Q(W‘(-’l‘) ) -T) < QW‘?"(J!’):Q“(T)) -+ Q(q‘(-'l") ,J‘) < 2e= % &m  for every rel.

Tt follows that the g,/3-cycle yg, is ex-homologous in X with the cycle y,
for i=1,2,...,m. Consequently, the ¢u/3-cyeles Yy VoppseeesVmyy aLe
homologically en-independent in X. But then the eycles yipsVepy-e ) Vme
are homologically eindependent in Y. For otherwise there would exist
in ¥ an (n-1)-dimensional e-chain x bounded by a linear combination

1) A set composed of 5+1 points of X, having the diameter <z iz called n-din-
ensional 5-simplex in X. The notions of an oriented 7n-simplew in X, of an n-chain
in X (with arbitrarily given coefficients) and of an #-eycle in X are introduced as usual.
A system 1,95, ..., of n-dimensional 7-cycles in X is said to he khomologically e-inde-
pendent in X, provided that a linear combination c,-p,+ ¢y yy+ ...+ -y, with integral
coefficients constitute the boundary of an e-chain in X only if all coefficients vanish.
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117+ CoYapt - T Con¥my, Where 1ot all coefficients ¢; vanish. The function
maps the e-chain » onto a 3e-chain #, in X with the boundary
CV1pp - C¥app -+ T Cm¥myp.  BUb this is impossible, because 3e=en/2
and the cycleS YigpVapps--»Vmpe are homologically e,-independent in X.
Hence (6) is proved. It follows that

{(9) The set composed of all compacta XCM with p"(X)zm is open in oM

We say that a compactum X has the property § if for every con-
tinuous mapping f of X into itself there exists a point re.X such that
flz)=a. Let us show that

(10) If X 2™ does nat have the property §, then there exisls an e >0 such

that 0. X, Y)<e implies that also Y does not have property §.

Proof. Let f be a continuous mapping of X into itself such that
fa) sta for every reX. Since X is compact, there exists a positive 7
such that

g(.l’,j(.u));; y  for every aeX.

Let us show that the proposition (10) is satistied for the number e=n/2.
If p.(X,¥) <, then there exists a continuouns mapping ¢ of X inte ¥

and a continuous mapping y of Y into X such that
g(<p(1:),.v)<a for every

reld,
g(’yz(y),y)<s for every yeY.

Then ¢fy is a continuous mapping of ¥ into itself, and for every yeY
we have

olpfo() ) = elfutn)s wln) — elgtviu) Toty)) — elw(y)y) >0 —2e = 0.

Hence gfyly)z£y for every yeY, i e. T does not have the property F.
Tt follows hy (10) that

(11) The set composed of all compacta XCI with the property § is clo-
sed in Eﬁ".

4. 2 as a topological invariant of /. Problems. Let us
show that the topological structure of the space 2M depends only upon
the topological structure of M, 7. e.

(12) If M and ' are Tomeonorphic, then also 2 and 22 yre homeo-

morphie.

Proof. Let h be a homeomorphic mapping of M onto M'. If we

. . oM 3
assign to every compactum Xe2M the compactum I(X)e2", then we
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Vi . .
obtain a 1-1 mapping of 2 oM onto 2. It remains to show that this map-
ping and its inverse are buth continuous. Since our assumptions are
symmetrical, it suffices to show that the mapping

X—h(X)
M
is continuous at every point Xe2.

Since L is continuous and X is compact, there exists for every ¢ >0
an 5 >0 sueh that

(13) zeX, 2 e M, and g(z,2")<y imply together @(’I(:Z),]I(Z'}){r—.
If Ye2M and o (X, Y)<y, then there exists a continuous mapping ¢
of X into Y such that
g(m,zp((r))<77 for every J"EX.
Let 1™ denote the inverse of the homeomorphism 4. Setting
¢'(@)=hgh™ (') for every a’en(.X),

we obtain a continuous mapping ¢’ of A(X) into h(X). Since A7 (+) e X
and olgh ™ (a"), k(& ))<7), we infer by (13) that

(14) g(q'(;r’),m’)=g{\hqwh_l(;c’),]171‘1(a7’))<£ for every @' eh(\).

On the other hand, there exists a continuons mapping v of ¥ into X\
such that ,

Q(y,yy(y))<1; for every yeX.
Setting
V) =hphTHy)  for every g eh(Y),

we obtain a continuous mapping v of k(Y¥) into R(X). Since ph™ (y') e X
and g(«ph"l(y'),h_l(;z/’))<7;, we infer by (13) that

(15) Q(w'(y'),y'):Q(thh“l(y'),hh“l(y'))<e for every ¥’ ¢l(Y).
i

Tt follows by (14) and (15) that gc(h(X),h(I’))<s, i.e. the conti-
nuity of the mapping X—h(X) is proved.

ProprEM 1. Let A be a separable space. Is it true that the space 2
is also separable?

ProBLEM 2. Does there exist an AR-set M such that the space oMy
not eonnected?

Proprem 3. Does there exist an ANR-set I such that the space M
is not locally connected?

icm
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5. Module of contractibility. Homotopical convergence 3).
For every metric space A0 and every t>0 let us denote by 7,
the set composed of the number 1 and of all numbers z>>t such that
every subset E of 4 with diameter <t is contractible to a point in a sub-
set of 4 with diameter < 7. Let ¢ () denote the lower bound of the set
T4, Evidently ¢, is a non-decreasing function of the variable >0,
satisfying the conditions

(16) @,(0)=0, Min(1,1)<¢,(t)<1 for every t>0.

The function @, will be said to be the module of the contractibility
of the space A. Evidently, if A is compact, then the continuity of ¢,
at the point ¢=0 is equivalent to the local contractibility **) of A.

A class U of spaces 4520 will be said to be equally locally contractible
if there exists a continuous function ¢(i), defined for every >0 and
sueh that

(17) 0=p(0)<q (t)<e(t) for every 0.

Let M be a metric space. We shall denote by 25 the class of all non-
-empty ANR-sets lying in M. A sequence {4,3C2¥ il be said to be
homotopically convergent to a set Age 2y it

1° lim g,(dn,44) =0,

n—0o0

20 the class composed of the sets Ay, A,,... is equally locally contractible.

Evidently, by this last definition the class 2M hecomes a L*-space
(in the sense of Fréchet [6]). We shall show, and this is the main
aim of this note, that if 3/ is a finite dimensional compactum, then this
I*space can be metrized in such a manner that the obtained metric
space is complete. Before doing this (in seetion 16), we shall prove some
lemmas.

13) (ompare the notion of the n-regular convergence (in the sense of homology)
introduced by G. T. Whyburn [19] and [20] and the notion of the n-regular con-
vergence space (in the sense of homology) introduced by P. A. White [18]. See also
E. G. Begle [2l. A notion of homotopy-n-regular convergence was recently intro-
duced by M. L. Curtis [7). Our homotopical convergence is equivalent (for com-
pact spaces of finite dimension) with the homotopy-n-regular convergence for all
n=0,1,2,..

1) A space I is said to be locally coniractible at the point a e M if for every neigh-
bourhood U of a (in M) there exists a neighbourhood U, of a (in ) contractible to a
over T, i. e. there exists a continuous function j(z,t). defined on the Cartesian product
T, x<0; 1), with values belonging to U ind such that f(x,0)=2x and f(x,1)=a for every
z ¢ Ug. By a locally contractible space one nnderstands a space locally contractible at
each of its points.
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6. Concave functions. A real valued function y=j(w), defined
in an interval I (closed or not, finite or infinite), is said to be concave it

+ (1= 1)@y > (@) + (1-1) (o)
for every ay,ryel

(18) f(i;nl

and 01,

Evidently, if 7 is concave in I, then it is concave also in every inter-
val I'CI.
It is easy to observe that the condition (18) is equivalent to the
following one:
I @0y, 2 @, h € I; Ty <ilyy 2 <lp, Uy Kb, yslay then
flas)— f('”l) f('l*a) f(x{)

&Ly — By x5 —

{19)

It follows that if 7=<e; B> and f is a concave function in I, then
the inequality a<a <y <2, <f<f implies that

Hla) = fla) _ flaa) =)  f(B)—F{py)
e = .
a4 —a Lo pr—8

Consequently,  satisfies in the interval {a; ; ;> the condition of Lipschitz 19).
‘We conclude that f is continueus in the open interval (a;f).

We infer also by (19) that a function f, concave in an open interval
(a;B), either is monotonic or has in the interval (a;f) exactly one ma-
ximum. Moreover, let us observe that

(20)

(21) Every funciion f, concave in an infinite interval {ajoo), ¢ither is

not decreasing or im f(x) =—oco.
X—>00

Finally, let us show that
(22) If § and g are two non-decreasing concave functions, f in {a;p}
and ¢ in {f(a); co), then gf is not decreasing and concave in {a;p).
It suffices to show that in I=<{a;p) the function gf satisfies the

condition (19). Let @y,2f,2,25 eI be as in (19). If f(x}) =f(xs), then
gf(xs) —gf(®;) =0, and the inequality
9f(@s) —gf(@,)  gf(za) —gf(1)
Ly — Ty Ty — 1},
is satisfied. Xf, however, f(a])<<f(x:) then, by (19), f(w,)
we infer that
f(mz)*‘f('l’l)>

(24
{(24) m—y

(23)
~f(®,) >0, and

flwa) —f@)

@y —xy

1) A real valued function f, defined in an interval I, is said to satisfy the con-
dition of Lipschity if there exists a- constant x>0 (coefficient of Lipschitz) such that
for every .,y €I we have |f(x)—f(y) <xle—y|.
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Sinee f(my) < f(wa), flal)<frg)
by the coneavity of ¢ that
gf(ee) — gflie) > gf(wa) — gf(xz) =0,
7r2) — Flarg) — farg)
To obtain the required inequality (23) it suffices to multiply the
inequalities (24) and (25)

flay) <flag) and  f(e,) < f(ag), we infer

(25)

7. Funetion f,. Let ¢ be a real valued function, defined in an
interval <a;f) and having a finite upper bound. For every x e <a;f).
let us denote by w(x) the set composed of all ordered pairs (x,,a,) of
numbers »;,2, € {a;f) such that »<wx, and ze {ry;ar. I (2,2) € ofr),

then there exists exactly one number te (0;1 such that r=tr;+ (1 —1)ars.
Let us set
Txlxg(‘l') =tg(e) - (11 g(x,)
and
(26) Tol@)= Sup @ua(2).
(%1, %) € (%)
Bvidently, @
(27) fla)=@(a) and gx)<folx)< Sup ¢(y) for every I e<e;p,

yelasp)
and if ¢ is a concave function in <{a;p), then f,=¢.

Let us show that f, is a concave funetion. Let r, <, be two num-
bers belonging to <a;g). It suffices to prove that for every two numbers
 <fo(i;) and a,<f,(xs) we have
28) A (1 —t)a)> e+ (1-t)a,

Sinee a; <fy(iy), there exist in {a;f) two numbers § <& and a ¢e (0315
such that o =1& 4 (1—1%)& and
(29) a;<typ(&)+ (1 —1) p(&e).

Similarly a,<f,(£,) implies that there exist in {a;f> two numbers
& <& and a t,e <0;1) such that x,=1.6-(1—1,) &, and
(30) Ay <ty (&) + (1 — ) p(&s)-

It follows by (29) and (30) that

tay+ (1 —t) <t [t p(§) + (1 —t) @(&a)] + (1 - D) [ (&) + (1 —t) @(£0)],
7. e. the point p=(ta:1+(l—t);rz,ta1+(l—t)az) of the Euclidean plane
E, lies below the segment 4 joining the points (ml,tha(ﬁ)—}—(l——t;)(;’(fz))
and (x‘z,l‘glp(§3}+(] —12)tp(§4)). But the segment A lies in the convex
gquadruple with the vertices p,,:(f,,«p(&,)), y=1,2,3,4. It follows that
there exist two natural numbers u,»<4 such that p lies below the seg-

for every O0<i<1.
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ment joining p, and p,. It means that there exists a number v < {0;1)
such that fJ’l-—}—(1—1)‘1'2=T5/L+(1——T).§,. and
tay -+ (L=t} e < vp(E,) + (1 —7) @)
But, by the definition of the function f,, we have
Foltrs (L= 1)0) = fy 7t (1= 7)) 2 70( &) -+ (L= 7))
This implies (28), and thus the concavity of f, is proved.
8. Some properties of ]},,‘. Let us assume, as in section 7, that ¢

is a real function, defined in an interval («;f) and having the finite
upper bound. Then

(31)  If glxy < plr) jor every v e <a;p) and if pis concave, then fo(w) <ylx)
for every e laif).
Otherwise there would exist an wge<«;f) and an >0 such that
32) ® Tplg) — £ >p(ay).
By the definition of f, there exist oy, e (a;8) and a te{0;1) such that
o=ty -+ (1—1t)r, and
{33) o) — e<<tip(ry) 4 (L —1)p(i2).
But p is concave, whenee
(34) (i) > tyl(ay) (1 —)p(es).
We infer by (30), (31) and (32) that

tap(ay) =+ (L —t)pls) <tp(ay) -+ (L — (),

contrary to the assumption g(x) <), @(@.)<p(xs) and 0<t<<1.
Now let us prove that
{35) If lim g(z) =a, then lim f,(x) =a.

x-—>a

Proof. Given ¢>0, there exists an 1 >0 such that
a—§<¢(m)<a+§ for a<e<aty.

According to our hypothesis, ¢ has a finite upper bound ¢ in the
interval {a;pB). Let n be a natural number such that 1/n(c—a)<ef2,
and let redajat-gn). If e<e, <o <z, < B, then there exists a e (0;1)
such that

r=1r+(1—1t)x,
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If @, <a+-9, then g(r)<a+te/2 and p(z,) < a-¢/2. Hence
] &
tqn(a-1>+<1-t)¢(a:2)<t(a+§)+(1—t)(a+§)=a+§<a+s.

If, however, w,>a-t7, then a-+ynme=tr,+ (L —f)r>ta—
+(1—t)(a-+y) =a+(1—t)xn, whence 1—¢<<1/n. Tt follows that

7

tole) + (1= )ptm) <t(a-+5)+ 1 —0e

=ta+(1—t)at+t -5+ (1—t)(c—a)<a+ §+%(¢»—a) <ate.

Hence, in both ecases, for we{ajafyn> and a<ao,<r<r<p,
we have
tp(ay) + (L—t) plan)<a + e
Consequently,

7
folr)<a-+e for every xe(\u;a—y—;n/}.

On the other hand, f,(#)>¢(x)>a—e2 for redaja-t+n/ny. This
implies (35).

Moreover, let us observe that if ¢ and p are two real functions de-
fined in {a;p) and having finite upper bounds, then

(36) fore(@) <fo(®) +fylw) for every mela;f).

In particular, if y satisfies, for an ¢>>0, the inequality —e <yp(x)<s
for every re<a;f), then we infer by (27) that —e<J,(2) <z for every
reda;p), and we find by (36) that

(37) If |yp(e)|<e for every wela;p), then |forp(x)—F.(2)|<e for every
redla;p).

‘9. Indieatrices. By an indicatriz we understand a concave func-
tion A(f), defined in the interval <0;oo) and satisfying the conditions
(38) A0)=0, 0<<At)<1 for every 1>0.

It follows by (19) and (21) that
(39) Every indicatriz is not decreasing in {0; co) and it is wuniformly

continuous in (0 ; co).

Applying (22), we infer that

(40) If A is an indicatriz and f a non-decreasing, concave function defined
in {0;00) and such that f(0)=0, then the superposition if is an in-
dicatrix.

Fundamenta Mathematicae. T. XLX. 12
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Moreover, let us observe that
(41) If A Ay are two continuous indicairices such that M) < As(t) ]o.r overy
k t,>0,7 and &,7 two positive numbers such that [ty —ta| <1y implies
Ag(ts) — Aslta)|<<e, then [t —t| <<z dmplies. also |Aa(ty) — Ay (o)) <e.
For otherwise there would exist two numbers i,fe {0;00) such
that 0<t,—t,<<y and that A(f)—A(t,) > e It follows by (19) that

Aalte—t)—4H(0) &
it Gt

and consequently J(t,—%)>e On the other hand Ay(t,—11)—2(0)<le,
e Alty—t)<e. It follows that A(t,—t) >2A(ts—1h), contrary to owr
hypothesis. :

‘We infer by (41) that

(42) If Ay 98 a continuous indicatriz, then the family of all indicatrices 1
satisfying the inequality A{t)<<A(t) for every t>0 is equally con-
tinuous in <0 ;o0)16).

LEmmA. Let {4} be a uniformly convergent sequence of continwuous
indicatrices. Then there exists a continuous indicatriz A, such that
(43)

In(t) < A4(t)  for every t>0.

Proof. Setting
q‘n(t) = SuP 2 (i')z
k<n

we see at once that ¢, constitute a sequence uniformly convergent in
the interval <0;oc), and that the function

(t) =Hm @,(1)
is continunous and satisfies the inequality

W) <gl)<l for every t>0 and n=1,2,..

Setting
lo(t) :fw”)f

1) A family F of functions mapping a metric space M into another metric space
iz said to be equally continuous at a point p e M, if for every £ >0 there exists an >0
such that for every function feF and for every ge M with p(p,q)<7n we have
9(i(p),f(q))<£. If F is equally continuous at every point p e M, then we say that F is
equally continuous in M.
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we obtain & coneave function satistying (43)
Applying (35), we infer that

a continuous indieatrix.

and having values <1.
lim 74(t) = 24(0) =0, and consequently 1, is
=0

Remark. Let us observe that in the case where, for a t,,
for every t>?, we have also ¢(f)=¢ for every 1>t
24ty =c for every t>i,.

Inlt)=c
o» and consequently

10. A lemma on indicatrices. Let us prove the following
LEMMA. Let A be a continuous indicatriz. For every e>0 there exists
an 3>0 such that if ¢ is a function satisfying the inequality

(44) 0 <g(w) <Ax) for every w0

and w a continuous function, defined in <03 00) and satisfying the conditions

(45) lw@)|<y  and  e=u@y=0  for every &0,

then, setting yx(.(‘):q:(m-ru(.f‘r)), we hare

[fele)—=Ful)[<e  Jor erery w0,

Proof. Sinee Hm A(r) =0, it follows by (44) that lim ¢(x) =0, and
x>0 Xx->0

we infer by (35) that lim f,(x)==0. Applying (35) and (39), we coneclude
x=>0

that f, is uniformly continuous in the interval <0;o00). Consequently,

there exists a positive %, such that

(46) je—r'l<<y;  implies f,(m)—f¢(x’){<%s.

First we prove that the inequality

{(47) fu(ry|<y,  for every x>0

implies the inequality

(48)

i 1
Fel®)<folr)+ e x>0.

3 for every

By the definition of f,, given in section 7 , there exist »,,z, and ¢
such that 0<r <r<a 011, r=tr;+{1—1t)xr, and that

Folw)<tytag) + (1—t)p(as) + .-
Since
() %(1*0 ylory) =gl +auly)] +(1—1) @iy — u(z,)]
=< fw[t(x1 “—uln )) +@-1) (Tz“L 1(((!'2))]
=fpltiy+ (1 —t)ay—tu(x) -~ (1 — ()] ={fqloe +Tu(e) - (1—1) u(ws)],
12*
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and since (by (47))

[hu(iry) + (L —1) ulae)| <t @) | 4 (1 =) (@) | <o,

we have
& s | &
Folm)<fplw+tules) + (1 —t)ul@)]+ & <fo(®) +§. +5=lo(®)+

and thus the proof of the inequality (48) is complete.
Now we shall show that there exists an #>0 such that

Iftp(*l’)

Fivst let us suppose that x>7/2. Then f,(®)>7,(n/2) and (‘becan-lse
f, is concave) nene of the points (£,0) with £>0 lies on the straight line
joining the points (171/'2,5(7;1/ ) and ( 2ol ) It follows that

(o)< 1(5m)-
‘We infer by (48) and (50) that for gr,m:’>171/2
< [oh () +e] ama @< |26 (G +o|
Since j,,,(O)~0 we infer by (19) that
oo <2 (3 o] L2

Since f(n,/2)<A(1,/2), we conclude by (51) that in the interval (1;/2 ; co)
the function f, satisfies the condition of Lipschitz with the coefficient

z=%;- [2}.(%171)—{-6].

Let us observe that » does not depend on the particular choice of
the function ¢ (satisfying the inequality (44)) and of the function u(s)
(satisfying the inequality (45)).

Setting

(33)

N w1
(49) |e—a'|<y implies ~—f,,(m){<58.

(50)

(51) .1"1;>11]1 implies |f,(x)

(52)

1]—M_\l'l( 771’2 )

we see at once that for every #,2' >0 such that |o—x'|<y either ,2' <1,
or z,2'>mn /2. In the first case we have, by (46) and (48),

0<fy(@)<g +§=_—§ and  0<f,(a) <

(=21
Wl m

whence f,(#)—fy(#)|<<e/2. In the second case the last inequality fol-
lows by (51). Thus the proof of (49) is eomplete.
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After these preliminaries we can complete the proof of our lemma
in a few steps. By (48) it suffices to show that (43) and (53) imply

(54) fol@) <fp(®)+¢ for every a>0.

If # <, then (46) implies that f,(x)<e/6, whence (54) is satisfied.
If, however, &>3,, then there exist three numbers &y ,a5,t such that
=Ly, 0<ey <o <, 0<i<], o=1tay -+ (1 —t)a, and that

(55) o) <tp(as) -+ (1 —t)g(r) + 3 .

Now we distinguish the following two cases:
1. There exists a positive x' such that x,=a} - u(x}).
Since the continunous function x4 u(x) takes arhitrarily large values,
then there exists an x>0 such that
(56)
Then

ay =Xyt u(rs).

[ty 4= (L —t)aes — [t + (L— ) 3] | = Jtu(af) + (1 —1) u(xg) | <j,
and we infer, by (55), (48) and (49) that Jol )<<t (iy) - (1L —8) plozy) +¢/3
=tpler) + (1 —)plat) + &8 < foltwg + (1 —1) 28] + &/3 <f, [twy + (1—t) 5]
+£/2+4¢/3<f,(x)+e. Hence (54) holds.

2. x4 ulxy)FEw, for every x>0.

Since every number y>7,/2 belongs (by (45) and (53)) to the set
of values of the continuons function x--w(z), we infer that By<m /2.
It follows by (46) that ¢(x,)<f,(z)<e/6. Sinee 1, >z >y, there exists
& nmmber o5 >0 satisfying (56). Then p(r,) =p(z}) and p(z,) <e¢/6, whence

(87) ()4 (1—
But

Bp(ar) <tp(as) + (1~ i) + £ <fyltrs+-(1—1) o5+ 5.

e+ (1— )2 — [ty + (1~ 1) 2] | = (1 — )| u(r}) | <n,

and consequently we infer by (49) that

1
Foltry+ (L= 1) 1< fyltits + (1= 1)) + e = () + 5.
It follows by (55) and (57) that
Tol@) <o) + 5 + 5 +5=lo(@) 2.

Thus the inequality (54) is proved, 1. e. the proof of our lemma-is complete.
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11. Indieatrix of contractibility. Let @, denote the module
of the contractibility (defined in section 5) of & metric space A5£0. We
ghall understand by the indicairiz of the contractibility of 4 the concave
function A(t), defined for ¢>0 by the formula

(58) ra(ty =1, (1)
We infer by (16) and (27) that
A4(0) =

It follows that 24 is an indicatrix. By (39) and (35) it is continuous
(and also uniformly continuous) if and only if hm ¢,(f)=0. We have

already observed (in section 5) that the last (,ond]tmn is equivalent to
the loeal contractibility of A. Tt follows that

(60)

(59) and Min(1,8) <A4(t) <1 for every t>0. '

The indicatrix of a locally contractible compactum is uniformly con-
tinuous.

Finally, let us observe that a class 9 of spaces 4 =40 is equally locally
contractible (in the sense of section 5) if and only if there exists a con-
timuous indicatrix i such that

{61) la(t)<A(t) for every AdeW and {-0.

In fact, the condition (61) is evidently sufficient for the equal local
contractibility of %. On the other hand, if % is equally locally contrac-
tible and if @(f) is a continuous function satisfying (17), then, setting

=/,(t); we obtain a continuous indicatrix 1 satisfying condition (61).

Example 6. Let 4 be a convex set lying in a vectorial space 7).
Then ¢ (¢) =t for 0<t<1 and @, () =1 for t>1. In this case @, is a con-
cave function, whence A (t)="f,, (t)=gp4(t)
for every ¢>0. The funetion A, has the
graph shown in fig. 1.

Example 7, Let 8, be the cirele defined
in the Euclidean plane X, by the equation

‘} aFtal=ri

One sees easily that for 0~<<r <12 the
Fig. 1 function s, has the graph shown in fig. 2
and the indicatrix 25 has either the graph shown in tig. 3 (it 1:2r32/)3)
or that shown in fig. £ (if 121 <2/)3). Let us observe that Js, has the
graph shown in fig. 1 and is not identical with lim 2 s, .

720

¥} General reference: Banach [1].
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Example 8. Let A, denote, for s<xj2 the set of all points
(3 cosd, §sind)eB, with e <9< 2x (see fig. 5). Fig. 6 represents the graph

A

—

Fig. 2

o1 3 oo
Fig. 4 Pig. 5

P
St 7

Fig. 6

of ¢, and fig. 7—the graph of Z,,. Let us observe that g, given by
the graph in fig. 4 for »=12, is not identical with lim 7, .

g0
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12. Indicatrix of contractibility and homeomorphisms.
Evidently the indicatrix of contractibility is not invariant under homeo-
morphisms. However, the following lemma holds:

LEMMA. Let g be a homeomorphism mapping a compactum M onto
another compactum M'. For every continuous indicatriz A(t) there exisis
a continuous indicatriz A'(t) such that if A 2™ and 24(1) <A(?) for every
t>0, then Aya(t)<A'(t) for every t>0.

Proof. Let us denote, for every ¢>0, by «(t) the upper bound of
the diameters of the sets g(4), where 4 2™ and 6A)<t, and by,a’(t)
the upper bound of the diameters of the sets g-1(4’), where .4’ ¢ 2™ and
6(4') <t. Moreover, let us set

(62) a(t) =Min [1 , Max (t,a(t))], o (t) =Max (t,a.’(i)) .

Evidently, both functions, «(t) and o'(¢), vanish -for t==0, are not
dlecreasing and are positive for #>>0. Let us gshow that, setting

ll(t) =7u}'fa’ (t)

we obtain a continuous indicatrix satisfying the required condition.
It follows by (62) and (40) that A’ iy an indicatrix. We have to
prove that if A'=g(4) and

(63) for every ¢>0,

(64) Aa(t)<Mt) for every 30,
then
(65) le(@)<A@)  for every 0.

If 2'(t') =1, then (65) is evident. Hence we can assume that ()<l
By (62) and (63) A(t') > aifu(t) >Min[1,if,(#)]. Hence Mo (t')<<1 and
consequently also (by (64))

(66) Aafa(#)<1.

It follows that every subset of 4 with the diameter Lfor(t') is con-
tractible in a subset of 4 with diameter < Aufer(t).

Consider now a set E'¢2* with O(E')<t. Then the diameter of
the set B=g-1(F') is <@ ()<a'(t')<fy(t'). Hence there exists a set
FCA with 8(F)<A4f.(t') such that B is contractible in P. Then B’ is
contractible in the set F'=g(F). But O(F) < Zafw(t') implies that A8(F")
<alyfe(l). Moreover, 2'(t')=f,Af (t')<1 implies. that alfe(t’) <1 and,
by (62), we infer that

Afr (V') =Max[2f «(t') 3 @hfor(t')] > adf (1) = ahygfor(t).
Hence o(F') <alsfe(t')<A(') and the proof of the lemma is complete.
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13. Contractibility and retraction. Let 4 be a compact non-
-empty subset of the n-dimensional Euclidean space E,. We denote by
U,(4), for every 5>0, the n-neighbourhood of 4 in E,, i. e. the set of
all points p e B, at a distance <y from 4. We ghall prove the following

LuvwA. Let n be a positive tnteger and Mt) a continuous indicatriz.
There exists an increasing and continuous function a(e), defined for 0<e <1,
satisfying the inequality

(67) 0<a(e)<Ce

and such that jor every A e 2% the inequality

(68) Aa(Q)<A(t)  for every t>0

tmplies that there erists a retraction ra of Uay(d) fo A satisfying the
tnegquality
(69) 9(.r,r4(m)v;<e

for every e Uyy(d).

Proof. Without loss of generality we may assume that the indica-
trix 7 satisfies the conditions
<< A(t)
At)=1

for every 0<i<1

(70 1.

for every

Let u(f) denote the m-th iteration of the function A(2t). Evidently,
u(t) is a continuous, non-decreasing function of the variable t>0 such
that (by (70))

(71) w0i=0 and  pu(t)= A1)

It ix clear that there exists an increasing, continuous function ale) >0
satisfying for 0<e«<1 the following two conditions:

for every ¢0.

(72) It  0<t<4a{e) then /4(2‘)<%£,
(73) a(s)<ié.

Now we consider a simplicial decomposition X of the set E,—A4,
such that for every 0<e<1, the diameter of every simplex 4¢ X con-
taining a point at a distance <<a(s) from A4 is <a(e)/2. Let us assign to

every vertex p of X a point r(p)eA such that

olp, @) =elp, 4).

By our hypothesis, if 41 ¢ X contains a point at a distance <a(s) from 4,
then for every vertex p of 4 we have o(p,A)<<3a(e)/2. It follows that
the diameter of the set Fy, of all points 7(p), where p runs through all
vertices of 4, is <a(e)+2-3a(e)/2 =4a(e). It follows by (71) and (72)
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that
Alda(s)] < pldale)]<e/2<1

and consequently F,, is contractible to a point in a subset of A4 with
diameter <A[4a(c)]. We infer that the mapping » can be extended conti-
nuously over the 1-faces of 4 in such a manner that the values lie in A
and the diameter of the image of every 1-face of 4 is <A[4a(e)].

Thus we have shown (for n.>1) that the extended function 7 maps
the sum of all 1-faces of A onto a set F,, with diameter <<2i[da(e)].
Tt follows by (72) and by the definition of the function w that the set F,,
is contractible to & point in a subset of 4 with diameter <l[22(4a(e)) .
We infer that r can be extended continuously over the 2-faces of 4
{if »>1) in such a manner that the values lie in 4 and the diameter of
the image of every face of 4 is <i[2A(4a(e)]].

Since u(t) denotes the n-th iteration of A(2%), we infer easily, by an
{mmediate induction, that » can be continuously extended step by step
to 3-faces, 4-faces, ..., (n—1)-faces, n-face=4, for every simplex de2
containing at least one point at a distance <<a(e) from A. Moreover,
this extension can be done in such a manner that the diameter of the
image of such a simplex is <p[4a(s)]<<s/2. In particular we infer that
the extended function # is defined (and continuous) in the set Uggy(4)—4,
being a subset of the sum of all simplexes 4 containing at least one point
at a distance <<a(1) from 4. Moreover, if @ e Uggy(4) —A and the distance
ofx,A) is <a(e), then

o, (@) <8(d) + ale)+ pltale))<efd+ /b +e2=e.

It follows that, setting r(x)=x for every reAd, we do not damage
the eontinuity of r. Evidently, the mapping », defined in this way in
the set Uy, satisfies the inequality (69) and is a retraction of U,q to 4.
Thus the proof is finished.

14. Generalization. Now we generalize the lemma of section 13
in the following manner:

LemmA. Let Q be a space homeomorphic to the Euclidean n-dimen-
sional cube Q,, and let i be ¢ continuous indicatriz. Then there exists an
inereasing and conlinuous function a(e) >0, defined for O<<e<<1, such that
for every A e22 the inequality

(74) Ja(ty<A(t)  for every t=0

implies that there exists a retraction ry of Uuq(d) to A satisfying the in-
equality

g(;r,rA(a');Ke jor erery e Uyyl(d).
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Proof. L_et g be a homeomorphic mapping of @ onto @,. By the
lemma of section 12 there exists a continuous indicatrix A'(t) such that
for every 4 <22 the inequality (74) implies

Ay (B) < A(t) for every t>0.

_1\'0“', a.,pplying the lemma of section 13, we infer that there exists an
{nel‘easmg and continuous function a'(e) >0, where 0<<e<(1, such that
for every set A’e 2% the inequality ‘

Ap()<A'(t) for every 10

implies that there exists a retraction ra of Upgy(d’) to 4’ satisfying
the inequality ’

(75) o g2 <<e  for every  ae Ugyld’).
Since ) ix

) » compact, there exist two non-decreasing positive fune-
tions ofy) and

tio ( o’(y), defined for 5>0 and such that for T,y Q) the
13:1e(1xz:1}1ty olr,y)<o(n) implies the inequality g(g(.l.'),g(l/))<7] and
for $f Y eQy the inequality olx’, y')<w'(y) implies the inequality
olg™2(2"), g=1(y") <. )

Tt is easy to observe that there exists a continuous fnnetion afe)
sueh that
(76)  0<a(e)< Min[w(a'(w'(s))), (o(a’(s))] for every 0.

Now, if 4 €22 satisfies (72), then setting 4'= g(d) we have by (76)
(77) I AN CUpp(4") for every 0<y<1.

1{1 particular g Uq(4)]Clym(d"). But there exists a retraction Fae
of Uald’) to A’ satisfying the inequality (75). Setting

rq(r)=g~lrgg(x) for every eUyny(4),

\\'t“ obtain a retraction of Uuy(4) to 4. Moreover, if ZelUyp(4) then
9() € Uoriay (A7), whence g(g(z), rug(®)) <a'(e). It follows by (76) that
g({n,g—liwg(x))<e, i.e. g(w,)g (.r)) <e for every & e Uyy(d).

15. Metric of hemotopy g;. Let M be a metric space. We shall
de%mte by 2} the class of all non-empty ANR-sets lying in M, this class
being considered as a metric space with the distance-function o de-
fined by the formula )

(78)  on(X,X)=0o(X,X) +Sup | 2x(t) —Ap(t)] for X,¥e2}.
t
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Evidently g, satisfies the usual axioms for the distance-function

and we have
(79) on(X,¥) > 0(X,Y) >0 (X, Y).

Tt is also evident that if M’ is a closed subset of I/, then the space
9M’ i a closed subset of the space 24"

' It follows by (79) that the propositions (4), (8), (6), (9), (10) and (11)
hold also if we replace the space oM hy the space oM.

In our further study of the space 2 e limit ourselves to the case
in which M is a compactum of a finite dimension. Then the ANR-sets
lying in M coincide with the locally contractible compacta 8), 4. e. with
the compacta with continnous indicatrices of contractibility. We begin
with the following

Lmmea. Let Q be a ametric space homeomorphic with the n-dimensional
Euclidean cube Q,, and let 2 be a continwous indicatriz. The subset of 22,
composed of all sets A satisfying the condition

Aa()<At)  for every 120,
is compact.

Proof. Without loss of generality we may assume that @ is, as set,
jdentical with the cube Q, itself, metrized by a metric o, which in general
is not Euclidean. By the #5-neighbourhood of a set ACQ we shall under-
stand the y-neighbourhood of A in the sense of the metric ¢, . e. the set

Uyld)=F [xeQ;o(,4)<7].
x
By a segment in @ with endpoints @g,y,e@Q we mean the set

ZoysCQ=@, which is the segment with endpoints 2,9, in the Kuclidean
metric. Hence

Fgo=F [2=(1—t)z,+1y,, with 0<t<1],
x
addition and multiplication by a number being understood for points
of @ =@, in the Buclidean sense.

Let {44} be a sequence of compact non-empty subsets of @ satisfying
the inequality :

(80) A, () <A(t) for every t>0 and k=1,2,..

We infer by the lemma of section 14 that there exists a positive func-
tion a(e), defined for £>0, such that for Z=1,2,... there exists a re-
traction 74, of Uumy(dyr) t0 Ax satisfying the condition

(81) g(:):,rAi(m))<s for every xeU,q(4ds).

18) Bee, for instance, Kuratowski [13], p. 289.
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) lt' is evidgnt- that the function « can be replaced by any other fune-
tion with positive but smaller values. Hence we may assume that a satis-
fies also the conditions

(32) ale)<e  for every &>0;

(33) if o(x,y) <a(e), then the diameter of the segment gy is <

~ £
{Smee the space 2 i compact ), we can assume (replacing {4;} by
@ suitably chosen subsequence) that
(84 1 N
{84) o(dp, d)) <5 a(1)  for every kl=1,2,..
It follows that
(85) l';‘aw(.ik)C Uoptdy)  for every k,J01=1,2,..
and we infer that the set

. (=]
(86) U =[] UCuayiAs)
k=1

oo
constitutes a neighbourhood for the set X A,.
k=1
‘ Now we cousider a non-inereasing sequence {f;} of positive num-
bers, defined by induction in the following manner:

(8‘—) ﬂil:“(g;)r
(38) P"k+1:ft[é u (%ﬁk)] for k=1,2,..

It follows by (82), (87) and (88) that Ar<1/2 and pryy<pe/2, whence

(89) h<2™F for k=1,2,..
Let us set

& , 1
(00) e=4""Bre1: e = 3 1k for k=1,2,...
Evidently e <a(12) for k=1,2,...
Replacing {4,;} by a suitably chosen subsequence, we¢ may as-

sume that

1 .,
{91) 0s(Ap, Arq) < 1)],’; for L=1,2,..

) See, for instance, Kuratowski [13], p. 21.
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Now we set
(92) Uk=Uﬂk(—‘1k), Tk Uﬂk(Ak) for 7\':],2,...
Then, for every ez, We have
1 ‘
ole, Ar) < ola, Apga) + oo (s dr) <ijrn + 7 7k

(= 1 L an?
PTG B S L PRI Wl | =0 'ﬁk+1'<1+§)=§'4 Brerr =k

It follows by (85), (90) and (92) that
(93) U1 CVRCVRCULCT for k=1,2,

Let us define a sequence {rg} such that rc is a retraction of U to d.
We set:
(94) F1="Tays
and, supposing that the retraction 7, is already defined and that it satis-
fies the condition
(95) re() =r4, (@) for every xeVy,

we define the retraction rgy, in the following manner: .

Let us observe that for # Uy, CViCUx we have (i) e A Applying
{92), (90), (88) and (82), we conclude that

1 .
ol y AR) <M< Prs1 < a(iﬁ,‘> for every & elUjq.

It follows by (81) that
(96) e(w,m,,(w))<%ﬁk for every - @e Ugpy.
Moreover, by (92) and (90) we have

ke 1
o(#, Apys) <ty =% k=1, Br+s <a(—2— ﬁ,,) for every reUgy,.

We infer by (96), (88) and (83) that for every x e Uy, the diameter of
the segment w7, (r) s <a(l/,fr-1)/2. Consequently, for every yewmry (2}

we have
1
oy, drn) <3 a( 5k-1)+77k+1< a( ﬁk—l)

ool

Applying (81) and (89), we conclude that

(%) oy Pt W) <5 Pra < 27%

for every yeargtr) with @ el
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Now we consider in 7 a continnous funetion f(z), with values be-
longing to the interval <0; 1%, which satisfies the eonditions
fte)=0  for every 2eU—Tjy,.
fley=1  for every reViy,.
Setting :
T (0) =Py [ (1= F) ) + Fla) 2]

We obtain a continuous mapping of U into Agty. The function ry, ix
a retraction of U to 4y, becanse

for every reU.

(98) Teea(X) =rg, () for every ey
Moreover,
(99) Tega@) =rg [re(e)]  for every »el—Upyy.

Let us observe that for every element o eUpyy—Tipy the point

¥ = (1= F(@)) xrage) + o)
lies on the segment rre(z). By (93) Ui s CVr. whence (95) implies that
1e(e) =rg(r). We infer by (96), (88) and (83) that the diameter of

174, () I8 <u(fr—y);2. Moreover, for every y e rrg(a). we infer by (97}
that g(g{,)'Ab+I(1/))<2_k. Consequently,

(100)  gfe, repa(w)) <

1 1 . - _
oL )+ 0Ty () <G @lBes) 4+ 27F s 274
for every #eUpiy—Vigs.
It follows by (91), (90), (88) and (87) that
i ‘ 1, {1
Q(rk(m)’-‘ik-l-l)<Z7ik<ﬂk+1<\a(3ﬂk) for every xeU.
We infer by (81) that

g(um ;k(.r)< Br<2™F T for every wel.
Applying (99) we get

(101) okt () (z)) <27 for every 2 e U—Ugyy.

Moreover, using (92), (90), (88), (87) and (81), we obtain

2

v 1 P .
g(;r 1Py (1)) <5 B <2 for every eV CUpyy.
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By (98) and (100) we conclude that
{102) o(x,rkﬂ (m)) <271 for every weUp,CU;.
Consequently,
o=kl | p—kt2__o=—k+3
(103)  ofresa(®),7e(0) < ofress(2),8) + elo, re()) <274 272

for every e Ug.q.
Tt follows by (101) and (102) that

g(rkﬂ (I),'rk(x)) <27 for every weU,

and we infer that the sequence {ry(z)} is uniformly convergent in U.
Setting
{104) rx)=1limr,(x) for every xeU,

k00

we get a continuous mapping retracting U to a compact set 4CQ. It
remains to show that k]im en{Ar, A)=0.
—>00

Let 5 be an arbitrarily given positive number. Since r(m):x. for
every xed, we infer that there exists a meighbourhood U’ of 4 in @
such that

{105) g(r(m),m)<n for every wxeU’.

Let %" be another positive number <7 and so small that
{106) it olz,y)<n’ then &ay)<y,
{107) if red ‘then o(z,Q—-U")>2y.

Since the sequence {re(x)} converges uniformly to »(w), we infer
by (107) that there exists a number N such that for k>N

(108) . T, dT4)Ccr,
{109) g(r(w),a:) <y’ for every we Ay,
{110) g(rk(m),w) <n' for every weA.

It follows by (105) and (110) that
: lim g, (4g,4)=0.
k> .
In view of (78) it remains to show that the indicatrices of the con-

tractibility A4 of the sets 4; converge uniformly to the indicatrix of
the contractibility 1, of the set 4, and that 1,(t)<A(t) for every ¢>0.
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Let ¢4 and ¢4, be defined as in seetion 11. It 0:£EC4 and 8(E)<t,
then, setting

In(e )= (1—w)e4-urele)  for every red and 0<<u<l,
we get, by (106) and (110), a homotopical deformation of the set E into
the set ri () with the values hie,u) lying in a set P,CT. By (106) the
diameter of F, is <t4-2y. If ¢4l 297) <1, then there exists a set F,CAy
with the diameter < P4, (t--29), such that r(E) is contractible to g point
in F,. It follows that the set F is contractible to a point in the set
F,+F,. Consequently, E i3 also contractible in the set (B, +F,). But
FlCu,,»[r(E)]Cu,,z(Fg)C-u,,(Fz) whence, by (103), (108) and (109) the dia-
meter of r(F;--F,) is <2p-L O(F3) 429 Lpy (i 29) + 4y, It follows that

(111) Falt) <@a (£ 20) — 4.

Evidently, the last inequality, proved under the hypothesis  that
4, (t-+=29) <1, holds also if 4.t 25) > 1. Hence it holds for every ¢ >0,
In an analogous manner we show that
TAL.“,)"Q’[AUI+2/])-7:—:1-1]- for every t 0.
If 12y, then setting ' =f—2y, we conclude thas
(112) T4 (t—27) <gu(t)+4y for every =2y
Now let us set
=2y i =2y
ul(t)=j T I’
‘ —t i <2y,
us(t)=25 for every 1:=0.

We infer by (111) and (112) that

(113) gyt +uy(t) — 49 <galt) <gaft+ w(t)) +4y  for every 0
and that
(114) [u,(t)] <2y for »=1,2.
Applying the lemma of section 10, we infer that for arbitrarily

given £ >0 there exists a positive number 71j<Ce such that each of the two
functions

B =ga(t+ul),  r=1,2,
satisfies the inequality

o) —Fo ()| <& for every 10, »=1,2.

Fundamenta Mathematicae. T. XLI. 13
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But fmk(t)=l,ak(t), whence
[Ag (8) — 1o, (B} <&

It follows that

(115) for every t>0 and »=1,2.

(116) [fe, (1) for every t>=0.
Moreover, the inequality (113) and the inequality #n<<e imply that
(117) fo (1) —4e < A4 (1) < fy,(8)+-4e t>0.

Combining (115), (116) and (117), we obtain for k>N the inequality

~Fpy )] <26

for every

[Aa(8) = A4, (8)] < Be.

Since ¢ is arbitrarily small, we infer that the sequence AAE.(t) con-
verges uniformly to A4(f). Moreover, the inequality (80) implies that
A4(t) <A(t) for every t>0. This concludes the proof of our lemma.

16. Main theorem. Now we can state the main result of this note.

THEOREM. Let M be a finite dimensional compactum.. A Sequence-

ey . oM

{4,3C2 iz comvergent if and only if it is convergent in the space 2X and
there exists a continuous indicatriz A such that

(118) 4 <AE)  for every t>0 and k=1,2,..

Proof. Necessity. Let us suppose that {d4,} is convergent in 23’.
It follows, by (79), that {4,} is convergent also in 2}Y. Moreover by (7.8),
the indicatrices A, constitute a uniformly convergent sequence. Applying
the lemma of section 9 we infer that there exists a continuous indica-
trix 2 satisfying the inequality (118).

Sufficiency. By the well known theorem by Menger and Nobeling 20)
M is homeémorphic with & subset of the n-dimensional Euclidean cube Q,
with #>2dim M. Tt follows, by a theorem of Hausdorff 2!), that there
exists a metric space @ homeomorphic with @, and containing (metric-
ally) M.

Let us suppose that {4y} is convergent in 2 to a set 4 and that
there exists a continuous indicatrix 1 satisfying the inequality (118).
If {44} would be not convergent in 2} then we infer, by the lemma of
section 15, that there exists two subsequences {4} and {4x’} conver-
gent in 2¢ to two different sets 4’ and A”. Tt follows by (79) that {4}

*%) See, for instance, Kuratowski [13], p. 69.
#) Hausdorff [10], p. 353.
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converges to 4’ and {4z} converges to A’ also in 22, Hence d'=4"=ACH,
and this contradicts the assumption 4'7£4"".

Thus the theorem is proved.

As we have observed in section 11 the existence of a continuous
indicatrix At) satisfying (118) is equivalent to the equally contractibility
of {dz}. Tt follows that the last theorem can he formulated also in the
following manner:

THEOREM. For finite dimensional compacta I a sequence {A}C2¥
is convergent in 2} if and only if it is convergent in 2 and the sels {4z
are equally locally contractible.

Recalling the definition of the homotopical convergence given in sec-
tion 5, we obtain the following

COROLLARY 1. Ij M is a finite dimensional compactum then the topo-

logy induced in 2" by the metric on 1§ equiralent with the topology induced

by the homotopical convergence.
Moreover we have the following

COROLLARY 2. If M is a finite dimensional compactum then putting
(X X) =o)X, Y) + Sup [ Ax(t) = Ap(t)]  for X, Y e2M
T

we oblain a metric gy equivalent with the metrie of homotopy oy.
Proof. Evidently gj satisfies the usual axioms for distance function
and the inequality

(X, ¥) > 0h(X,Y) > o0( X, X).

It follows that the convergence A;—>A in the sense of the metric g,
implies the analogous convergence in the sense of the metric ¢x. On the
other hand, the convergence 4;—4 in the sense of the metric ox implies
that os(4x,4)—0 and that the indicatrices A4, converge uniformly to A,.
By lemma of section 9 there exists a continuous indicatrix A such that
(118) holds. Consequently 4,->4 also in the sense of the metric On-

COROLLARY 3. If M is a finite dimensional compactum then the space
2M s separable.

Proof. By the corollary 2, the space 2 is homeomorphie with the
same space provided with metric g. But this last space is isometric with
a subset of the Cartesian product of the separable space 2 and of the
separable space of all continuons real funetions A(t) defined on the inter-
val 0 <t<8(M) metrized by the formula

0(4y 5 25) = Sup [4() —As(t)].

13*
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COROLLARY 4. If M is a compactum of a finite dimension then the
space 237 is complete.

Proof. If {4;} is a Cauchy sequence in 2M then, by (79), {4s} is
also a Cauchy sequence in 2M and the indicatrices 14, constitute a Cauchy
sequence in the space <{0; o) of all continuous bounded fune-
tions mapping {0; co) into itself. But 9M and (0; 00)®™? are com-
plete ). It follows that {4} is convergent in 27 and {A(t)} is uniformly
convergent in {0; co). We infer by the lemma of section 9, that there
exists a continunous indieatrix A satistying the inequality (118). It fol-
lows by the last theorem that {4} is convergent in oM,

COROLIARY 3. Ij M and M’ are two homeomorphic compacta of a finite
dimension, then the spaces oM and 2™ are homeomorphic.

Proof. Let g be a homeomorphism mapping I onto M’'. Then g¢
induces a homeomorphism mapping 2™ onto 2™ 14 tollows that, for
every sequence {Az}C oM if {4} is convergent in aM then the sequence
{44}, where Aj=g(Ay), is convergent in 2™ Moreover, if there exists
a continuous indicatrix A satisfying the inequality (118), then, by the
lemma of section 12, there exists a continuous indicatrix satisfying the
inequality

gty () for every >0, k=1,2,...

It follows, by the last theorem, that the convergence of {4;} in 2 im-
plies the convergence of {4;} in o In an analogous manner we infer
that the convergence of {A}}in 2 implies the convergence of {4} in 23".
Hence the 1-1 correspondence between 2¥ and 2¥ induced by g, is a
homeomorphism.

COROLIARY 6. Suppose M is a compactum of a finite dimension.
A closed subset A of 2 is compact if and only if there exists a continuous
indicatrizc A such that

(119) Aa(B)<<At)  for every AeU and 1>0.

Proof. Sufficiency. If the condition is satisfied and if {d}CY,
then there exists a subsequence {4} convergent in oM and L, () <CA(2)
for every {0, and »=1,2,... It follows from the last theorem tﬁat {dg}
is convergent in 2} But U is closed in 2}, whence {4g,} is also conver-
gent in A

Necessity. Let us suppose that for every £>0 there exists an
n=n{e) >0 such that

(120)

let)<e for every 0<i<<nle) and 4 e%.

22y See, for instance, Kuratowski [11], p. 315.
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Let us set

() =Sup A4(t) for every i>0.
Then e
(121) ¢(0)=0,
(122 0<g(t)<1 for every ¢>0.

Moreover, we infer by (120) _that for every e>0 the inequality
0 <t <n(e) Implies @(f) <e. Hence

(123) Tim () =0.

-0

Tsing the notations of seetion 7, let us set

Then A(f) is a concave function in (0; oc) such that

for every ¢>0.

MH0)=0 and 0<2)<AE) <1 for every AeU and t>0.

Moreover, by (123) and (35), the function 7 is continuous. Hence 4 is
a continuous indicatrix satisfying the condition (119).

Thus to prove the necessity, 7. e. to finish the proof, it remains to
show that the existence of an £>0 sueh that for every k=1,2,... there
exists a set dg e W with the indicatrix i, satisfying the inequality

A
A’AL- (Z) 23
implies that % is not compact. In this case, for every natural k,, we can
find a natural 1, such that
. (1 3
/'Afo (E,) < § .

Then for every I>1, we have iy (1) >24(1]1) >¢, whence
Sup [ﬁAka(f)~lA,(T)I>§ for every 1>1,.
[} = :

It follows by (78) that for every natural kg the inequality g;(Ax,,4;) >¢/2
is satisfied for almost all natural I, whence {4,} contains no convergent
subsequence. Hence %A is not compact.

17. Homotopy types in the space 2}. Problems. Following
Hurewicz 3) I shall refer to two compacta A and B as being of the
same homotopy type if there exists a continuous mapping ¢ of A into B
and a continuous mapping y of B into 4 such that the mapping yp of A

) Of. Hurewicz [11], p. 124.
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into itself is homotopic to the identity and also the mapping ¢y of B
into itself is homotopic to the identity.

Tet M be a metric space and A ¢ 2). We denote by [4],, the subset
of 2¥ composed Dby all Be2) having the same homotopy type as A.
We prove the following

THEOREM ). Suppose M is a compactum of finite dimension. For
each Ag €2 the set [Ay],, is open in 2.

Proof. In view of the imbedding theorem of Menger-Nobeling and
the corollary 5 of section 16 we can assume that I lies in the Hueclidean
n-dimensional cube @,. It suffices to prove that if {4} is a sequence of
sets convergent in 237 to a set 4, then, for almost all indices %, the
homotopy type of A4 is the same as the homotopy type of A,.

Tf {4} converges in 2 to A, then, by (79) and (78),

(124) Tim py( Ay, 44) =0
k—o0
and . )
(125) A4,(t) converge uniformly to 24, (f).

It follows by (125) and by the lemma of section 9 that there exists
a continuous indicatrix A such that

(126) L ()<Ai) for every t>0 and k=0,1,..

Applying the lemma of section 13 we infer that there exists an
increasing and continuous function a(e), defined for ¢>0, satisfying the
inequality
(127) 0<<a{e)<e

and such that for every k=0,1,... there exists a retraction 7 of the
o{1)-neighbourhood U,y (A4x) of A, to Adg satisfying the condition
(128)  olw,m(@))<e for every e Uup(dy) and O<e<l.
By (124) there exists a k, such that

(A, Ao) < afa(1)]

Hence for red, with k>%, we have o(@,4g)<ala(1)]< a(l); con-
sequently x e Uyn(4,), and ry(z) is defined. Moreover, o[z,r,(2)]<< a(l),
whence the segment zry(2) lies in U,gy(4y). It follows that, setting

r(m,t):rk(tm—l—(l—t)rn(x)) for every xed; and 0<tk],
we get & continuous function with values belonging to 4 Since

7@, 0)=rero(z),  r(z,1)=74()

for every k>k,.

for every we 4,

#) Comp. M. L. Curtis [7], p. 242, th. 4.2.
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we infer that the mapping rir, of A4 into itself is homotopic to the
identity.

By an analogous argument we show that, setting

7(1,1)=r°(t.t+(l—l)rk(w)) for every xed, and 0<i<1,

we obtain (for k%) a homotopy in 4, joining the mapping ry7; With

the identity. It follows that for %>k, the homotopy type of 4 is the

same as the homotopy type of 4,. Thus the theorem is proved.
PROBLEM 4. Does the theorem of section 16 (and the corollaries 1-6)

remain true for compacta of infinite dimension and, more generally, for

all complete spaces?

ProBLEM 5. Let I be a polytope. Is it true that the set P composed
of all subpolytopes of M is dense in 278 What is the category (in the sense
of Baire) of 1%

PrOBLEM 6. What is the category (in the sense of Baire) in the space
28 of the set composed of all ANR-sets lying in Q, and haring the singul-
arity of Browwer, of Mazurkiewicz or of Peano? %),
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Introduction

The present study is of meta-mathematical origin. In its initial
stage the main aim was to solve the decision problem for the elementary
theory of Abelian groups’). By the elementary theory of Abelian groups
we understand that part of the general theory of Abelian groups in which
we concern ourselves exclusively with group elements and fundamental
group operations without involving any set-theoretical notions (like those
of subgroup, isomorphism, etc.). Speaking more technically it is that
part of general group theory which can be formalized within elementary
logic (i.e., the lower predicate calculus)?). In an analogous sense we
speak of the elementary theory of any other kind of algebraic systems —
besides the term “elementary theory” we also use in the same sense the
term arithmetrc. The decision problem for the elementary theory of Abe-
lian groups is the problem of existence of a proeedure which permits
us to decide in each particular case whether a given sentence formulated
in terms of the theory holds in all Abelian groups, i. ., whether this sen-
tence is a logical consequence of postulates characterizing the notion

*) This paper includes all results of the Doctoral Dissertation done by author
at the University of California in 1950.

1) Previously the decision problem has been solved affirmatively for some special
Abelian groups; see [4].

) [2] and [10] may be consulted for various logical and meta-mathematical no-
tions and results involved in our discussion.
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