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Setting ¢; =@ for i=1,2,...,n—1, we obtain (6), (. e. d.

Theorem I follows immediately from Theorem 11 where W -/,
More generally, we infer that the condition () in Theorem 1 can he re-
placed by any of the following conditions:

() f7y) has a finite nwmber of components for erery iy el and
i=1,2,..,n;

(o) the Functions f; (i=1,2,..,n) are ukf bownded earviation and, for
every y el, the set ™' (y) contains no interval;

(o) the fanctions f; (i=1,2,
=Yyy=const in an interval .z <.
number of components.

n) are of bounded variation; if f;(x)
ryy then the sets [7'(yy) have a [inite

The case () follows from Theorem II where W/,
If f; is of bounded variation, then the set:

Y~ >

o
has measure zero. To obtain the case () it suffices to set in Theorem 1T
W=I—(¥;+Y,+...4+Y,). To obtain the case (ag) it suffices to set in
Theorem 11 W =I—(¥Y,+¥,+...¥,)+Y where ¥ is the (at most onu-
merable) set of all numbers y such that, for an integer 7--1
the set 77 (y) contains an interval.

Notice that, if f,,f, e Fw, the set 4 need not he conneeted or locally
conneeted. In fact, let x,=3/4 —1/4n. Let .

*)
V2,

fl(o)“‘oa

s =g=h(3).  mm=1,

11
fl(-l'zk—l):E —i‘ﬁ’ Pl i

and let f; De linear in all remaining intervals. Analogously let

HO=0. he =3 gp Hew=g=i(3) -1,
and let f, be linear in all remaining intervals. All the points (
are isolated points of A, and f,,f, e §y where W =1 —(1/2).

The proof of Theorem II is simpler if we restrict move the clags of
functions under consideration. In particular, the proof ix very simple in
the case where the interval I can be divided into subintervals in each
of which the functions are linear,

Lok "'zj)
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On uniformization of functions (II)
by
R. Sikorski (Warszawa)

I shall give another proof of Theorems I and I from the paper of
R.Sikorski and K. Zarankiewicz, On uniformization of functionz (I) ).
Both proofs are hased on a connectedness property of the set

E (jl(‘rl) =faoliry) = ... rf,,(‘r,‘,,))
(XpperesX)

(see Lemmas (i) and (i’)). Theorem III (see p. 349), which seems to be
interesting in itself, gemeralizes this property to the ease of mappings
Frsfas-sfa Of the k-dimensional cube @ into itself, the mappings being
the identity on the houndary of Q.

The gecond proof makes no use of the principle of induction. It con-
sists in the direct applieation of the method, used in the first part for
the case of two functions, to the general case of n functions. However,
this kind of proof requires more advanced topological means.

The second proof is based on the following lemmas which are gener-
alizations of (i) and (ii) respectively. "

(i) If fi:fay-esTnels, then the set

(8) 4= F (fl(l’ﬁ)'—”f«z(mz):'--:.fn(vl’n)} ®
(XganXn)
is connected between the poinis py=(0,0,...,0) and p=(1,1,..,1)
of the n-dimensional Fuclidean space.

(i') If fiyfossfaeBw (where W is a dense subset of 1), then each com-
ponent of the set A defined by (8) is locally connected.

Tn fact, by (i) the points p, and p, lie in a component 4, of 4.
By (ii') A, is locally connected. Therefore there exists an arc I’
&Ly == @n(t), tel

By =gt m=ga(t), -y

1} R. Sikorski and K. Zarankiewiez, On the uniformizalion n']‘ funclim{s (1),
this volume, p. 339-344. See p. 339 and p. 342. The knowledge of this paper is here

assumed.
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contained in 4, and joining the points p, and p,. This means that

PLyPay ) Pu el and

(9) fl‘Plzfz‘Pzz---:fn‘Pn:

t. ¢. that Theorem IT (where (6) should be replaced by (9)) is true. Anal-

ogously to the first part we can now deduce Theorem I with conditions

() (o) (da)y (g} . ' N '

Proof of (ii’) is the same as that of (ii). It is based on the following
lemma (analogous to (iii)) where Lz denotes the hyperplane

Lyg= [ (w=§).
(egaernXy)

(i') Let Vq,Vy,...,Vu be dense subsets of I and let X be compactum con-
tained in the unit cube Q,. If, for i=1,2,...,m and for cvery £eV,,
the set XLy has a finite number of components, then each component
of X is locally connected.

Lemma (') is a particular case (k=1) of Theorem III below. The
direct proof of (i) is somewhat simpler than that of Theéorem TII but
the main idea is the same.

First we shall fix the notations. B, is the m-dimensional Buclidean
space. Qu=IXIX..xI (m-times)is the m-dimensional wnit cube. I\ f—
is the (m—1)-dimensional boundary of @, in E,.

All cyeles and chains under consideration will be taken mod Py
where p is one of the integers 0,2,3,... For simplicity we shall denote
the seb of all points of a chain (4. e. of all points of all their simplexes
with coefficients 5£0) by the same letter ag the chain. The boundary
of a chain K will be denoted by K'.

The Kronecker index of two chaing (of suitable dimensions) K, X,
in By, or 8, will be denoted by y(K,,K,). The linking coefficient of two
cycles (of switable dimensions) C,,0, in B, or 8y will be denoted by
(Cy, Cy). .
{iv) Let k be a fized integer, O0<<k<<m, let B be a compact subset of Q,,

and let g be a continuous mapping of Q. into dtself such that

8) C~g(0) in the set Q,—B

for every (m—k—1)-dimensional eyele OC8p_y —g-1(B).

For every (k—1)-dimensional true cyele Z lying in N,
if Z~0 in B, then also Z~0 in gYB)2).

Notice that () implies the inclusion Sm_1 BCy=1(B).

*) For the definition of homology and of true and conve
P. Alexandroff, Dimensiontheoric — Rin Beitrag

Mengen, Mathematische Annalen 106 (1932)
mod 0 is taken relative %o the group of rat

m-lBy

rgent cyeles — see
2ur Geomeirie der abgeschlossenen
> P. 176-180. Notice that the homology
ional numbers.

Izm
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It will be convenient to assume in the proof that @, is a half-sphere
of the geometrical m-dimensional unit sphere 8,,. Consequently all sim-
plexes under consideration are spherieal.
Suppose that

(10) Z~0 in B
and
(11) Z40  in g yB).

It suffices to consider only the case where the true cyele
Z =2y, Zs,...)
is convergent.
By (10) there is a sequence {I);} of k-dimensional ¢hains such that
10 the diameters of the simplexes of D; tend to zero if j—oo;
29 the vertices of the simplexes of D; belong to B;
3% D;=1Z; for all j.
By (11) there exigts?) an (im—k)-dimensional e¢ycle A sueh that

(12} K- g1(B)=0,
and I is linked with Z, i. e

(13) o(K,Z;)#0  for almost all4) j.
‘We can suppose that I is in general position with every ehain Dj.
By (13) and 3°

(14) for almost all j.

X(K ’ -Dj ) #0
We can also assume that the interior of each simplex of K is con-
tained either in Q, or in Su—@.. Let L be the chain formed of all sim-
plexes of K (with the same coefficients) which are contained in @, a:.nd
let % be the chain formed of all the remaining simplexes of I (also with
the same coefficients). Since D;CQ,, we have
127 D) =0
Since K =1IL+&, we have
2Ly Dy) = 7( Ly D)+ (&, D) = 5 (K, Dy).
Hence, by (14)
(15) 2L, D;)#0
Since the vertices of Z; belong t0 Su—, (= the (m—1)-dimensional
sequator® of S,,), there exist chains Df in 8, such that

for almost all j.

for almost all j.

3) See P. Alexandroff, loc. cit., p. 184. .
4) That is, for all j> 4, where §, is a sufficiently great integer.
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1* the diameters of the simplexes D} tend to zero if j-»oo;

2* the simplexes of D} are disjoint with the intevior of @,,; it a sim-
plex 4 of DF lies in 8,4, then A is also a simplex of Dj;

3* DY =—12;.

The conditions 1% 2% 3* hold,
to D; with respect to the equator hyperplane.

Let Z;=D;--Df and % =(2,,Z,...). By 1% 1% 3%, 3* Z is a k-di-

mensional true cycle in §,. By 2*
Loy Zy) = y(L, Dy).

Hence, by (15),
{16) 2L, %;)#0  for almost all j.

Let ¢=L. (!is an (m-—k—1)-dimensional cycle and, by (12),
(17 CUC8pey—g~1(B).

By (16) :
(18) v(C,%;)£0 for almost all 4.

By (B), (17), (18), 10, 20, 2%
{19) 0(g(C),%;)#0 for almost all j,

i. e. the continuous eycle g(C) and the true cycle & are linked.
On the other hand, (=L and Lg—1(B)=0 by (12). Hence g(() =¢(L)
and ¢g(L)CQ,—B. Cousequently by 19, 1%, 2o, 2%

v(g(C), %)) =0

i. e. g(C) and Z are not linked — in contradiction to (
is proved.

for almost all j,
19). Lemma (iv)

Now let & and n be two fixed positive integers, n>1, and let Ry
be the set of all continuous mappings of @, into itself such that

20) fla) ==

i. e. { is the identity on the boundary of Q.

Up to the end of the proof of Theorem III the letter x with
indices will exclusively denote points of the k-dimensional space Hy.
If xl,xﬁ,...,w,.eEk, i e. él‘i=(fi,1,§,',a,...;§,.k) for
{&y,20,...,%,) lenotes the point

(51,1751,2: )fn,k)

of the nk-dimensional space En. Obviously (u,,m,...,a,
only if oy, 2s,..., %, € Qr. Similarly (zy,,, ..
and only if one of the points z,,x,,

for xeSpy,

i=1,2,..,n, then

)"El,kyéz,lyéz,z;-u152,k7 weey 511,13 .En,‘.!:

€ @ue if and
<3 Zn) € Spry (LyyLayoory € Q) it
vy Hes in Sp_g. :

for instance, if DF is symmetrical
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Let B De the set of all points (&,s,;...,2) € @y {where r ¢ Qy), and
let % =B8u—_1, ¢ ¢. Z is the set of all points (x,x,...,2) where z e 8.

B is a k-dimensional complex homeomorphice to @, and Z is a (k—1)-
-dimensional complex homeomorphic to S_;. The homeomorphism is
realized by the projection =

(X, Ly, 2) =2

‘We shall consider the (k—1)-dimensional sphere Z as a cycle formed
of congsistently oriented simplexes with coefficients =1. Obviously Z~0
in B since Z is the boundary of B.

THEOREM ITL. Let fi,fs,...;fne T and let

d= E_{r)=itr)

p - :,n('rn)} -
(X Lreni)

Then ZCACQu and Z~0 in A.

The inclusion 4 CQ is obvions. The inclusion ZC4 follows from (20).
In order to prove that Z~0 in A4 it suffices to apply Lemma (iv)
where m=Ikn, B and Z have the meaning defined above, and

fn(ln)\

In fact, ¢ is a mapping of Q4 into itself and 4 =g¢~2(B). It follows
from (20) that g maps each (nk—1)-dimensional face of @, into itself.
Hence

!/(,‘Z‘l"rm I‘n - ‘fl rl f’

g(Snk—1>C‘S’nk—1~
Uonsequently g transforms the set

R =8 Rk—1 —'.(/—I(B) :Snk—l —d

into the set Sp—1—Z=~8u_1—B.

The condition (8) is fulfilled since the mapping g|R (i. e. the mapping
g restricted to the set R) is homotopic with the identity mapping (of R
into itself) in the set S,;z.;—Z. The homotopy is realized by the func-
tion A(y,?) (y ¢ R, t el) where h(y,t) is the point which divides the seg-
ment ¥,¢(y) in the relation f. This follows from the following property:
i Y= (@, Mgy Ly) € Sppey— Z  and  g(y) € Sg—y— B, then the segment
1,9(y) is contained in Sz, —Z. In fact, the points y and g(y) Le on the
same (kn—1)-dimensional face of Q. Thus the segment y,g( ¥,9(y) is con-
tained in &,;_;. Suppose therve is a point 2=ty (1—t)g(y) e Z (0<<I<<),
i.e. 2=(&y&,..,x), where reSp;. Sinece r=te;4 (1 —1)f;(x;) for
j=1,2,...,0, *;€Qr, f;(2;)€Qx, and eS8, we infer that .l‘,eSk_l Con-
sequently f;(;) =x; by (20) and x=ta; - (1 —1)f;(x;) =x; for j=1,2
Hence y =z¢Z in contradiction to the hypothesis y ¢ Z.

PLEPI
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Notice that Lemma (i") implies immediately the following

CorOLLARY 1. For arbitrary functions fi,foy..,fae® there exist « co
tnuum A, and MAPPINGSs Py yPsy -y 0f A onto T such that
fopr =Tfape = oo = futtpu- )
It suffices to put: 4,=1the component of the set 4 (defined b
containing p, and p,, and
Wi (@, @ayoeey @) =0 fOr  (y,5,...,2,) € Zy.
Analogously Theorem ITI implies the following
CorOLLARY IX. For arbitrary functions fy,fay ..., neFx there ea
tinuum ACHy and mappings v, ¥ey ..., . 0f Ay onto Qp such
1) Sp-1CAy;
2) wi(@)=2 for welSk, i=1,2,..,%;
3) Sk is homologous to zero in A,;
4) 71%=f21P2=-~-=fn1,Dn-
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Addendum to ‘“‘An extension of Sperner’s Lemma, with

applications to closed-set coverings and fixed points”
(Fundamenta Mathematicae 40 (1953), p. 3-12)

by
F. Bagemihl (Princeton, N. J.)

In Theorem 2, Theorem 3, and Corollary 3, it is suffieient to assume
merely that ms£2, for then, in the proof of Theorem 2, the asserted pro-
perties of the numbers a® imply that, in the natural orientation of the
m-plex, Sy,83,...,8, all become z-simplexes, so that a#v-+1, and hence
Theorem 1 applies. (Corollary 3 is true, of course, for every m, agis easily
seen, for m >1, by making use of the fact that the m-plex is connected
but its frontier is not.)
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