100 H. Rasiowa and R. Sikorski

icm
Suppose now that p(«) is not a theorem of ‘83 Let H be the Heyting

algebra of all open elements of I;, H=H (L;). Then by the same argu-
mentation as above

H)o({Mai})=

which proves that a is not a theorem of S, (see 2.2).

Dy ({lail}) =al e,
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Some applications of formalized consistency proofs
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Introduection

A well-known result due to Godel [5] states: If (¥) is one of the
usual systems of arithmetic (for sufficient conditions on (F) see [9],
p. 285) the formula which is ordinarily taken as the arithmetization of
the consistency of (F) cannot be proved in (F) itself. Thus the consistency
proof for Z; ([9], p. 293) due to Ackermann [2] uses the principle of or-
dinal induction up to the first e-number, which cannot be formalized
in Z,, and the consistency proof by means of a truth definition ([9],
p- 339) uses a predicate which cannot be formalized in Z, either. It is
now natural to ask whether the “ideas” of these consistency proofs may
be formalized in Z,: the result of such a step would then be a consistency
proof for a subsystem (¥F) of Z,; (F) would be demonstrably weaker
than Z, since a formula of Z, which expresses the consistency of (F)
would be provable in Z, but not in (F). We shall denote such a formula
by Con(F); it is to be understood that the formmla chosen for expressing
the consistency of (F) satisties conditions sufficient to ensure the appli-
cation of Godel’s second undecidability theorem.

In this way we are led to systems which are obtained from Z, by
suppressing all those proofs of Z, which are too ‘‘complex”’; several de-
finitions of complexity will be used, the principal ones being the maxi-
mum number of bound variables occurring in any formula of the proof,
and the number of distinct critical e-matrices (Grundtypen, [91], p. 93),
if the Hilbert e-symbol is used instead of quantifiers. These measures
of complexity are suggested by the two consistency proofs mentioned
above. We may note in passing that, for our present purpose, the con-
sistency proof by means of a truth definition is more appropriate becanse
it can be immediately applied to any extension of Z, by means of trans-
finite induction, and other principles of proof which satisfy the rule of
infinite induetion ([11], p. 124).

Our first application of these results concerns the elimination of
the induction scheme of Z, by means of a finite set of axioms (which
are themselves formulae of Z,). It was established in [13] and [16] thab
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there is no finite set of theorems of Z, from which all theorems of Z “
may be deduced by means of the predicate calculus of first order. We
now show that there is no finite set of formulae of Z,, consistent over
the predicate calculus, from which all theorems of Z, may be deduced
by means of the predicate caleulus. This is a foil to the result of [10]:
there is a finite set of formulae such that a formula 4 of Z, may be de-
duced from them if and only if 4 is a theorem of Z,; but these formulae
contain (auxiliary) predicate symbols which do not belong to Z,. Much
of what we do is implicit in [13], but it seems convenient to set out the
results anew.

Our second application concerns Géodel's result on the length of
proofs, stated in his short note [4]. Using two (different) definitions of
length — or, perhaps, better: complexity — of proofs we find: suppose
two systems of arithmetic (F'), (F') are such that any proof of (¥) is also
a proof of (F') and Con(F) is a theorem of (¥'); then, for any function &,
not necessarily computable, there are infinitely many formulae 4, of (¥)
whose shortest proof in (¥) has length 7,, and whose shortest proof in (£
has length 1, and 1,>®(Ly). Mostowski’s variant of Godel’s result, given
in [14], is restricted to computable functions @, because of his (different)
definition of ,,length of proof”’; we may note that on his definiition there
are less than » proofs of length <# while on both our definitions there
are infinitely many proofs of length <.

In the third application we return to the well-worn topic of axiom
systems (F) of the predicate calculus with a_finite number of axioms.
It is known (Skolem-Godel-Bernays) that if Con(¥) is a theorem of Z,
then a model for the axioms of (F) may be established in Z,: in other
words, there are predicates and functions of Z, such that the axioms
of (F) turn into theorems of Z, if these predicates and functions are sub-
stituted for the non-logical constants of (F) (cf. Theorem 6 of [6]). We
now obtain a eonverse to it: if a model for (¥) can be established in Zy
then Con(F) is a theorem of Z,. This extends the known result (see [6],
Theorem 1) that if (F) has a model in Z, then Con (Z,)— Con (F) is a theo-
rem of Z,, i. e., given a model of (F) in Z, one can establish in Z, the
eons.isteuey of (F) relative to Z,. We use our result to show that the
version of set theory without an axiom of infinity (8), for which Bernays
obtained & finite axiomatization [3], does not have a model in Zy. —
We permit ourselves the digression of showing that Con(Z,)«+>Con(8)
in Z,, thereby answering a question raised by MceNaughton ([15], p. 141).

To fix ideas, we base our proofs on the system Z, as a typical sy-
stem of arithmetic. Naturally, most results apply to other systems of
a,ritl?metic, too; in particular to extensions of Z,. We mention such ex-
tensions if and only if we have some non-trivial comment on them.
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I. The consistency proofs

Definition. The system Z. A proof of Z, which contains <n
distinet critical s-matrices, is a proof of Z.

Observe that no restriction is here imposed on the rank of these
e-matrices; however on inspection of the rules of proof of Z,, there is
a relation between the highest rank and the number of critical e-ma-
trices: e. g., if a quantifier-free formula of Z, cannot be proved by means
of formulae of rank <n, it cannot be proved with < A(n) critical matrices,
and A(n) is unbounded. Note further that, for sufficiently large n, Z0
satisfies the conditions under which Gddel’s second undecidability theo-
rem has been established.

TeMMA A. For each integer n, Con(Z) can be proved in Z,.

This is, in effect, established in [2]: there, an (informal) consistency
proof is given which establishes Con(Z,(,")) by means of ordinal induetion
up t0 w, {w,=©,0.41=w"). By [9], p. 366, for each #, ordinal induc-
tion up to w,y; can be formalized in Z,. ¢

(This lemma was mentioned on p. 123 of [11] for a subsystem of Z,
analogous to Z%).

Definition. The system Z®. A proof of Z ([9], p. 49) whose for-
mulae contain <n bound variables, is a proof of z™,

Observe that here no restriction is imposed on the number of dis-
tinet e-matrices.

LEMMA B. For each integer n, Con(Z™) can be proved in Z.

This can be proved by modifying the truth definition of [9], p. 330-338.

Tt is assumed that “natural” definitions of the following syntactical
terms and predicates have been chosen.

7 (n),...,n®(n) as in [9], p. 235.

o(m,a,n) is the number of the formula got from 4 (with number a)
by replacing the variable 7, i<m, in 4 by 5(0®) and v;, j>m, by 0.
It is not assumed that all v;, i<<m, occur in 4. All the variables we use
in the proofs will. be vy,v,,7;, ete. Trivially, if 4 is a closed formula,
o(m,a,n)=p(0,a,0) (v; are free variables.)

P(a,b) if and only if a is a numerical proof of the formula b (. e.,
a proof in the elementary ealculus, no variables). We recall that the
consistency of numerical arithmetic can be proved in Z.

If @ and b are numbers of A and B, then t(a,b) is the number of A|B.

Ula) if and only if a is the number of a formula of the form () B(z),
and then s[u{a),y] is the number of B(0?). .

Similarly, @(e) if and only if & is the number of a formula of the
form (Ez)B(x), and then s[g(a),y] is the number of B(09),


GUEST


104 G. Kreisel and Hao Wang

For each %, a truth definition T%(b) can be given by means of a for-
mula of Z, satisfying the following conditions (compare [9], p. 334):

Tole(m,a,n)] if and only if (Hy)P[y,e(m,a,n)]

or (Bz)(By){x<o(m,a,n) &y <om,s,n)&

& o(m,a,n)=1(x,y) & [To(@)| To(y)1};
Tralo(m,a,n)] if and only if Ti[o(m,a,n)]

or {Tle(m,a,n)] & (y) Tu o(m,s(u(a),y),n) ]}
or {Qle(m,a,n)] & (By) Tu[ ofm,s(g(a),y),n| |}

or (Ex)(By){e<olm,a,n) &y <e(m,a,n) &
& o(m,0,m)=4w,y) & [Trsa ()| Trra(y)]}-
It can be verified in the usual manner that T%(d) is a normal truth
definition in the sense of [7], and hence Con(Z®) may be proved in Z.
Note that T,(b) is a truth definition for the system 2% only, and not

for Z; in particular, »n is not a free variable.

Observe that the consistency proof of Lemma B is capable of va-

rious extensions: e. g., if 3 is an extension of Z by some principle of trans-
finite induction, we get a consistency proof of 3® in 3,

11. Systems of arithmetic based on the predicate calculus

P, denotes the system consisting of the predicate calculus of first
order with the closed formula % of Z as its only axiom. Provy(n,m) is
a primitive recursive formula of Z such .that for numerals 0(") 0",
Prov, (0%, 0") can be proved in Z if and only if » is the number of
@ proof in P, of the formula with the number m; e(0®) is the number
of the negation of the formula with number .

We use 44, ;4 to mean: 4 can be proved in Py, Z.

THEOREM 1. If P, is consistent, there is a theorem of Z which cannot
be proved in Py.

By means of the Godel substitution function we obtain a term q
of Z whose value is the number of the following formuls (which we call Q),
namely

(@)(By) {Provy(z,q)—y <® & Prova[y,e(q)]}.

Q  denotes (Hy){y<O0® & Prov,[y,e(q)]}, and QP denotes the dis-
junction

Prove[0,6(q)] v Prove[0,e(q)] V...V Prov, [0, ¢(q)].
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LEMmA 1. The following argument is easily formalized im Z: if Q&
can be proved in Py, i.e., A—Q can be proved in the predicate caleulus,
then, by Herbrand’s theorem, there is a proof of U—Q in the predicale cal-
culus, in which no formula contains more quantifiers than the formula
A—>Q itself, say k. This proof is also a proof in Z®.

By lemma B,

Fz[(Ex)Provy(x, q)—- Tila)— Ti(q)].

Also

Fz[=R—(Ex)Provy(z,q)].

But, since Ty(a) is normal:
Fz[Te(a) > U], Fz[Te(q)«> 1.
Fz[- Q- A->Q], ie Fz(UA-Q).
LEMMA 2. FEither there is a theorem of Z which cannot be proved in Pqy,
or there is a numeral 0 such that 1-,Q%.
(1) Fu(¥—-R), i. 6. o8, is false, and then, by lemma 1, we have
a theorem of Z which is not & theorem of Py, or
(2) 2 can be proved in P, by a proof with number n, say.

In case (2) zProv,(0%,q), and thus:
either

(2.1)  FoProv(0™,q) is false though 1zProv,(0%,q),

or

(2.2) o Provy (0%, q) and, since -,Q, also u Q.
In case (2.2), sinee z Q,—Q"],

Hence

either

(2.21)  Fo(Q,—~Q") is false though Fz(Qp— Q™)
or

(2.22) a2

Since in each case whose number contains a digit 1, we have a theorem
of Z which cannot be proved in Py, the lemma follows.

Levma 3. If o QY then either Py is inconsistent or there is o theo-
rem of Z which cannot be proved in Py.

Since 2 is a numerical formula, either zQ® or Fz—Q®. In
the former case, |-u(—Q), and either -4 Q (when Py is inconsistent) or
A—Q is not a theorem of Py, though, by lemma 1, it is a theorem of Z.
In the latter case, either — Q™ cannot be proved in Py though >—9%,
or both 4 Q7 and y—Q® when Py is inconsistent.

The theorem follows from the last two lemmata.
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Remark 1. A shorter but less informative proof of Theorem 1 is
the following. Let % be the number of quantifiers of (a prenex normal
form of) Con(Py). If —Con(Py), there is a proof in the predicate cal-
culus of 9. By Herbrand’s theorem, which can be established in Z,
if —9% can be proved in the predicate caleulus, it can be proved
by a proof each formula of which containsg <k quantifiers. Thus — 9
can be proved in 7®. Hence, by the normal truth definition of 2%,
-z Con (Py) — =. Therefore, the following formula is a theorem of Z:

@) U Con (Pu).

Now, if Py contained all theorems of Z, i.e., if Py were an ex-
tension of Z, the deducibility conditions of [9], p. 286 which ensure the
application of Godel’s second undecidability theorem, would apply to Py
(since we are using the “natural’” proof predicate for Py); further, the
formula (i) and hence Con(Py) would be theorems of Py, and hence Py
would be inconsistent. .

(By analysing the proofs in Z of the formulae 1, 2, 3 on p. 285, 286
of [9], one could exhibit, as in our proof of Theorem 1, for any given
consistent Py a theorem of Z which cannot be proved in Py.)

Remark 2. A proof of Theorem 1 can also be obtained by using
Skolem’s models for arithmetic as in [16]. Thus, given U and Py, either
some theorems of Z are not derivable in Py, then nothing is left to prove.
Or all theorems of Z are provable in Py. Then we can carry out for Py
Ryll-Nardzewski’s construction in [16].and get a case of the induction
schema which is derivable in Z but not derivable in Py if Py is consi-
stent. Hence, if all theorems of Z are provable in Py, Py must be in-
consistent. The proof of Theorem 1 is complete.

Remark 3. The theorem shows once again — if such a lesson were
needed — the inadequacy of the “intuitive” (uncritical) approach to
truth definitions: % may well be an “intuitively false” formula, and,
therefore, “intuitively”’, any formula should be provable from A via
- a truth definition, yet not even all theorems of Z can be proved from A
(by means of the predicate calculus). (We find it difficult to work up
a paradox since the flaw is too obvious.)

II1. Length of proof

The obvious idea underlying the present section is this: suppose
a definition of length of proof of a system (F) is given such that, for each 2,
Oon (F™) can be proved in (F) where (F®) is the system obtained from F
by retaining only those proofs of (F) whose length does not exceed n;
suppose further that Godel’s second undecidability theorem applies to
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(F®); then the length of the proof of Con(F®) in (F) exceeds n. If (F")
is & system in which Con(F) itself can be proved, and if Con(F®) can
be proved from Con(F') by proofs of bounded length (for all n) we have
the following result:

Given any function @, there are infinitely many formulae A4, of (F)
which can be proved in (¥) with shortest proof of length I(n), and ean
be proved in (F’) by a proof of length I'(n) and In)>@[I'(n)].

To see this, let a proof of Con(F) in (') have length ¢; the proofs
of Con(F)—>Con(F(”)) have length <d; then we may take for 4, the
formula Con(F"™™) where n,>max[®(i)], i< c+d.

Note that the introduction of @ here is unnatural; it is done only
to permit easier comparison with the results of [4] and [14] where such
a function @ is used. In fact the natural formulation is this: the shortest
proofs of 4, in (F’) are of bounded length, while the length of the shortest
proof of 4, in (F') exceeds n.

We shall now show that the definitions of length given in the first
section apply here.

THEOREM 2. Suppose the length of a proof of Z, is measured by the
number of distinet e-mairices which it contains, and suppose (F') is an ex-
tension of Z, in which Con(Z,) can be proved. Then, for each n, Con (Z,‘f))
can be proved in (F') by proofs of bounded length, but its shortest proof in Z,
is longer than n. .

For, Con(Z,) means that there is no proof of Z,, which leads to
0=1, and Con(Z,("") means that there is no such proof of length <=.
Hence, Con(Z,)—Con(Z%) is proved in Z, by the iise of a single cri-
tical e-matrix. Since (F') is an extension of Z,, the length of the shortest
proof in (F') of Con(Zg‘)) does not exceed the length of the shortest proof
of Con(Z,) by more than 1. Hence the shortest proofs in (F') of Con(Zf,”))
are of bounded length. By lemma A, 0011(2,(,”)) can be proved in Z,,
but only by proofs of length exceeding =.

THEOREM 3. Suppose the length of a proof of Z is measured by the
maximum number of bound variables that occur in any one of its formulae,
and suppose (F') is an extension of Z in which Con(Z) can be proved. Then
for each n, Con(Z™) can be proved in (F') by proofs of bounded length,
but its shortest proof in Z is longer than n.

Proof as of Theorem 2, by using lemma B in place of lemma A.

Remark 1. We observe in passing that there is a crucial difference
between our definitions of “length of proof” and the one used in Mo-
stowski’s book [14], where the number of a proof in a Godel-numbering
of proofs is taken as its length. On this definition there are only a finite
number of proofs of length <, and, for each =, their consistency is
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expressed by a numerical formula (without variables), while both Z(”)
and Z® contain infinitely many proofs (for each #). It may be observed
that, if Mostowski’s definition is used, ¢ may not be arbitrary, e. g. not

@(n)=0 if the formula proved in (') by the proof with number »
cannot be proved in (F).

@(n) = length of its shortest proof in (F) if the formula which is
proved in (#') by the proof with number » can be proved in (F).

Obviously, we were led to the systems Z%, Z® since it so happens
that their consistency is easily proved in Z. We do not wish to suggest
that the definitions of length of proof which are used in the present sec-
tion, are particularly natural. Perhaps a more natural one measures the
length by the number of lines used in a proof: this is covered by Theo-
rem 2 since a proof with » lines has < critical matrices.

Remark 2. If L(n) is the length of the proof with number », as
measured by the number of distinct e-matrices, and the proof of Con(Z,)
in (#') is of length n,, then we can also prove Theorem 2 if we replace
the formulae Con(ZP) by the formulae

(n)[L(n) < P

which have the Godel numbers g; (1=1,2,...).
An alternative proof of Theorem 3 can be obtained similarly.

¥

(19)+ ¢~ —=Provz(n, q)],

IV. Finite axiom systems of the predicate calculus

THEOREM 4. If a finite awiom system F has a model in Z ihm Con (F)
can be proved in Z.

Let the model of ¥ be the theorem F* of Z which, by definition
of a “model”, is obtained by substituting non-logical constants of Z for
the non-logical constants of F.

It — Con(F) there would be a proof of —F in the predicate cal-

culus, hence a proof of —F* in Z™ where m is the number of quanti-
fiers of F. Hence, we have in Z,

- Con (F) —+— T (f*)
(where f* is the number of F*).
Since T.(a) is a normal truth definition,

1 T 1* - F*_
Thus, in Z, Tl

F*- Con (F).

Remark to Theorem 4. It is clear that instead of Z we could
have used the extensions of arithmetic mentioned after lemma B since
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the whole proof merely depends on the use of a normal truth definition.
However, it is not clear that the result applies if instead of Z we use
a system of analysis, e. g. H of Supplement IV to [9].

Application of Theorem 4. There can be no model in Z, for
the system (S) of [12], based on Bernays’ construction of a set theory
with a finite number of axioms. (This result is in sharp contrast to the
primitive recursive model in [1] of general set theory with an axiom
schema, where, it can be shown, each axiom has a model in Z,.) First,
Con(8)—Con(Z,) can be proved in Z, simply by following out the usual
development of arithmetic in set theory. Next, if we had a model of (8
in Z, we should have a proof of Con(8) in Z,, by Theorem 4, and hence
a proof of Con(Z,), which is excluded by [9]. Thus we have decided
2 question raised in [8], p. 400.

Digression. By following out the steps of [12], § 11, we obtain
a proof of Con(Z,)—Con(S) in Z, so that Con(Z,)<«> Con(S) in Z,.

THEOREM 5. Fz, Con(Z,)— Con(8).

By slightly reformula.tmg (8), we can eliminate all exitential quan-
tifiers from axioms of (8) (see [12], p. 48). Let ™ or B(z,,...,&m) be the
conjunction of the axioms of (8). If —Con(8), then the negation of ¥,
which is equivalent to a formula '

(E2y) ... (Bm) <> B(%1.e s Tm),

is provable in the predicate calculus. By the extended first e-theorem
{[9], p. 32), we can also prove in the predicate calculus, for some con
stant ny, a disjunction of the formmlae:

—=B@P,.., 1),  1<i<n,.

But, by [12], the formulae B(tP,...,#%) all have provable models
in Z,. Hence, we may derive —Con(Z,) from —Con(8) in Z,.

Application of Theorem 5. Let ZF and NB be respectively
the set theories of Zermelo-Fraenkel and von Neumann-Bernays (see,
e. g., [T], p- 271). It is known that if Con(ZF) is added to Z,, there is
2 model of ZF in Z,. Combining these models of axioms of ZF with mo-
dels of additional axioms of NB which are similar to those of axioms
of (8), we may prove in Z,, similarly as with Z, and (8), the theorem:
Con (ZF) —Con (N B).
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On manifolds and r-spaces*
by

A. Kosinski (Warszawa)

‘We shall say that a point p belonging to a space K is an r-poinf
of K if each neighbourhood of p contains & neighbourhood U of p such
that, for each ¢e U, Fr(U) is a deformation retract of U—(g). (See [4];
Fr(T) denotes the boundary of U, i.e. the set U- (K —U).) The neigh-
bourhood with the property just mentioned will be called a canonical
neighbourhood. (It is worth noting that a canonical neighbourhood U of
a point p is also a canonical neighbourhood for each point g e U).

The space K is said to be an r-space if it is compact, metrie, separable,
finite dimensional, and if each point of K is its r-point.

It turns out that r-spaces have a very similar structure to that of
topological manifolds. In particular, many of the classical theorems
about the manifolds (such as for instance theorems on the invariance
of domain, internal characterization of separating sets and so on) hold
also in r-spaces. Moreover, among the spaces of dimension <2 and among
the polytopes of dimension <3 conneeted r-spaces are identical with
the manifolds. The notion of r-space gives therefore a new topological
characterization of 2-manifolds. The basic problem whether there exists
an 7r-space not homeomorphic to a manifold remains open.

This paper should be considered as a continuation of the researches
of K. Borsuk on the *spheroidal spaces” ([5], [3]). In particular, the
proofs of some lemmas in § 1 are suitably adapted proofs .of the cor-
responding lemmas in [5] and [3]. These proofs are based on some auxi-
liary lemmas, which are modified lemmas from the papers mentioned.
For the convenience of the reader all these auxiliary lemmas are gathered
in the supplement at the end of the paper. (S. I, S. IT etc. denote the
lemmas from the supplement).

Terminology and netation. All set-theoretical topological no-
tions used here are defined in [9]. Manifolds, pseudomanifolds, polytopes
are meant in the sense defined in [2]. The homology theory here used

* Presented to the Polish Mathematical Society (Warsaw Seci;iou‘) at the mee-
ting of March 12, 1954. '
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