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On manifolds and r-spaces*
by

A. Kosinski (Warszawa)

‘We shall say that a point p belonging to a space K is an r-poinf
of K if each neighbourhood of p contains & neighbourhood U of p such
that, for each ¢e U, Fr(U) is a deformation retract of U—(g). (See [4];
Fr(T) denotes the boundary of U, i.e. the set U- (K —U).) The neigh-
bourhood with the property just mentioned will be called a canonical
neighbourhood. (It is worth noting that a canonical neighbourhood U of
a point p is also a canonical neighbourhood for each point g e U).

The space K is said to be an r-space if it is compact, metrie, separable,
finite dimensional, and if each point of K is its r-point.

It turns out that r-spaces have a very similar structure to that of
topological manifolds. In particular, many of the classical theorems
about the manifolds (such as for instance theorems on the invariance
of domain, internal characterization of separating sets and so on) hold
also in r-spaces. Moreover, among the spaces of dimension <2 and among
the polytopes of dimension <3 conneeted r-spaces are identical with
the manifolds. The notion of r-space gives therefore a new topological
characterization of 2-manifolds. The basic problem whether there exists
an 7r-space not homeomorphic to a manifold remains open.

This paper should be considered as a continuation of the researches
of K. Borsuk on the *spheroidal spaces” ([5], [3]). In particular, the
proofs of some lemmas in § 1 are suitably adapted proofs .of the cor-
responding lemmas in [5] and [3]. These proofs are based on some auxi-
liary lemmas, which are modified lemmas from the papers mentioned.
For the convenience of the reader all these auxiliary lemmas are gathered
in the supplement at the end of the paper. (S. I, S. IT etc. denote the
lemmas from the supplement).

Terminology and netation. All set-theoretical topological no-
tions used here are defined in [9]. Manifolds, pseudomanifolds, polytopes
are meant in the sense defined in [2]. The homology theory here used

* Presented to the Polish Mathematical Society (Warsaw Seci;iou‘) at the mee-
ting of March 12, 1954. '
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is that of [1]. Briefly: A sequence Z"= {z}, k=1,2,...,1s called an r-di-
mensional true chain if there exists a sequence {e} of positive numbers
such that 0 and 2} is an r-dimensional -chain mod my, mg>2. (Coef-
ficients mod 0 will not be used.) If 2; are g-cycles then Z" is called an
p-dimensional true cycle. If all the numbers m; are powers of the same
number m, then Z" is said to be an r-dimensional true power cycle (Potenz-
zyklus).

Let F be a compact subset of K. An e-chain z in K is said o be an
F-cycle it & is an e-chain in F. True F-cycles are defined in an obvious
manner. A true cycle Z" is called an F-boundary in K if there exists in K
a true chain @™ such that Q"™'=Z"— Z% where Z% is a true chain in F,
We write Zi~Z5 if Z7—Z5 is homologous to zero in K (bounds in K).
‘We write Z,¥ Z5 if Zi—Z} is an F-boundary in K. If no subsequence
of a true cyele Z"={2}} is homologous to zero in K, we say that Z" is
totally non-homologous to zero in I.

Several times we shall use the fact that the homological dimension
based on a variable module, as well as on a power module, is equal to
the topological dimension in the sense of Menger-Urysohn (see [1],
Pp. 195, 209).‘ Hence if K is compact and dim I{=n then there exists in
K a true n-dimensional power cycle bounding in K — but totally non-
~homologous to zero in a compact subset K'CK.

§ 1. Preliminary lemmas

In §1 we shall consider a space K which is supposed to be com-
pact, metric, separable and of finite positive dimension, and a fixed
canonical neighbourhood UCK. F always denote Fr(U) and n denotes
dim U. We assume 7>0.

LemMA 1. Suppose that B is a closed proper subset of U. If Z" is
an n-dimensional true F-cycle in B+-F, then Z"% 0 in B+ F.

Proof. Let p e U—B. There exists a deformation f retracting U—(p)
to F. Let Z} be a true eycle assigned by the deformation f to the cycle Z".
Then we have

@) (Z—Zy=2"—(2})y =2"~(2")y=0,
(2) (2"~ 2p)y= 12— Zpp="Z5— 2} =0.

Putting Z=2"—Z%} we infer from (1) that Z is a true n-dimensional
cycle in B-4-F. Hence, by (2) and 8. I, there exists a neighbourhood V(p)
such that Z~0 in TU~T(p). Then by the definition of homological di-
mension it follows that Z~0 in each carrier, in particular in B--F.
However, Z; is a cycle in ¥ and the established relation Z"~Zf in B+F
gives Z"#0 in B--F. The lemma is thus established.
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LEMMA 2. There exists in U a true n-dimensional power F-cycle

(totally) not F-homologous to zero on U.

Proof. Since dim U=n, there exists a compact subset B'C U which
is also of dimension n. It follows that B’ contains a compact subset B

"which is a carrier of an (n—1)-dimensional true power cycle Z, not

bounding in B. Let p e U—B. By S. I there exists a neighbourhood
V(p) of the point p in U such that Z#0 in T —V(p). Then S. II, com-
bined with the standard application of the Brouwer Reduction Theo-
rem ([7], p. 161), yields a compact subset M, of U irreducible with re-
spect to the properties

(2) BCM,CT—V(p),

(bg) Z¥0 in  M,.

Observe now that (M,—B)-U£0. For otherwise we should have
M,—BCF, and since B-F=0, this is the same relation as B- (M,—B)=0.
Hence B and M,—B would be two compact disjoint sets and (b,)
would imply Z~0 in B, confradicting our assumption. Therefore let
pre (My—B)- U and let Vy(p,) be a neighbourhood of p, in U such that
Z#0 in U—7Vy(p,). Denote by M, a compact set irreducible with respect
to the properties
(24) BCM,CU—Vym),

(by) Z¥0 in M.

From (ay,), (a,) it follows that BCM,- M, and M~ M,. Consequently Z
is not F-homologous to 0 on M,-3,. Thus we may apply S. IIT and
conclude that there exists in M,+ M, an n-dimensional true cycle not
F-homologous to zero in M,+M,. (By extraction of a subsequence we
can make this cyecle totally not F-homologous to 0 in M,+ M,.) Now,
lemma 1 shows that My-+3,=T, and this completes the proof.

LeEMMA 3. Let B be a compact subset of U and Z a true (n—1)-di-
mensional cycle in B not bounding in B. Then B disconnects U.

Proof. Let p; e U —B and let 3f; be a compact subset of U satis-
fying the conditions (a;), (b,) from the proof of the preceding lemma.

Our lemma will be proved if we show that Fry(M,)CB (Fry(M,)
denotes the boundary of A, relative to U).

Suppose that there exists a point p, e Fry(M,)—B. Let Vyp,) be
a mneighbourhood of p, in U such that Z#0 in T—V,(p,). By 8. 1T and
the Brouwer Reduction Theorem there exists a compact set M, irredu-
cible with repect to the properties

(2,) BCM,C ﬁ"vz(pz):
(b) 270 in .

Fundamenta Mathematicae, T. XLIL 8


GUEST


114- A. Kosinsk

By lemma 1 and (2;), (b)), ¢=1,2, it follows that

© M+ M,=T.

On the other hand, the sets Vy(p,) and ﬁ:Ml are.open and non~"
-empty. Since’ p, belongs to the closure of U—M,, it .foHows that
Vy- (U —M;)50. But V,CT—M, and the last inequality gives

05V, (T M) (T —My) - (T —My)= U —(My+ ).

This contradicts (¢) and hence proves the lemma.

Leyma 4. If B is a compact subset of U and every (n—1)-dimensional
true power cycle in B bounds in B, then U~B is connected.

Proof. Suppose the contrary: U—B=28;4 8, with §; closed, non-
-empty and disjoint. Let M;=8;+B+F, i=1,2. Then M are compact
proper subsets of U with M, My=B+F and M,+ M,=U. By 1e1¥1ma, 1
each n-dimensional true power F-cyele in M is I-homologous to 0 in ;.
By our hypothesis such is also every (n~—1)-dimensional true power
cycle in B. Hence 8. IV applies, and we conclude that every n-d.lmeg-
sional true power F-cycle in M,+M,= U is F-homologous to 0 in U.
This, however, is impossible beeause it contradicts lemma 2.

LemMA 5. Let U=F,+F,, F.,F, being closed proper subsets of U.
Then dim ¥y - Fy>n—2.

Proof. Let M;=F; (closure relatively U), i=1,2. Since M, M,—F=
=F,-F,, the assumption dim F, F,<n—2 would imply that.ea,eh true
(n—1)-dimensional F-cycle in M, - M, is F-homologous to zero in M, - M,.
Hence §. IV applies, and the conclusion is as in the proof of lemma 4.

LEMMA 6. U is connected and cannot be discomnected by o subset of
dimension. <n—2 In particular, U s homogeneously n-dimensional. If
n>1 then F=Fr(U) is also connected.

Proof. The equivalence between lemma 5 and the first part of our
lemma is proved in [7], p. 47. The last part is obvious: if »>1 then lby
the preceding argument no point disconnects U, and F, as a deformation
retract of a connected set, is also conmected.

LeMMA 7. Let U,V,UDV, be two canowical neighbourhoods of p and
let B be a compact subset of V. Then B disconnects V if and only if it se-
parates Fr(V) from a point p eV (we suppose that n>1).

Proof. Let us observe first that U—7V is connected. For let C;,0,
be two components of U—V.U is connected; it follows hence that
C;*Fr(V)s£0 for i=1,2 and since Fr(V) is commnected, so is also
C,+Fr(V)+ C,. Hence C,=C,.
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Suppose now that no component of V—2B is separated from Fr(V).
It follows from the foregoing remark that UU'—B is connected, and we
conclude by lemmas 3 and 4 that so is also ¥V —B.
The converse being obviously true, the lemma is established.

Lmma 8. Let U be a canonical neighbourhood of p and let V be any
neighbourhood of p contained with closure in U. Then there exists in
G=Fr(V) a true (n—1)-dimensional eycle 2"t bounding in V bui totally
non-homologous to 0 on G. If V is also a canonical neighbourhood, then Z"*

bounds irreducibly on V.

Proof. Lemmsa 2 yields an n-dimensional true F-cycle 2" in U which
is totally not F-homologous to 0 in U. By lemma 12 from [3] we may
assume that if Z"= {z;}, then each simplex of 2} lies wholly in one of
the sets V,U—7V. Denote 2"=2ZF", thus Z¥* is a eycle in F. Denote
by 2% the chain composed of those simplexes from z] which are in V.
Thus Zi={zjx} is a true chain in 7 and Z"=2Z7—73. Let

(3)

Sincé ZF" is a eycle, so are alse 27" (in V,U—V respectively). But
Z=0=27" (T 2N, Thus 27 '=2"'=27%' iz a true cycle
in ¥-(U—V)=@ bounding in 7. In order to demonstrate the first part
of our lemma it suffices to show that Z" ! is (totally) non-homologous
to 0 in G. Suppose that

(4)

where P" is a true chain in @ Thus by (3) and (4)

2l n—1 >N 71 ~1
l1=21 Zo=15 —ZF .

Pn___ Zn—l

Z—P'=0, P'-25=2%7

which shows that Z}—P" are true n-dimensional F-cycles. Hence by
lemma 1 they are F-homologous to 0 in ¥ and T—V respectively. Thus
(Z1—P")— (Z3— P"y=Z; — 23 =Z"is F-homologous to zero in V(T —¥)=T-
If a certain subsequence of Z"' were homologous to 0 in G we
should conclude in the same manner that some subsequence of Z" was
F-homologous to 0 in T. But this contradicts our assumption about the
cyele Z". Hence 2" is totally non-homologous to zero in I/, which pro-
ves the first part of the lemma.

Now let ¥ be a canonical neighbourhood. Since every true cycle
in Fr(V) bounding in a proper closed subset of ¥ bounds also in Fr(V),
AR irreducibly homologons to 0 in V. This completes the proof.

Remark. Tt follows from lemma 8 that there exists no continuous
transformation f of a canonieal neighbourhood ¥ into a proper closed,

8
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gubset of itself, such that f is an identity on Fr(V). For let @ be a true
chain in ¥ and7 let Q=Z, where Z is a true cycle in Fr(V). Sgppose‘ that
there exists such a transformation f and denote by Qf a ehaJm. ass1gneg
by this transformation to the chain Q._Then_((?f) =(Qy)="2. Su.lee Qr is
a true chain in a closed proper subset f(V) of ¥, it follows tpat Z is homo-
logous to zero in a cloged proper subset of V. Thus the exmtfznce of sufzh
a transformation contradicts the existence of a true cgele in Fr(V) ir-
i ing in ¥ i dicts lemma 8.

educibly bounding in ¥, hence it eontx_*a o
* In garticular, it follows that all points of V are stable in V (in the
Hopt-Pannwitz sense, see [2], p. 523). ‘

pIt is worth notin,g that by lemma 8 and ‘1. Komtergenzsa,tz” from [’1,]
each point of a canonical neighbourhood V is a “directer Kernpunkt”,
hence 7 is a “Kernmenge’; both notions being taken in the sense adopted

in [1], p. 213-214.
§ 2. R-spaces

TarorEM 1. A connected r-space K is a locally cown.ed.ed ?’omtoa’—
-manifold without local cut poinis. All points of K are stable in K. ‘
Proof. By lemma 6 K is a Peano continuum With(r)u‘t local cut pomtls.
By the same lemma and the connectedness of K, K is homogeneously
n-dimensional. Hence lemma 6 applies with the same 7 to each cano-
nical neighbourhood in K, and we prove Ganto?-mam.fold propertyT]in
exactly the same manner as it is proved for manifolds in [2], p. 48.8 e
stability of all points of K was proved in the remark on lemma -
TaEOREM 2. Let K be o connected n-dimensional r-space. There .emsts
&>0 such that every compact subset B of diameter less than & cuts K z]f and
only if there exists in B a true (n—1)-dimensional cycle not bounding in B.
Proof. The compactness of K insures the existence of such a po-
sitive number & that every compact subset BCK of diameter 1e§s than
£ is contained in a canonical neighbourhood V, contained in turn in a se-
cond canonical neighbourhood U. Thus by lemma 3 and 4 the condition
of the theorem is necessary and sufficient in order that B cut V. Bub
Dy lemma 7 B cuts V if and only if it cuts K. This completes the proof.
THEOREM 3. A connected r-space of dimension at most two is a topo-
logical manifold. .
Proof. Suppose first that dim K=1. If ord,K=1 then 0])V1(?usly P
is not an r-point. Hence we may assume that ¢ and b belong to different
components of Fr(U), where U is a canonical neighbourhood of p. But. U
is connected and it follows directly from the definition of an r-point
that each point of U separates a from b in U. By Lennes Theorem ([9],
§ 41, IX, 6) U+ (a)+ (b) is homeomorphic to an interval. Thus ord, K =2.
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If K is a 2-dimensional r-space, then theorem 2 states that there
exists £>>0 such that every simple closed curve of diameter <e euts K
and no arc of diameter less than ¢ does so. If in addition K is connected,
then by theorem 1 it is a Peano continuum, so that theorem IV from [8]
applies and the proof is complete. ;

‘We shall now demonstrate two theorems showing a deep similarity
in structure of r-spaces and topological manifolds. ’

THEOREM 4. Let K be an n-dimensional connected r-space. 4 neces-
sary and sufficient condition that a closed subset E of I be n-dimensional
is that E contains ¢ non-empty subset which is open in K. ‘

Proof. The condition is necessary. For suppose that E=ECK and
dim, B=n. We shall show that E containg interior points.

Let U be a canonical neighbourhood of p in K and let 4 be a com-
pact subset of E contained in U and containing a neighbourhood of p
in E. Hence dim 4 =»n and there exists an (n —1)-dimensional true cycle Z
bouding in 4 but non-homologous to 0 in a closed subset A,CA. Let 4;
be a subset of 4 in which Z bounds irreducibly and let ged;—A,. Then
by S.1 there exists a neighbourhood ¥ of the point gin U—A4, such
that Zz0 in U—V. Since 4,-(T—V) is & closed proper subset of 4,
Zn-0 in A,-(U~V). Moreover, since F-A,=0 then also Z is not F-ho-
mologous to 0 in 4,-(T—V)-+F, F denotes as usual Fr(U). Then S. III
furnishes an’ »-dimensional true F-cycle in 4;-+ (T —F) not F-homolo-
gous to 0 in A4,-+(U—7V). Applying lemma 1 to this cycle we conclude
that 4,4+ (T —V)=T; thus ¥CA4,CACE and the necessity is established..

By theorem 1 the condition is sufficient and thus the proof is com-
pleted.

COROLLARY. Let U be a canonical neighbourhood in a connected n-di-
mensional r-space. Then Fr(U) is an (n—1)-dimensional continuum.

Proof. F=Fr(U) contains no interior points, hence dim F<<n—1.
But K is a Cantor-manifold, hence dim F>n—1. (Obviously F need
not be a Peano continuum.)

TBEOREM 5. Let K be an n-dimensional connected r-space and E an
arbitrary subset of K. Then p « E is an interior point of E if and only if p.
has arbitrarily small neighbourhoods V in E with a compact closure (rela-
tively E) and such thai there exists in G=FrgV an ( n—1)-dimensional
true cycle Z irreducibly bounding in V. .

Proof. To prove the sufficiency of the condition let p be a boundary
point of E. Let U be a canonical neighbourhood of pin K and V a neigh-
bourhood of p in E having a compact closure and contained with it in U.
Let as usual @=Fr1zV, F=Fr(U) and let Z be a true (n—1)-dimensional
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cycle in @ bounding in V. We shall prove that Z bounds also in a pro-
per closed subset of V.

Denote by U; a neighbourhood of p in U so small that G- U,=0.
Rince p ¢ Fr(H),

(8) U, (U=P)#0

and -~

(6) U, V0.
Since U is a canonical neighbourhood,

(7) Zyp0 in TU-T,

and by hypothesis

(8) Z~0 in V.

It follows from (5) that (T —U,)+7 is a closed proper subset of U.
Hence from (7), (8), 8. IIT and lemma 1 we conclude that

(9) Z%0 in (U-TUy)-V.
But Z is a cycle in ¥ and ¥-F=0, therefore (9) implies]
Z~0 i (TU—TUy)-7,

and since, by (6), (TU—TU,)-¥ is a closed proper subset of V, the proof
is completed. .

To prove the necessity let p be an interior point of E. Then a suf-
ficiently small neighbourhood of p in K is also a neighbourhood in .
Therefore let U,V,UDV, be two canonical neighbourhoods of p in K
which are simultaneously neighbourhoods of p in E. Application of
lemma 8 completes the proof.

COROLLARY. Let K, K’ be two n-dimensional connected r-spaces. If
EKDK', then K=K'.

Proof. By lemma 8 and theorem 5 all points of K’ are interior
points of K.

§ 3. R-polytopes

In this paragraph we investigate triangulable r-spaces which will
be called r-polytopes. (By a simplex we shall always mean an open simplex.)

Let R be an (n—1)-dimengional clogsed pseudomanifold such that
if K=K(R) is a cone on R, then, for each p « K—R, R iz a retract of
K —(p). Such a pseudomanifold is called s-pseudomanifold.

LeMmA 9. An a-dimensional s-pseudomanifold R is of the same
homotopy type as the m-dimensional sphere.

Proof. Let X=K(R) be a cone on R. Let p ¢ 4, where 4 is an (n-+1)-
-dimensjonal simplex of K and put K'=K-—A. Obviously

(10) B(K)=B(EK) if r<n—1.
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Since K is an absolute retract,
(11) B(K)=0 if r=1,2,3,..

R is a retract of K —(p), hence also of K’, and by [4] the retraction in-
duces a homomorphism of B'(K’) onto B'(R). onto B'(R). Hence by (10)
and (11)

(12) B'(Ry=0 if 1<r<n—1.

Since R is an n-dimensional pseudomanifold, it follows from (12) that
(13) B(R)=infinite cyclic.

(12) and (13) give together '
(14) B'(R)=B"(8,)

Consider now the fundamental group. If dim K > 2, hence if dim R>1,
then also =,(K)=n,(K’), =;(K)=0. Hence

(15) m(R)=0 if dimRB>1.

The lemma itself then follows from equalities (14), (15) and from
the known theorem on the homotopy type of connected polyhedra
{e. g. [6], 32.2).

Given a vertex a of a polytope K, the star St(a) of ¢ in K is the
subpolytope of K consisting of the simplexes which have a as a vertex
and all their faces. Hence St(a) is a closed set. The set-theoretical boun-
dary of St(a) will be called boundary complex of a and will be denoted
by Bd(a). It is known that many topological properties of a polytope
depend on the properties of boundary complexes. In particular, in terms
of these complexes are defined homological manifolds which play an
important part in modern topology, since duality theorems hold in them.
‘We shall now investigate boundary complexes in r-polytopes.

for all r.

TEEOREM 6. Let K be a connected r-polytope of dimension n. For
every verter a, Bd(a) has the homotopy type of the (n—1)-dimensional
sphere. )

Proof. In view of theorem 3 we may assume that dim K>2. By
theorems 1 and 2, K is a closed psendomanifold without local eut points.
Hence Bd(a) is also a closed (n—1)-dimensional pseudomanifold. In con-
sideration of lemma 9, in order to demonstrate our theorem it suffices
to show that Bd(a) is an s-pseudomanifold. Let §=St(a) and B=Bd(a).
Since § is a cone on B we have to show that if p ¢ §—B then B is & re-
tract of §—(p); in virtue of the topological homogeneity of § along the
rays from a, it suffices to show this for a point p arbitrarily near a. But
this is obvious. For let UCS be a canonical neighbourhood of & and
let p e U. Then Fr(U) is a retract of T —(p), hence also 8 — U is retract
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of §—(p). Since §~U, does not contain the point a, B iz a retract of
8~—U, hence also of §—(p) and the theorem is proved.

COROLLARY. A connected +-polytope is a homological manifold.

‘We shall now establish a connection between the r-polytopes and
spheroidal polytopes.

»T‘BEOREM 7. Let K be an n-dimensional 7-polytope. A necessary and
sufficient condition in order that K be o spheroidal polytope is that K be
of the homotopy type of the n-sphere.

Proof. From theorems 9 and 12 of [6] and 32.2 of [6] it follows that
the spheroidal space of dimension % has the bomotopy tyiae of the n-di-
mensional sphere. Hence the condition is necessary.

To prove the sufficiency let K be an n-dimensional r-polytope (n >2)
and let B'(K)=B'(g,), my(Bn)=my(K), 1=0,1,... Since every point of K
may be considered as a vertex of a triangulation, it suffices to show that
given a vertex p of a triangulation of K, K'=K—8t(p) is an absoluté
retract.

Now, let g ed, where 4 is an n-dimensional simplex contained in St (p)-
;et K" =K~—A. In the proof of theorem 6 we have established that Bd(p)
is a retract of St(p)—(q). Since this retraction may obviously be ex-
tended to the retraction of the whole set K —(g) to the set K’, it follows
from the relations K'CK""CK —(¢) that K’ iy a retract of K,". But by
our bypothesis the fundamental group of K vanishes, hence so does
algo m,(K'’). Therefore
(16) m(K')=0.
I.t is eagy to prove that B(K)=B"(K") if rn. Since X' is an n-di-
mensional pseudomanifold with boundary, BYK')=0. Hence

(17) BK')=0 for all >1.

By (16){ (17) and the theorem of Hurewicz ((6], 14.1) K’ is contractible
to a point, and thus the proof iy completed.

Theorem 3 ean be strengthened in the case of r-polytopes:

‘ THE?REM.S. Let K be a connected polytope of dimension <4. Then K
s a frfwmjold if and only if it is an r-space, and K is a spheroidal poly-
tope if and only if it is an -space and has the homotopy type of the sphere.

Proof. First part: the necessity is obvious, the sufficiency fol-
lows at once from the corollary to theorem 6 and the fact that the at
most 3-dimensional homological manifold ig necessarily a manifold.

Second part: To demonstrate the necessity it is enough to observe
that a spheroidal Dolytope of dimension <4 is g manifold and conse-
quently also an r-space. Thug by theorem 7 it has the homotopy type:
of the gphere. The sufficiency- follows from the same theorem.
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§ 4. Some remarks and problems

1. The set of r-points of a space is somewhat similar to the set of
points having neighbourhoods homeomorphic to the Euclidean space.
But in any space this last set is open. Hence we have the following

PrOBLEM 1. Is ihe set of r-poinis of any space always open?

Denote by 4 the set of r-points of a space K and dencte by 4, the
set of points of K having canonical neighbourhoods of diameter less
than 1/n. Then A=J] 4,, and since the sets 4, are open, we infer that 4
is Gg-set. The generg-l problem reduces to showing that any point of
a canonical neighbourhood in K is an r-point of A.

2. The canonieal neighbourhood is an analogue to the notion of the
open cell. But the open cell is contractible in itself. Hence

FPROBLEM 2.
selves?

Are the canonical neighbourkoods contractible in them-

Problem 2 remains open even in the case of r-polytopes, although
obviously every neighbourhood of a point in an r-polytope contains
a canonical neighbourhood confractible in itself. But in the general case
even the following significant problem remains open:

ProBLEM 3. Are the r-spaces locally coniractible?
"3. Problems 2 and 3 are closely related to the following

FroBLEM 4. Is fhe canonical neighbourhood compactified by the ad-
junction of a single point homeomorphic with a spheroidal space?

Let us consider this relation more exactly. We shall say that a space’
is locally spheroidal if each point of it is contained in a neighbourhood
homeomorphie with the spheroidal space from which one point has
been removed.

It seems very probable that every ANR in which each neighbourhood
of any point contains a canonical neighbourhood, contractible in itself,
of that point is locally spheroidal. It is easy to see that such is the case
if these canonical neighbourhoods can be retracted to a compact subset
by a retraction differing as little as possible from the identity mapping.
Obviously the star of a point in a polytope possesses this property. Since
in an r-polytope the stars are canouical neighbourhoods contractible in
themselves, we infer that any r-rolytope is locally spheroidal. (This fact
may serve as a basis for the theory developed in § 3.) Is the reciprocal
theorem also true? This reduces to the following

FROBLEM 5. Is any spheroidal polytope an r-polytope?

Let us consider also

FROBLEM 6. Is the boundary complex in an r-polytope also an r-polytope?
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If the answer to these two problems is positive, then on the bagis
of the two notions, that of the r-polytope and that of the spheroidal
polytope, one can construct a theory which “substitutes” the usual theory
of triangulable manifolds and spheres, but in which -all the notions (ex-
cept those of the polytope) have an internal topological meaning and
in which the ‘““Poincaré hypothesis” holds.

4. It can be shown that the at most 2-dimensional topological di-
visor of a locally contractible r-space is a manifold, hence an r-gpace.
But the proof rests on theorem 2, and not on the definition of an »-point
directly. Hence it would be interesting to investigate the following

ProBLEM 7. Let (a,b) e AX B be an r:point of a Cartesian product
A X B. Are then a and b r-points of A and B respectively?

The positive answer to this problem would imply the positive answer
to problem 6.

5. For the sake of completeness we state the fundamental
PrOBLEM 8. Does there exist an v-polytope which is not a manifold?

Supplement

S.1. Let K, K,, KDK;, be two compact spaces. Let p e K —K, and
let Z be a true cycle in a compact subset of K not containing p. Suppose
that K, is & deformation retract of K —(p) and denote by Z; a cycle in K,
assigned by this retraction to the cycle Z. Then there exists such a neigh-
bourhood V of .p that Z~2Z; in K—V.

Proof. Denote by C the carrier of Z and by f(z,) the deformation
retracting K to K,. Then by theorem 1 in [4] Z~Z; in the set f(C,1),
where ¢e<0,1>. But this last set is compact and does not contain p,
hence its complement in K is an open neighbourhood of p and may be
considered as the desired neighbourhood V.

S.IL. Let M;=M;+F be a monotonic decreasing sequence of compact
sets. Let Z be a true eycle in M; and suppose that for each i Z 0 in M.
Then Z0 in [] M,.

1

Proof. The proof is exactly the same as the proof of lemma 4 in [5].

8. IIT. Let M, M,, M,, F be compact sets satisfying M=M,-+ M,
FCMy-M,. Suppose that there exists in My M, an r-dimensional true
cycle Z" whick is not F-homologous to zero in My M, but Z'#0 in M,
4=0,1. Then there exists in M a true (r-1)-dimensional F-cycle 2" not
F-homologous to zero in M. If Z' is a power cycle so is also Z™.

- Proof. (Cf. the proof of lemma 2 in [5]). Since Z"x0 in M there
exist in M, chains @™ such that Q[**=Z"+ g, where ¢, is a chain in F.
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Tet 2 =@ —@i". Thus 2 M=q,—g, and it follows that 2™ is an
F-cyele in M. We shall show that it is the desired eycle. Suppose, on
the contrary, that there exists in M a true chain @™ *={g;} such that
GM=7""1 ¢, ¢ in F. By an infinitesimal displacement we may obtain
from @** a chain @"*®={g;} such that

a) if a vertex a of a chain gx belongs to M;, then the corresponding
vertex a* also belongs to M; and a e M- M, implies a*=a;

b) every simplex of g% is in one of the sets M,, M; (see lemma 12
in [3]). Hence

{18) (@)= (@) =2+ o) =0 — QT + o,

Let Q% =P;**_ Pi*? where Pyt*={p;} and p, consists of all those
simplexes of ¢gf which are in M,. Setting this equality into (18) we have

Q;-Hl* _1');+2 r+1"‘ PF+3

The chain on the left side is in M,, that on the nght is in M, — hence
both are in M, M,. Let P"H=@i** —Pi**. We have

P (@ =) =(Z o) =Z + o
since Z'--qq is in Mg-M,.

Thus we infer that Z” is F-homologous to zero in M,- M,L in contra-
diction to our assumption.

S.IV. Let M, My, M,, F be as in S. IXI. Suppose that

(a) each n-dimensional true F-cycle in M, is F-homologous lo zero
n My

(b) each (n—1)-dimensional true F-cycle in My- M, is F-homologous
to zero in My-M;.

Then every n-dimensional irue F-cycle in M is in M F-homologous
to zero. If the assumptions (a) and (b) are restricted to power cycles, then
he theorem holds, but also with regard to power cycles only. (In all but one
applications of this lemma the situation is that My- M;= A+ F with 4 and ¥
compact and disjoint. In that case we can replace (b) by requiring every
{n—1)-dimensional true cycle in A to bound in A.)

Proof. (Cf. the proof of lemma 14 in [3].) Let Z" be a true n-di-
mensional F-cycle in M. We have to show that Z"#0 in M. As in the
proof of S.III we may assume (if need by applying an infinitesimaly
small displacement) that

(19) =TT

where Z7 is a chain in M,. Let Zj={zu}, k=1,2,..., i="0,1. Denote
by 2" the chain consisting of all those simplexes of zp which have at
least one vertex mot in F. Let Z7 '={j;"}. Thus
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1° from equality Z7=Z}""—¢;, where ¢; is a chain in F, we infer
that Z7™' is an F-cycle in My

20 since Z%=(Z""'—Zi")—(py—@,) is a chain in F, we infer that
Zy =21 -

Let Z"'=Z;"'=277"% By 1° and 20 2" is an F-cycle in ‘MD-_MI,
Hence (b) yields an n-dimensional true chain P"in M, M, such that

P'=7""'—y, » in F. Putting
(20) Ri=7{—P"

we infer from equality Bf=y—g¢; that R is an #-dimensional true P-cycle

in M;. Thus (a) yields an (n+1)-dimensional true chain Q7™ in Jf; such_

that

(21) )t = R — 1, i in .

From (19), (20), (21) we have
QS+I_Q:+1=(R3*R;)'—‘(Xo"“ﬂh)
=(ZS*“Z;)“(Pn“P")*(%o_X1)=Zn_(Zu_Zl)7

hence Z"#0 in M and the proof is completed.
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A formula with no recursively enumerable model
by
A. Mostowski (Warszawa)

G. Kreisel [4] was the first to construct a first-order formula which
has no recursive modell). A formula with the same property was also
constructed independently by the present author in a paper read before
the VIII Congress of the Polish Mathematicians in the autumn of 1953
(see Mostowski [6]). Both formulas were obtained by suitable modifi-
cations of the axioms of the set-theory proposed by Bernays [1].

The present paper containg another example of a formula which
has no recursive model. This example seems to be simpler than the for-
mer ones in so far, as it makes no reference to the axiomatic set-theory
and uses exclusively tools known from the theory of recursive functions.

The formula to be given below was found in the course of nnsuceessful
attempts to construct a formula no model of which would belong to the
smallest field of sets generated by the classes P{” and Q{2). It is pu-
blished in the hope that it might suggest a solution of this problem.

It has been justly observed that many recent papers in the field
of symbolic logic do not supply full proofs of the statements they econtain.
‘While it would certainly not be reasonable to require from all papers
to give exhaustive proofs it is certainly necessary to publish full proofs
from time to time. This line is followed in the present paper.

1. Post’s theory of recursively enumerable sets [7]. Let G
be a free semigroup (with cancellation) generated by the free genera-
tors a,b,c. Thus the elements of G are finite strings #,2,...2 where each
x; is either a or b or ¢ and the multiplication of strings is performed simply
by juxtaposing them. The void string is not admitted in G. Elements
of G will be denoted by lower case Greek letters. The length I(a) of
a string a is defined as the number of letters it contains.

A string a is said to be (a) a segment of B; (b) a part of B; (c) a rest
of p if either a=pg or (a) there is a y such that f=ay; (b) there are y,o

1) Kreisel's paper contains even a slightly stronger result; cf. the theorem on
p. 47 of his paper.

%) For terminology see my paper [5]. The problem was formulated by Kreisel [4];
ef. p. 47.
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