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1° from equality Z7=Z}""—¢;, where ¢; is a chain in F, we infer
that Z7™' is an F-cycle in My

20 since Z%=(Z""'—Zi")—(py—@,) is a chain in F, we infer that
Zy =21 -

Let Z"'=Z;"'=277"% By 1° and 20 2" is an F-cycle in ‘MD-_MI,
Hence (b) yields an n-dimensional true chain P"in M, M, such that

P'=7""'—y, » in F. Putting
(20) Ri=7{—P"

we infer from equality Bf=y—g¢; that R is an #-dimensional true P-cycle

in M;. Thus (a) yields an (n+1)-dimensional true chain Q7™ in Jf; such_

that

(21) )t = R — 1, i in .

From (19), (20), (21) we have
QS+I_Q:+1=(R3*R;)'—‘(Xo"“ﬂh)
=(ZS*“Z;)“(Pn“P")*(%o_X1)=Zn_(Zu_Zl)7

hence Z"#0 in M and the proof is completed.
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A formula with no recursively enumerable model
by
A. Mostowski (Warszawa)

G. Kreisel [4] was the first to construct a first-order formula which
has no recursive modell). A formula with the same property was also
constructed independently by the present author in a paper read before
the VIII Congress of the Polish Mathematicians in the autumn of 1953
(see Mostowski [6]). Both formulas were obtained by suitable modifi-
cations of the axioms of the set-theory proposed by Bernays [1].

The present paper containg another example of a formula which
has no recursive model. This example seems to be simpler than the for-
mer ones in so far, as it makes no reference to the axiomatic set-theory
and uses exclusively tools known from the theory of recursive functions.

The formula to be given below was found in the course of nnsuceessful
attempts to construct a formula no model of which would belong to the
smallest field of sets generated by the classes P{” and Q{2). It is pu-
blished in the hope that it might suggest a solution of this problem.

It has been justly observed that many recent papers in the field
of symbolic logic do not supply full proofs of the statements they econtain.
‘While it would certainly not be reasonable to require from all papers
to give exhaustive proofs it is certainly necessary to publish full proofs
from time to time. This line is followed in the present paper.

1. Post’s theory of recursively enumerable sets [7]. Let G
be a free semigroup (with cancellation) generated by the free genera-
tors a,b,c. Thus the elements of G are finite strings #,2,...2 where each
x; is either a or b or ¢ and the multiplication of strings is performed simply
by juxtaposing them. The void string is not admitted in G. Elements
of G will be denoted by lower case Greek letters. The length I(a) of
a string a is defined as the number of letters it contains.

A string a is said to be (a) a segment of B; (b) a part of B; (c) a rest
of p if either a=pg or (a) there is a y such that f=ay; (b) there are y,o

1) Kreisel's paper contains even a slightly stronger result; cf. the theorem on
p. 47 of his paper.

%) For terminology see my paper [5]. The problem was formulated by Kreisel [4];
ef. p. 47.
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such that either f=ya or f=ad or f=yad; (c) there is a y such that
=yd.

g A string a is an ingredient of B if ¢ is not a part of a and cac is a part

of p3). It is evident that each string has at most a tinite number of in-

gredients.

Let a,f b:a ingredients of a string y. We say that a precedes § in y
if there is a segment 6 of y such that cac is a part of 6 and cfe is not
a part of 4.

A string « is the first (last) ingredient of a string y if there is a string §
containing no occurrences of o’s and of b’s such that dac (resp. cad)
is & segment (rest) of y. This definition is independent of the ordering
determined by the precedence-relation.

A string consisting of » consecutive a’s is denoted by .. A string
is called proper if ¢ is not its part.

Let
(1) B: a:ﬂl7ﬂi7ﬁ2:ﬁ;"":ﬁk?ﬂ;€

be a sequence of 2k+1 proper strings. Such a sequence is called a basis.

A string y is said to be B-generating if it has the following properties:‘

(2) @ is the first ingredient of y;

(3) if £is an ingredient of y, then either £=a or there are: an ingre-
dient 7 of y which precedes & in y; a part { of »; and an integer
j<F such that &=(p; and n=g,.

For any basis B let S be the set of integers » with the following

property: there is & B-generating string y such that 3, is the last ingredient of y.
Using these definitions we can formulate the following

THEOREM 1 (Post)4). For every recursively enwmerable set X there is
a basis B such that X=85.

2. The formula #,. The formula & to be constructed will be
& conjunction of two formulas & and &,. In the present section only
the first formula will be defined. It contains 5 predicate-variables, three
of which (A,B,C) have one argument, one (F) has two arguments and
one (G) has three arguments.

The intended interpretation of the formmla &, is simply that the
universe of discourse is the semigroup G defined in section 1. The inter-
pretation of the formulas A(x), B(x),C(x) is that x is one of the generators
of G. The formula F(x,y) is to be interpreted as: ‘“x and y are identic
and the formula G(x,y,z2) as: “x is the result of multiplication of y and z”-

?) The idea of “ingredients” is due to Quine. See [8], p. 296.
‘) This theorem easily results from the theorem obtained by Post [7]; in the
proof we have to use the technique developed by Quine [8], p. 296 seq.

4 formula with no recursively enumerable model 127

The formula &, is the conjunetion of the following 10 formulas:
I. (Axioms of identity).
11 (x,7){F(=,¥)[A(x) = A(y)]. [B(x) =B(y)]. [C(x) = C(y)]};
I2. (=,¥,2,6){F(x,5) D[G(x,2,t) = C(y,z,t)].[G(z, x,t)
=G(z,y,1)].[G(z,t,x) =Glz,t,y)]}.
II. (Axioms of existence).
II1. (Hx,y,2)[Ax). B(y). C(z)];
2. (x,y{[A(X). A(y)VB(x). B(y)VC(x). C(x)1DF(x,¥)};
II3. ~{(Ex)[A(x).B(x)VB(x).C(x)VC(x).A(x)]}.
I1l. (Axioms of juxtaposition).
II11. (X7Y):(HZ)G(Z,'X9Y)§
2. (x,¥,2,t) {{6(z,X,¥).G(t,x,¥)VG(X,2,¥). G(x,t,¥)
: — VG(x,¥,2).G(x,¥,t)]0F(z,1)};
I8, (2}{(Ey,2)G(x,¥,2) =~[A(x)VB(x)VC(x)]}
T4, (x,y,2,t,v)[G(x,y,2).G(y,u,v).G(t,v,z) DG(x,u,t)];
1I5. (x,y,z,u,v){~F(y,u).G(x,y,z}‘G(X,u,v)
D{EB{G(y,u,t).6(v,t,2)VG{u,y,t).G(z,t,7v)]}
8. Auxiliary definitions. The formula &, will be written down
by means of a number of auxiliary formulas listed below. In the intended
interpretation described at the beginning of section 2 most of these for--
mulas deseribe notions which we have introduced in section 1 %),
Ny =F(x,y)V(Hz)G(y,x,2) [x is a segment of y].
XP}'EF(X,F)V(E{Z,t,u)[G(Y,X,Z)VG(Y,Z,X)VG(Z,JC,X).G(y,z,u)]
[x is a part of y].
xRy =F(x,y)vV(Hz)G(y,z,x) [x is a rest of y].
Ty =(Hz,t,u)[C(u).G(t,xu).G{z,u,t). (zPy).~(uPx)]
[x is an ingredient of y].
V(x,¥,2)=(xIz).(y1z).(Hu,v,w,t,s,7)[Clu).G(v,x,u). .
-G(w,u,v).G(,y,1).G(5,u,t).(rS2) . (wPr).~(sPr)]
[x precedes y in z].
C8(x) = (u){{A(u)vB(u)]D~@uPx)} [X contains no a’s and no b’s].
xFIy = (Tu,v,w,t)[CS(u).C(v). G(w,x,v).G(t,u,w). (tSy)]
[x is the first ingredient of y].
XLIy=(Hu,v,w,t)[CS(u).C(v).G(w,v,x).G(t,w,u).(tRy)]
[x is the last ingredient of yJ.
LN(x)=(¥){[B(y)VC(y)]O~(yPx)} [x has the form 7,].

%) The ideas underlying our construction in this section are due to Quine [8].
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We shall now associate a formmula I',(x) with each string a«. We shall
call this formula a description of . The definition is an inductive one:
Ix)=A(x), E)=B(x), I[(x)=0(x),
To(x) = (Hu, v)[To(u). A(V).G(x,u, V)],
Top(x) = (Hu,v) [To(w). B(v). G(x,u,v)],
I (x) = (Hu,v)[Ieu).C(v).G(x,u,v)].
For arbitrary strings g, we put
Hpp(w,v)=(Hz,t,0)[Tp(z). [p(t). G(v,2,u). G(W,u, )]
[w has the form {f’ and v the form f(].
Finally, for an. arbitrary basis B defined in (1), we put
Hp(x) = (Hz) [(zFIx). [a(z)]. (w)[(uIx)

k
D{Faw)v(H‘v)[V(v,u,x)glﬂp,,ﬁ;(u,m}] %)
[x is a B-generating string].

4. The formula &,. Let X,Y be two disjoint recursively enum-
erable sets of integers which cannot be separated by means of recursive
sets (see [2] and [9]) and let (1) and

C: y,01,01,.0501,0f
be bases such that X=8p, ¥==~8¢. '
Let D and B be predicate-variables with one argument. We define
F, as the conjunction of the following four formulas:
IVL (x,7)[€s(y).(xLly). LN(x)OD(x)],
IV2. (x,9)[Ec(y).(xL1ly).LN(x)DE(x)],
IV3. (x){LN(x)O[D(x)vE(x)]},
V4., (x)[~D(x)V~E(x)]
‘We denote by & the conjunction of &, and &,.

‘5. Consistency of ¥. Let G be the semigroup described in sec-
tion 1 and let M(xy,...,Xx) be a formuld with the free individual variables
Xy,...,X¢ and the predicate-variables A,B,C,F,G. If strings Opyeoey Bk
satisfy M when A,B,C,F,G are interpreted as described at the begin-
ning of section 2, then we shall write —M(ay,...,az). If M has no free
individual variables, then M means that M is true in the model de-
fined by the intended interpretation of A,B,C,F,G. This model will be
called the natural model.

%) The letter X is here used as the symbol of alternation with finitely many
terms. An alternation with O terms (a void alternation) is assumed to have the truth-
-value 0 (falsity). :
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The following lemmas are obvious:
L1l +&.

L.2. For arbitrary strings a,B,y the following equivalences hold 7):
FaSf=a is a segment of B,
FaPfR=a is a part of B,
FaRf=a is the rest of B,
talf=a is an ingredient of B,
FV{a.B.v)=a and § are ingredients of v and a precedes B in vy,
FCS(a) =neither a nor b occurs in «a,
raFIB=a 4s the first ingredient of §,
FaLIf=a is the last ingredient of B,
FLN(a)=a has the form 2,.
L3. FI.(f)=(f=na). )
L.4. If B is the basis (1), then +Ep(y)=y is a B-generating string.
L.5. If B is the basis (1), then the following conditions are equivalent:

) FEZp(y). (6 LIy). LN(6),

(3) {y is a B-generating string}.(qn)[(n € 8p).(6=1,).
-(6 18 the last ingredient of y)].

Proof. Tf (4) is satisfied, then by 1.4 yis a B-generating string and
by L.2 6 is the last ingredient of y and has the form 7. Hence n e Sp
and (5) is satisfied. The converse implication results immediately from
L.2 and L.4.

Now let B and (! be bases as described at the beginning of section 4.
We extend the natural model of &, to a model of &, by interpreting D
as the set of strings 7, such that » ¢ X, and E as the set of strings 2, such
that n nen e X. If M(x,,....x,) is a formula containing the individual
variables x,,...,x, and the predicate-variables A,B,C,D,E,F,G, then
we shall continue to use the symbol M(ay,...,a,) to express the fact
that ay,...,0, satisfy M{x;,...,x,) in the extended natural model.

L.6. Formulas IV3 and IV4 are true in the extended natural model.

Proof. Obvious.

L.7. Formulas IV1 and IV2 are true in the extended natural model.

Proof. Let y and 6 bhe strings satisfying (4). We have to prove that
ED(6), . e. that there is an integer n sueh that é=1, and n ¢ X=S3.

) We use the same logical symbols in the informal discussion of formulas as in
the formulas themselves. No confusion will arise when one observes the rule that va-
riables of the formal calenlus are printed in the ordinary (Roman) type whereas va-
riables and constants used in the informal discussion “are printed in italies.

F ta Math T. XLIL 9
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Now it follows from L.5 that such an integer exists. Hence formula IV1
i true in the extended natural model.

In order to show this for the formula IV2 we have to prove that
if y and 6 satisfy the condition

FEc(y). (6LIy). LN(d),
then +E(8). Now it follows from L.5 that there is an » suech that d= 4,

and neSc=Y whence n noneX, . e, E(4,) which gives E(4).
Lemma 7 is thus proved.

THEOREM 2. Formula &F is true in the extended natural model and
hence consistent.

Proot. Immediate by L.1, L.6, L.7.

6. Formal provability of properties of strings. Let M(x,,...,x;)
be a formula with the free variables xy,...,xx, A,B,C,F,G. It follows
immediately from 1.3 that b M(ey,...,a) i3 equivalent to

b (X yeen s Xae) [y (1) oo Ly (X)) OM(Zy oo, Xi) ]

In the present section we shall examine the question whether the
formula following the assertion-symbol k- above is deducible from &,.
We shall write & —>M(x,,...,Xs) instead of “M(x,,..,xx) is deducible
from &,”.

Definition. A formula M(Xy,...,Xx) is normal if
(6) Fr—> o (%1) oo Ty () OM(xy 5 .. , X))
whenever +M(ay,...,a;) and

(7) Fi— T (%) oo Lo (1) D ~M(Xy o0 Xi)]
whenever non M(q,,...,a).

LS. If My, M, are normal formulas, then so are ~M, and M, M,.

Proof. Obvious.

L.9. Formulas A(x), B(x), C(x) are normal.

Proof. Tt will be sufficient to eonsider the formula A(x). If A(a),
then a=a, I (x)=A(x) and hence &F,—[I,(x)DA(x)]. If non A(a),
then a7 4 and hence either a=5b or a=e¢ or « has the form gy with y=a
or y=b or y=c. In the first two cases we apply II3 and get

(8) Fr~>[Fa(x)D~A(x)].
In the remaining case we have I(x)=(Hu,v)[Ip(w).l,(v).G(x,u,v)}

and hence by III3 we get again formula (8).
Lemma 9 is thus proved.

icm
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1.10. For an arbitrary string a
9) gl"(ﬂx)l—‘n(x)y
(10) Fi—~>[lu(x). Io(y) OF(x,¥)].

Proof. We use induction with respeet to the length of a. If l{a)=1,
then (9) and (10) immediately result from II1 and II2. Assume now

that 1.10 holds for strings of length < and let (a)=n. Hence a=p&
where l(f)=n—1, |{&)=1, and

To(x)=("y,2)[T5(y) . Te(2). G(x,¥,2)}

TUsing this, we immediately find that (9) follows from IIT1 and the in-
ductive assumption, and that (10) follows from the inductive assnmption
112, and I2. Lemma 10 is thus proved.

L.11. The formule F(x,y) is normal.

Proof. Let a;,a, be such that +—F(a;,0,). Hence a,=a, and there-
fore by L.10
(11) 51")[1_:!1(311)‘F@(X2)DF(X19X2)]-

We still have to prove that if non —F(ay,a), 4. €., if a;5%0a,, then
(12) Fr= [Ty (%) Ty (%) D ~F (%, %)

If Uay)=lay)=1, then (12) follows from I1 and II3. If ¥(¢)=1
and I(ay)>1, then (12) follows from I1 and III3. The same is true if
Hay)>1 and l(ay)=1. We assume now the validity of (12) for strings
a;,a, such that min (l(al),l(az))<k and let B;,B, be two different strings
such that min (l(ﬂl),l(ﬂg)) < k1. Since the case when the length of one
of the strings is 1 has already been dealt with, we may assume thab
Bi=am& (1=1,2) where I(&)=1&)=1 and min(l(al),l(ug))<k. Hence
we have formula (12) or (11) according to whether a; 7%, or a;=a,. Using
the definitions of Is(x;) (i=1,2) we easily reduce the formula to be

- proved to the following one:

(13) gr"[f’al(xl)-FEI(BH)-G(Zl7X17Y1)-Faa(xz)-r£g(5'2)
. G2, %5, ¥2) D ~F(21,2,)]

If a;5%a,, this formula follows from (12), III5, 1113, and I2. I ay=ay,
then &=£¢&, (since By5%f,) and (18) follows from (11), 12, TI3, and II2.
Lemma 11 is thus proved.

L.12. The formula G(x,y,z) is normal.

Proof. Let a,B,y be strings such that Gla,f,y), i e a=fiy.
We have to prove first that

(14) Fi—>[To(x).Tp(y). Ty (2)OG(z,¥ ,2)]-
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‘We proceed by induetion with fespect to Uy). If Uy)=1, then we
use the definition of I',(x) and reduce (14) to the proof of
51"*[1119(11)-115(37)-Tv(v)'Fv(z)-G(X’u7V)DG(X7Y7Z)]-

This is an immediate consequence of L.10 and I2. Let us now assume
that formula (14) has been proved for strings y satisfying I(y) <n and
let I(y)=n. We may assume that y= 3¢ where [(§)=1. Hence a= (#4)¢ and

Ta(x)= (Hu,v)[Tps(u). Le(v) . G(x,u, V)],
Ty(z)= (Es,6)[Ts(s). Te(t) . G(z,8,1)].
This shows that (14) is equivalent to

(18)  F1—>[Tps(0).Lp(y)-Tols). Te(v). Te(t). G(x,u, 7). G(z,8,6)2G(x,¥,2)].

In order to prove this formula we observe that, in view of the inductive
assumption

Jl“)[rﬁd(u Tg(y). I5(s)OG(u,y,s)]
whence

Fr>{Tps(u).Tp(y) - Ta(s) . Te(v)
.G{x,u,v).G(z,8,v)D[G(x,u,v).G(u,y,s).&{z,s,v)]}
In view of III4 this formula gives
F—+Ta(). Tp(y) . Ts(s) . Te(v). G(x,1,v).G(z,5,v) DG(x,y,2)]

which in view of I2 and L.10 implies (15). Formula (14) is thus proved;
We still have to prove that if as:py, then

(16) Fi~>[Ia(x). Tp(y). Ty (z) D ~G(x,y,2)].
To show this, we use (14) and obtain

v g1—>F T T (YD GHs
whence by TIT2 a(y). T(5) - Ty (s) DG{s,¥,2)]

1 Fr=>[Ta(2). Tp(y) . Ty(2) . Tpy(8) . ~F(x,8) D ~G(x,y,2)].

Since & —[I.(x).Tp(8)D~F(x,s)] by L.11 and &F,—(&s) I (s) by 1.10
we obtain (16) immediately from (17). Lemma 12 is thus proved.
L.13. Formulas without quantifiers are normal.
Proof. By L.8, 1.9, L.11, and L.12.

In the next few lemmata we shall establish the normality of certain
formulas containing quantifiers.

) '].Jefiniti(_)n. Let M(x,,...,%¢,y) be a formula containing the free
individual variables x,...,%4,y and the predicate-variables A,B,C,F,G.
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‘We shall say that M satisfies the finiteness condition with respect to the
variable y if for arbitrary strings ay,...,o there is an integer 10 and
1 strings fi,-.., 5 such that

1
(18) Fr—[Toy(Xa) oo Do (=) . M(Zy 5 oy X, F) D_E,'I’ﬁi(y)].

L.14. If M satisfies the finiteness condition with respect tv the va-
riable v, then so does the conjunction M. N where N is an arbitrary formula.

L.15. A normal formula M(Xy,...,Xk,y) satisfies the finiteness condi-
tion with respect to the variable y if and only if arbitrary strings e,.

ey Ok
determine an integer >0 and strings yy,.,yn such that

(19) 51—7{11&1(X1)-..Fuk(Xk)D[i\I(Xl‘ 3 Xea ¥ "vay Yy

Proof. If (19) is satisfied, then so is (18) with I=k and pg;=v,
(i=1,2,...,0). Let us now assume (18). The formula M being normal
we have either

(20) Frr [Ty (1) o T (i) - Ty (¥) PM(xy 5 oo, Xy F)]
or
Fi—+[T, (Xl) uk (%) Pﬂ]( V)2 ~M(Xy, ..., %5, 7)]
for each j=1,2,...,L. If we denote by yy,...,ys those of the /s for which
(20) is true, we mme(llately obtain formula (19).
1.16. If M is a normal formula and (19) is true, then bMlag,..., 2, )
Tolds if and only if B ds identic with one of the SIYiRgGs yiy...i Vs
Proof. It follows from (19) that FM(ay,...,ar,p) holds if and only
if one of the formulas FI,,(f) is true whence the lemma follows by L.3.
L.17. If M(Xy,...,%x,¥) 95 a normal formula satisfying the finiteness
condition with respect to the variable y and if N(xy,...,Xx,¥) is an arbitrary
formula, then the formulu (Hy) [M(Zy, e s X5, Y) - N(Zyy ey Xie ¥)] 38 normal.
Proof. Let ay,...,a be arbitrary strings such that
(21) }"(EY)D\I(QM“'7akyy)-N(a17'":ak7y):l'
This means that there is a string g such that
M(ay, ... 00, 3) and FN(0yy-ee 5 0k B)-
The formulas M and N being normal, we obtain
gl_)'[rn(xl) -~-Fuk(xk)'Fﬁ(Y)DM(le"-7XkyY)-N(X13'-';Xk7Y)]r
whence by 1.10 we get

Fy— {0 (%q) oo Ty (X)) D (Fy )[M(x,, s Xy 7) N (X o, %, )13 -
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Let us now assume that (21) does not hold. Since M satisfies the
finiteness condition, we may assume that (19) holds. Hence on using L.16
we infer that ~N(ay,...,ax, ;) for j=1,2,...,h whence, N being normal,

(22)  Fri—[le(%a) Loy (Za). Ly (7)) D~V (X o, Xiy 7)1, j=1,2,...,h.
In order to prove L.17 we have to show that
Fr oy (K1) o Do (Xa) D ~ Ty ) MKy ooy Xy 7) - N(Zy ooy Xty T}
or, what amounts to the same,
Fr—>[Toy(X1) e T (%) M(Zy oy Ky §) D ~N(Xy ooy Xy 7).

Using (19) we reduce this formula to the following one:

h
gl"[Fal(XﬂmFak(Xk) -igfy,(Y)3~N(Xu---,Xk,Y)]'

Since this last formula is a direct consequence of (22), lemma 17 is proved.
L.18. For every string a

(23) 571~>[1’a(X)-G(XyY,ZDng(Y)fv(Z)]

with summation over strings B,y satisfying the equation a= fy.
Proof. If I(a)=1, then the summation ), is void and (23) is equi-

By
valent to the formula &, —[I,(x)D~G(x,y,z)] which follows from III3.
Let us now assume L.18 for a string « and let 7= af where U&)=1.

In view of the definition of I'y(x) the formula to be proved is equivalent
to the following one:

(24) F1 > La(0).Te(v). G(x,u,v). G(x,¥,2)D I Ty(y). [u(2)] ]
%]
with summation over strings 8, satisfying the equation 5= de.
Sinece
g—l"}{G’(xyuyv)-G(X:YJ)DF(Y:U-)'F(VyZ)
V(EL)G(y,u,b). G(v,t,2)V G(u,y,t).G(z,t,v)]}

by IIL5 and II12, the proof of (24) can be reduced to the proof of the
following three formulas:

(25) Fi—>[Te(u).T(v). Fly, ). F(v,2)D 3 Ty(y). Iu(z)],
[.X3
(26) F1>La(w).T(v). G(y ,u,t). G(v,b,2)D I Ty(y). Lu(2)],
&
&0 Fr>Lu(). Te(v). 61,7, t). G(z,1,7)D 3 Ty (y) . I (z)].
dye

@
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Of these three formulas (25) is an immediate corollary of I1, I2
and the observation that a,& represent one of the possible sets of values
for 8,¢; (26) is obvious in view of 113 and the observation that (&)=1.
It remains to prove (27).

By means of (23) we reduce (27) to the conjunction of formulas
of the form

51—>-[1",g(y).1",,(t).I’E(V).G(z,t,v)Dgl",(y).I’E(z)]

where fy=oca. In view of the definition of I'.(z) this formula is equi-
valent to

Fy~[Tp(y) Tpe(2)D g Ts(y).Tu(2)]

and this formula is obvious since 8,y represent one of the possible sets
of values for d,e. (24) is thus proved and hence L.18 is proved by in-
duetion.

L.19. The formula G(x,y,z) satisfies the finiteness condition with
respect to the variable y and with respect to the variable z; the formulas xSy,
xRy, and xPy satisfy the finiteness condition with respect to the variable x.

Proof. Immediate from 1.18.

L.20. Formulas xSy, xRy, and xPy are normal.

Proof. Immediate from L.19 and L.17.

L.21. Formula x1y is normal.

Proof. The formula (Ht)[G(z,u,t).G(t,x,u)] is normal in view of
L.19, L.17, and L.12. Applying again L.17 and L.19 we find that the
formula (Hz){(zPy).(Ht)[G(z,u,t).G(t,x,u)]} is normal. Finally we note
that the formula C(u) satisfies the finiteness condition with respect te
the variable u and using T..14 we infer in the same way that the formula

(Eu) (C(u).~ (uPx). (Hz){(zPy). (At)[G(z,u,1). G{t,x,)]))

is normal which proves the lemma.

1.22. Formula xIy satisfies the finiteness condition with respect t.o
the variable x.

Proof. By L.19 each string « determines a finite number of strings B
such that

Fi [ La(y)- (827D 2 T (2)]-
By L.18 each f; determines a finite number of strings y such that

F, >[I (2).G(z,1,t)D Zkz‘l-‘}’jk(t)]'
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Finally each yj determines a finite number of strings dj; such that
51—->[J’yl.k(t).(}(t,x,u)3IZ,’Fajkl(x)].

Combining the last three formulas we get

Fi~[Lau(y) - (2Py). G(z,u,t). G(t,x, U)D_,J%’Pajk,(x)]

from which we immediately obtain the lemma.
L.23. Formula V(x,y,2z) is normal.
Proof. First we observe that the formula

(w,v,r)[(wPr).G(w,u,v).G(v,x,0).(rSz).~(sPr)]

is normal in view of .19, L.17, and L.14. The formula C(u).G(t,y,u)
satisfies the finiteness condition with respect to the variable t since
F1—[Tu(y) - Tp(u).C(u).G(b,y,1u) DI (t)] in view of the definition of I, (t).
In the same way we show that the formula C(u).G(s,u,t) satisfies the

finiteness condition with respect to the variable s. Hence by 1.17 the
formula

(E[b)[C(u)AG(t,y,u).(E[s‘){C(u).G(s,u,t).(E{w,v,r)[(wPr).G(W,u,v)
-G(v,X,u). (182). ~(sPr)]}]

ig normal. Prefixing this formula with the quantifier (Hu) we still obtain
& normal formula since CG(u) satisfies the finiteness condition with respect
to the variable u. By L.21 and L.8 we infer that the formula V(x,y,z)
is normal.

L.24. The formula V(x,y,z) satisfies the finiteness condition with
respedt to the variable x and with respect to the variable y.

Proof. Immediate from I.14 and 1.22.

L.25. The formulas xFIy and xLIy are normal and satisiy the
finiteness condition with respect to the variable x.

Proof. First we observe that

F1(~08(x) = (®n) {(u Px).[A(w) BT}

whence it follows by 1.19, L.17, 1.9, 1.8 that the formula OS(x) is nor-
mal. By 1.19, 1.12, and L.17 the formula (Et)[G(t,u,w).(t8y)] is nor-
mal and satisfies the finiteness condition with respect to the variables

w and u. It follows by L.12 and the above observation concerning CS(x}
that the formula

(&, W) {(EH[GLE,1, w). (45 Y)]. O(w, X, 7). CS(w))
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]

is normal. Finally we use 1.9, L.17, and the fact that the formula C(v})
satisfies the finiteness condition with respect to the variable v and infer
that the formula

(&) (O(v) - (E1, W) {(EE) [G(t, 1, ). (687)].G(w,x, 7). CS(u)})

is normal. This implies the normality of xFIy. .

From L.18 we easily see that x FIy satisfies the finiteness condition
with respect to the variable x. This concludes the proof of L.25 for
the formula xFIy.

Tor the formula xLIy the proof is similar.

L.26. The formula LN(x) is normal.

Proof. Immediate from 1..19, L.17, L.8, and the remark that

F,— (LN(x) = ~{Ey) [(B(y)VO(y)]. (yPx)3).

L.27. For arbitrary a the formula I'u(x) is normal and satisfies the
finiteness condition with respect to the variable x.

Proof. The lemma being obvious if I(a)=1, we may suppose thab
it holds for a string a. If {(£)=1, then

F > (Tl ) = (E) (). (E) [T5(v). Gl 0, 9)03).

The inductive assumption together with L.17 and L.12 implies that the
formula (H1){T,(u). (Av)[I:(v).G(x,u,v)]} is normal whence it follows
that so is the formula Ie(x). The proof that this formula satisfies the
finiteness condition is obvious.

1.28. The formulas Hpp (w,v) and Ep{x) are normal for an arbitrary
basis B and for arbitrary strings f,f’.

Proof. Immediate from L.8, L.17, L.12, L.27, L.21, L.22, L.23,
L.25, and L.24.

7. Proof that ¥ has no recursively enumerable model.
Let 4,B,C,D,E be recursively enumerable sets of integers, F a recur-
sively enumerable binary relation, and @ a recursively enumerable ternary
relation (the fields of F and G are subsets of the set of all integers).
I M(xy,...,Xz) is a first order formula with the free individual var.ia,bles
X;,...,% and the free predicate variables A,B,C,D,E,F,G and if the
integers p,,...,pr satisfy the formula M when the universe of discourse
iy interpreted as the set of integers and A,B,...,G are interpreted as
4,B,...,@, then we shall write =M(p,,...,pe). Let n<>(ks,ky, .., ks) be
a one-to-one correspondence between positive integers and finite sequences
of such integers. It is well known that this correspondence ean be chosen
in such a way that s and %; be primitive recursive functions of n. We
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shall write s=L(n), k;=K(n,j) for j=1,2,...,s; hence L and K are pri-
mitive recursive functions.

L.29. If |=&, then |=I},(p) = (Hy)[(L(g)=n).(K(g,1) € 4)

(I 6{K(g,i+1), Elg,5), K(g,1)).(E (g, L{g)) =1)]*).

Proof. The lemma says that p satisfies the formula I (x) if and
only if there exists a finite sequence k,,%,,...,k, such that ke 4, k,= P,
and G(kj4a,kp, k) for j=1,2,...,n—1. This is evident if n=1. If n>1,
then |=I7% (p) is eqnivalent to the existence of integers ¢, such that
=G(p,q,r), |=A(r), and =TI _,(q). Proceeding by induction we assume
the existence of a sequence kjky,...,kn~1 Such that k e¢A, k,y=g,
and G(kji1,k;,k) for j=1,2,...,n—2. We contend that the sequence
k1ykyy... shna,p is the required one. Indeed, the first term of this sequence
is an element of 4, the last term is identic with p, and G(k;41,k;,%)
holds for j=1,2,...,n—2. Hence it remains to show that G(p,k,—,k,),
i. e., that &{p,q,%,). This is done as follows. From II2 and I2 we obtain

F—-[A(x). A(y)DF(x,y)], F—~>[P(x,y). G(z,t,x)DG(z,t,y)].
Sinee =&, it follows that if %, ¢ 4 and r ¢ 4, then F(r,k,) and if F(r,k,)
and G(p,q,r), then @Q(p,q,%,). Since we assume that %, and » are elements
of A and G(p,q,r), we obtain G(p,q,k), q.e. d.

L.30. If =%, then the sets

X*=§ {(@p) =[5, (). D(p)}, T*=F {{"p) =T3%,(p)- B(p)1}
are recursive and disjoint.

Proof. The recursive enumerability of the sets X*, ¥* follows from
lemma 29 and the assumption that the sets D and F are recursively
enumerable. The assumption that sets D and B satisfy the axiom IV4
proves that the intersection of X* and Y* is void.

We shall show that every integer ig either an element of X* or an
element of Y*. Indeed, from L.10 we find that F—("x)I (x) and
hence there is an integer p such that [=I73,(p). Since by L.26

F—>[I3,(x)DLN(x)],

we obtain further that if |=I% (p), then [=LN(p). Since the axiom IV3
is satisfied we obtain further that if [=LX(p), then either p ¢ D or p ¢ E.
If peD, then =[I3 (p).D(p)] whence n e X*; if p ¢ B, then, similarly,
n e X¥*, The sets X* ¥* are thus recursively enumerable, disjoint, and

each is the complement of the other. This proves that both sets are re-
cursive?), q. e. d.

8) (j)ﬂ. sifands here for the expression: for each j satisfying the inequality j< n.
®) This is a well-known result of Kleene. Cf. for instance {31, p. 307.

@
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L.31. If =, then XCX* and YCT*.
Proof. Let us assume that neX, i e. that 4, e Sz. Hence there

is a B-generating string y such that 1, is the last ingredient of y. Hence
 Z5(y). (A LIy) and therefore by 1.25 and L.28

Fi Iy (x). Iy () D85(x) . (y LIx)].

Using L.10 as well as the formula &, [T, (y)D LN(y)] resulting from L.26
we obtain
F1—+{T3,(¥) D (Ex)[[(x). En(x). LN(y). (yLIx)}
whence by IV1
F—[I4,(y)2D(y1]
and finally by L.10
&~ ("y)[13,(y). Dy )]
This proves that
= ("y)[1%,(3)-D(y)]

and hence that there is an integer p such that I=[I3 (p).D(p)], 4. e. that
n e X* This establishes the inclusion XCX*. The proof that YCY*
is similar.

THEOREM 3. There are no recursively enumerable sets A,B,C,D,E
and no recursively enumerable relations F,G such that |=§&.

Proof. It follows from lemmata 30 and 31 that if there were such
sets and relations, then X and Y would be separable by means of re-
cursive sets, which contradicts our choice of sets X and Y.

8. Formulas no model of which belongs to P,.Q,. There
exists a simple procedure by means of which it is possible to obtain
from & a formula &' such that no model of &’ belongs to the class
P,oQ,. It is sufficient to take as & the conjunction

F.(x,y,2){{A'(x) =~A(x)].[B(7) =~B(F)].[C'(y) =~C(2)]
[F(x,y) =~F(,7)].[G(x,y,2) =~G(x,y,2)]}

where A’,B’,...,G’ are new predicate-variables.

If 4,4',...,G,G" are recursively enumerable sets and relations and
if &' is true when A is interpreted as 4,...,G' is interpreted as @', then
we say that 4,4',..,6,6" define a model of class P,. If A,4’,..,&,&
are complements of reeursivel)x enumerable sets and relations, then we
say that they define a model of class Q;.

THEOREM 4. The formula F' has no model of class P, and no model
of class Q.
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Proof. There can be no model of class P, since & has no such
model. If there were a model of class @, then A’,B’,...,¢ would be
complements of recursively enumerable sets and relations and (since
ned=néd,..,Gp,q,r)=non@(p,q,r)) the sets and relations 4,B,...,¢
would be recursive. Theorem 4 follows thus from theorem 3. ‘
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Generalized dissimilarity of ordered sets*
by
F. Bagemihl (Princeton, N. J) and L. Gillman (Lafayette, Ind.)

1. Introduction. The present paper arose from an attempt to
solve the following problem: does there exist a (simply) ordered set E
of more than one element, such that, for every pair of distinct elements a
and b of B, the sets F—{a} and E—{b} are dissimilar (i. ¢., there is no
one-one order-preserving correspondence between the two sets)? An easy
argnment shows that there is no such set E of power 8y; we ghall prove,
however, that there does exist a subset of the continuum, of power c=2%,

‘possessing the property in question. Generalizations in various directions

will also be obtained. In order to motivate these generalizations as they
appear in the formal statements of the theorems in section 6 below, we
shall give here a rough indication of their underlying ideas.

First of all, it is possible to find a subset E of the continuum such
that not only is there no similarity transformation between B—{a} and
E—{b}, but there is not even a non-trivial “pseudo-similarity’ trans-
formation of E— {a} onto B —{b} (cf. Corollary 6.2 (d)), where we define
(cf. 4.8) a pseudo-similarity transformation of an ordered set M to be
a single-valued function (not necessarily one-one) defined on M that is,
with respect to some decomposition of some dense subset of M into
mutually exclusive subintervals of M, & similarity or anti-similarity on
the interior of each of these subintervals. (This is clearly a more general
kind of transformation than the “semi-similarity’’ introduced by Aron-
szajn [1]. In fact, there are 2¢ pseudo-similarity transformations of the
continwum into itself.) Then, it is not necessary that only single elements,
o and b, be removed from E in order to obtain, say, dissimilar subsets
of F; these single elements may be replaced by arbitrary distinet subsets
of B of power less than ¢ (cf. Corollary 6.2 (d)). Another generalization
is concerned with replacing the continuum by any ordered set M of
power ¢ containing a subset of power ¢ that can be imbedded in the
continwum; for any such M, we obtain a decomposition into ¢ mutually
exclusive subsets (the sets E° in Theorem 6.1), each of which has the

* Presented to the American Mathematical Society, December 29, 1953.
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