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About sets with strange isometrical properties (I)
by .
Jan Mycielski (Wroctaw)

The problems considered in this paper were put forward by
W. Sierpinski. They were suggested by the observation that certain
plane sets are congruent with their subsets which are obtained by taking
out of them a certain single point. Such are the set of points of the
straight line with coordinates 1,2,3,..., and the set of points of the
plane with complex coordinates ef,e%,¢¥, ...

In this connection we have the following results and problems to
deal with:

L. A linear set E contains no more than one point p such that

E—{p}=E")
(the symbol =~ denotes congruence of sets; {p} denotes the set con-
taining one point p).
I1. Does there exist a set E containing two different points p and gq

such that
B—{p)=E=BE—{g}??

IIX. Does there exist a non-empty set E contained in the plane or in
the 3-dimensional BEuclidean space such that
E—{p}~=E for each peE?

(In the Hilbert space 1* such a set exists)?).

Problem II and thus also IIT are negatively solved for linear sets
and sets lying on the circumference of the circle (by theorem I). The
answers to those problems are not known in the case of plane sets?).

1) See Sierpinski [4], p. 1. or [6], p. 7. The same theorem remains true for sets
lying on the circumference of the circle, which can be verified by an easy modification
of the proof of Sierpinski.

2) The existence of such a plane set was affirmed in Sierpinski [4], p. 2, bub the
proof contains a mistake — see [5], p. 5, or [6], p. 117.

%) The problem and the example in I* are formulated in Sierpifnski [4], p. 4, and
in [6], p. 10.

4) See the Remark at the end of this paper.
Fundamenta Mathematicae. T. XLIL 1
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The essential result of the present paper is & pos.itive _answer to. pro-
blem III, and thus also IT, in the case of the 3-dimensional Euclidean
space (see theorems 2 and 3)°3). ) ]

Many generalizations and simplifications, especially the constant us,e
of algebraical methods in this article, have been sugggsted by J. Lo,
to whom the author wishes to express his sincere gratitude.

We adopt the following notation:

If S is @ set of transformations of a space R, then for FCR we put

8(B)=2) o(B)
cesS
where o(B) denotes the transformation o of the set H.

1 denotes the identity-transformation, and the unity of groups (all
groups will be multiplicative).

Let & be a group, For each two sets §,RCG and an element ¢ ¢ ¢
we denote by @S and SR the sets of elements of @ which have the forms
@o and op respectively where o eS8 and g e R.

If M is a set of transformations, then we denote by [M] the group
generated by M (é. e. the smallest group of transformations containing M —
the set of gemerators).

A group [M] is said to be free if each of its elements £l can be
represented only in one way in the form

(1) PP
where #n is a natural number, k;,k,,..., k, are integers different from 0,
®y3@a5.yPne M and g;75@iy for i=1,...,n—1.
The expression (1) is called the canonical form of the element g.
In the proofs of our theorems we shall use the following theorem
of Sierpinski:
(Ty) There exisis a free group of the rotalions of the sphere®) with o sef
of generators of power 2%°7).

Our first theorem will be the following one:

THEOREM 18). For each set P in the 3-dimensional BEuclidean space
which can be covered with a set L of straight lines of power < 2%, having
a point O in common and such that O ¢ P, and for each family F of sub-
sets of P which is of power <2* there emists a set B such that PCE,
E=x,PF and

E—Q=~E for each QcT;
%) Bee also Mycielski [1] where these results are formulated.
f) Or a group of rotations of the 3-dimensional Euclidean space around a point.
7) Bee Sierpinski [2], p. 238, lemma 1. The proof is effective.
*) The proof of this theorem will be effective only when T <C¥,.
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the isomelry transforming E—Q in E being a rotation around the
point O.

Yet if the set P is bounded (lies on a sphere 8), then the corresponding
set E is bounded (lies on the sphere §).

Let us observe that problem IT is positively solved by this theorem
in the case of the three dimensional space and moreover, that

1° Bach set P of power < 2" fulfils the hypothesis of the theovem.

2° The family ¥ can consist of all one-point subsets of P (since
then evidently F< 2%),

The proof of theorem 1 will be preceded by two lemmas:

Levmas 1. A free group [M] contains for each NCM such a subset
Sy that

2) - 1e 8y,
(3) eSy=8y—{1}  for each geN,
(4) w8y=8y  for each wye M —N.

Proof. Let Sy consist of 1 and of all elements of [}] which have
the canonical form

¢'{1¢’z"..‘¢,,k" where k>0 if g¢,eN.

Evidently (2) is satisfied.

Let us prove (3). Let gpe N; then ¢=1¢ Sy i.e. 1¢pSy. If 7e Sy
and vs£1, then ¢g—'re Sy, i e. 7e@pSy; which completes the proof be-
cause evidently pSyCSy.

For proving (4) it is enough to observe that if y e M —N and v e Sy
then yv e Sy and y—*v ¢ Sy, because it means that pSyCSyCySy, q. e. d.

We shall say that a group @ of transformations of a space R is free
on & set PCR if for each 0y,0, ¢ G and each P1,Ps € P the equality

01(P1) = 0y(Ps)
implies the equality o,=o0, and therefore also p,=p,.

LEMMA 2. If P and F fulfil the hypothesis of theorem 1 then there
exisis a_free group [M] of rotations around O which is free on P and in
which M=F.

Proof. Let M’ be a set of rotations around O of power 2% gener-
ating a free group [M’] (theorem (T,)). We shall prove the existence
of such a set M''CM’ of power 2% that the group [M’'] is free on P.
It will prove the lemma because we can take for M any subset of M’
which is of power F (the existence of such a subset results effectively
from the hypothesis F<2%).

1*
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» By hypothesis there exists a set L of gtraight lines with a common
point O¢ P which covers P and such that
(5) T<2®.
Tor arbitrary straight lines I;,l, e I let
Ay, =F (o e [M'T0(b)=0h),
[

and let My, be the set of those generators from M’ which occur in the
elements of Apy,.
We shall prove that

(6) ﬁ1112<30-
Let ¢,p,x € Apy, and @ #yp; then
o) =1, p(l)=1, w(h)=1,

and therefore
e y(l) =1, piy(l)=h.

By these equalities the rotations ¢—1y,p=1y have a common axis I, be-
cause, constituting elements of a free group, they camnot be rotations
with the angle . This implies that their product is commutative

(Pt y )= (v~ 12) (p™*x), e perlrpTlo=y.

The hypothesis that gy, and [M'] is free implies that this equality
is possible only if each generator of y occurs in ¢ or y (because the ca-
nonical forms of the right and left side terms must be equal).

Then My, consists only of the generators occuring in ¢ or y, which
proves (6).

Let

(1) M=M= 3 My,

I1,l2€L

By (3) and (6) we have M =2%.

Let us prove that [M''] is free on P. Let p,,p, ¢ P; then there exist
such straight lines 1,1, that p, el e L and pyelye L.

Let 01,0, ¢[M"] and let us suppose that

(8) 01(P1) = 0y(Ps).
Then, as 6;,0, are rotations around 0, we have also
o1(l)= oa(ly),

which impl_ies 050, € Apg, But by (7) the only common element of [M'']
and A4y, is 1 (only if I,=1,); therefore o3'e,=1, i. e.
(9) 017= 0y

and thus  p;=p,.
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‘We have proved that (8) implies (9), 7. e. that [M"'] is free on P.
Thus we have proved that the set M’ contains a set M'"' with the pro-
perties we need; q.e.d.

Proof of theorem 1. P and F fulfil the hypothesis of the theo-
rem. Let [3/] be the group fulfilling lemma 2 and Sy the set from lemma 1.

As M=F, we can suppose that M= {pglger, wWhere @oztpgr if

@#Q".

Let
(10) Np=E(U=¢Qyp €QeF),
(11) E=) 8y (p

pEP

‘We shall prove that E fulfils theorem 1.

Evidently PCE and B= ROP]’

If P lies on a sphere § then P< 2% (because each straight line cuts S
in two points at most and if P >2", we cannot have L <2 %). Then we
can choose as the point O the centre of §, and (11) implies ECS. It is
also obvious that if P is bounded, then E is bounded.

It remains to prove that

(12) po(E)=E—@Q for each QeF.

In fact, by (10) if p ¢ Q then pg e N, and if p ¢ P—@ then gpe M —N,.
Then by (11) and lemma 1

= 0o8n,(0) -+ Z,’ 908w, (p)= Z(SN—{l})( »)+

peQ peP—

> Sn,(p)-

peP~Q
By lemma 2 and (11) this proves (12), q.e. d.
Now we shall prove the theorems solving problem IIL

THEOREM 2. There exists o set B of power 2% lying on the sphere in

- the 3-dimensional Buclidean space such that for each at most enumerable set D

E—D~ E¥),
To prove this theorem we used two lemmas:
LeEMMA 3. Let [M] be a free group, a set NCHM be given,
(i) SC[N];
and for a sequence {Q:}e<a of Subsets of S there ewists such a sequence of
generators {pgle<cC N that
(i) pe8=8—0Q¢

9) See Sierpinski [3] p. 183.

1) Here and subsequently the symbol ~ denotes congruence of sets by rotation;
reflexion and translation are excluded. A generalization of this theorem will be given
in part II of this paper.

for each &<a.
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Then for each set QCS8 and for each generator ¢ ¢ M — N there exists such
a set R=R(N,S8,0,¢), that

(iii) E=y,87,
(iv) SCRC[N + {#}],
(¥) eeR=R—Q; for each E<a,
(vi) gR=R—Q.
Proof. Let

PR .. pn
be the canonical form of an element v e [N+ {p}]—{1}.
(13) I, will be the set of all those 7 in which @,=g.
(14) Iy will be the set of all those ¢ in which g, N.
We verify (as in the proof of lemma 1) that

(15) eelo=1,, ee(Iy+{1})=1Iy+ {1} for each £&<a
and that
(16) ely=Iy, @I, +{1})=T,+{1}.

Let us observe that

o o

(17) the sets @, ngokQ, IN(Z‘¢’<Q), 8§—-Q, I,(8—Q) are disjoint
=1 k=1
with one another, which follows from the fact that by (i), (13) and (14)

the canonical forms of elements belonging to different of those sets are
different.

We put
(18) R(N,8,Q,9)=8+1,(8~ Q)+ (In+{1}) | 3 #+6)
k=1
(it is the sum of the sets occuring in (17)). Then by (17) we have also

A9 RS, 0,0=3 540+ Iy $90)+ 1+ () (5— ).
=0 k=1

Now we shall verify that R fulfils (iii), (iv) i). (iii) i i

Y y y (v) and (vi). (ifl) is evi-

deiltly true .l?y (1%), (14) and (18). (iv) results from (i) and (18). (v) re-

sults from (ii), (15), (17) and (18). (vi) results from (16), (17) and (19).
Thus lemma 3 is proved.

LEMMA 4. A free group [M], where M=2% contains such a set U

p ORI
of _power 2% that for each non-empty at most enumerable set QCU there
extsts such a generator gg e M that

peU=U—¢Q.
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_ Proof. Let w, denote the smallest ordinal number of power 2% 1),
and let M={¢E}E<ml 12y, : i
We shall define by transfinite induction three sequences of sub-
sets of [M]

(vii) {Bgde<ayy  {Qihna<ey  {Qelecoy

such that

(20) 1<@e<ng, By=wod i E<os;

(21) Q:C8:Cl{phye]l H E<i<y;

(22) PeSe=8;— Qs i E<i<amy

(23) BeCley Se#8 1 E<i<an;

(24) for each n<w, the sequence {Qj},<,, consists of all non-empty

at most enumerable subsets of §,;
(25) for each pair u,7, where u,n<w;, there exists such a & <wa that

Qi=Qs.
This proves lemma 4, because it is enough to put
U= 8:.
§<wy

In fact (20) and (23) imply T =2%. Further it is obvious, that if QCU

and 1< <R,, then there exists such an a<w,, thab QCEZ,' 8. Then
<a

by (23) we have QCS,, and by (24) we have @ ¢ {Qi}u<ay; thus by (25)
there exists such a < w; that @=Qp. It follows from (22) and (23) that
@sU=U—@, which proves that U fulfils lemma 4.
Then let us give the inductive definition mentioned above of the
sequences (vil) fulfilling the conditions (20)-(25).
. We put
(viil) Qo={po}; S[):{(PO;‘P%:‘PS;---}; {Qz}ﬂ<m‘ is the sequence of all non-
-empty at most enumerable subsets of S,*).

It is obvious that the conditions (20)-(24) are then fulfilled.

Let us suppose that for a certain ordinal number a<w, the sequences
{Sete<ar {Q,’j},’,’,iﬁ,;., {Qs}s<o ave already defined and fulfil (20)-(24). Then
it follows that '

(26) There exist such pairs of ordinal numbers (utyms), where g <ews
and 7, <a, that QZ‘}‘ ¢ {Qe}e<a Db for each pair (u,n), Where u<ws,
a
n<a and gt <pitni, we have Qe {Qeleca-

1) We do not assume the continuum hypothesis, which implies w;= ;.
12) The axiom of choice is used here.
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Let (yﬂ,na)‘ be such a pair in which g, is the smallest of the ordinal
numbers p,; 7. is then also uniquely defined and <a.

(27) If we put ¥N={psleca; 8= 255: Q@=0.*, ¢=g¢,, then the hypo-
theses of lemma 3 are fulfllled

Therefore we can put, further,

(ix) Qo= Zzy Squ({‘PE}KaaegSE;Qa:qju) {Q/t}l4‘~w;. is the se-
quence of all non-empty at most enumerable subsets of §,12).

Tt is obvious that the conditions (20)-(24) are fulfilled because lemma 3
by remark (27) gives a suitable definition of &S,.

Therefore (viii) and (ix) are an inductive definition of the sequences
(vii), which fulfil (20)-(24).

It remains to prove that the sequences (vii) defined in this way
fulfil condition (25). By the first of the definitions (ix) it is sufficient
to prove that the sequence {(ug,7s)}ecw, cOntains each pair (u,n) oc-
curring in (25). It follows by means of (26), because for each such pair (u,7)
the power of the set of all pairs (u',7') for which ' +#n'<pu+7 is <2%,
but w,=2".

Thus by the previous remarks lemma 4 is proved.

Proof of theorem 2. Let [M], where M=2%, be a free group
of rotations of a sphere § around its centre (theorem (T,)) and p such
2 point on § that for each o,7 e[ M]

(28) o(p)=1(p)

{if such a point does not exist it is sufficient to take one generator out
of M and to choose the point p on its axis; such a point will already
have property (28)). :
Let U be a subset of [M] fulfilling lemma, 4.
We put

(lemma 3);

implies o=1t

E=TU(p).

Evidently E=2"% and E lies on 8. By lemma 4 and property (28)

it is obvious that if DCE and 1<D< Ry, then there exists such a rota-
tion p e M that

X ¢(B)=E-D,
which proves theorem 2.

TEROREM 3. For each infinite cardinal number m<2%, there ewists

on the sphere in the 3-dimensional Buclidean space a set B of power m
such that

. E-F~F
for each finite set F.
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In the case of m=y, this theorem can be proved effectively. Such
an effective proof is similar to the proof of theorem 2; obvious modifi-
cations must be introduced only in lemma 4 where 2" must be replaced
by 8, and the sets @ may be non-empty and finite. We observe further
that to obtain theorem 2 the axiom of choice was used only in the proof
of lemma 4 when we arranged the set M in an w;-sequence, and in the
definitions (vili) and (ix). In the present case we need only the exis-
tence of an w,-sequence of rotations of the sphere which generates a free
group; and this follows effectively from (T,). In the modifications of
the definitions (viii) and (ix) which must be introduced we need only
to arrange in wy-sequences the sets of all finite subsets of sets ordered
in wy-sequences, which can also be done effectively.

In the case of m=2" theorem 3 is evidently true by theorem 2.

Proof of theorem 3. We shall use theorem 2. Let H be a set
fulfilling that theorem. Then we can assign to each point p e H such
a rotation ¢, that
(29) vl H)=H—{p}-

It is evidently sufficient for proving our theorem to construct such
a set B of power m that

(30) E—{p}~E
because for such a set E the congruence F—F~F is also valid for any

finite set .
For each set KCH, let

Gx= [E(P ¢p~peh)]

Let F, be an arbitrary subset of H of power m, and E,y;=Gg, (E,)
for n=1,2,...
We put
-]
(31) E=H~ Y E,"»).
n=1
Thus we have E=gom, because E,CE.
For proving (30) it is sufficient to show that

for each pe E,

(32) ¢ (E)=E—{p} for each peE.
It is obvious that
(33) qa,,(z E,,):Z E, for each pel.

1
The equalities (29), (33) and (31) obviously imply (32), q.e. d.

) ~ is the intersection sign.
L=4
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Remark. None of the constructions on the sphere which we have
described above can be done in this way on the plane, because there
exists no free group of isometries of the plane with more then one ge-
nerator. It follows that for each pair a,b of similarities of the plane the
following relation holds:

(x) abta~2 bR a PP e TR =11,
‘We shall prove a certain generalization of the relation (x).

Let us take the notation (a,b)=aba™*b™* — it is the so called com-
mutator of the elements a and b. We have the following assertion:

(Ty) For each four similarities of the plane @,p,x,n the following rela-
tion holds:
() (22 =1.

(For example the relation (x) follows by the substitution gp=a, py=17,
2=b7" n=a).

Proof. Let ¢ be a similarity of the plane with a complex coordinate z.
Then 2 is a similarity without reflexion (preservihg orientation), s. e.

(34) Bir)=apz+be,
where g and b are complex numbers uniquely defined by ¢ (50 ag#0).
Thus we have also
(35) fpa =,
a2

From (34) and (35) it follows that for each two similarities ¢ and =
13116 s.im:ila,rity (0% %) is of the form 24-b (where b is a complex number),
%.¢e. it is a translation. The produet of translations is commutative; this
proves (T,), because the commutator of commutative elements vanishes.
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Introduction

We shall denote by w(h) functions defined and never assuming zero
for k>0, monotonic, non-decreasing and tending to zero for h—0: In ad-
dition we shall suppose that
{1) lim A(h) <co  where A(h)= sup —t-

> t0 o<r<n ©(F)

As regards funetions denoted in the sequel by f(z) we shall always
suppose that they are continuous, defined and bounded in the interval
{—o00, +o0).

Let H, denote the class of functions which for every x and every h?)
satisfy the generalized condition of Holder

2) . [fa+ 1) —f(2)] < Maw(|h]),

where M denotes a constant dependent only on f(x). We shall suppose thai
w(h) satisfies the condition (1)2).
1) If condition (2) is satistied for every h where |[hj<<a for a cerfain positive con-

stant a, then f(x) will belong to class Ho.
?) In the case of lim A(h)=oo only constant functions would belong to class H,.
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