60 A. Shields
Remarquons que le théoréme peut étre faux sans ’hypothése que @
soit connexe. En effet, soit ¢={0,1} un groupe de deux éléments, cha-
cun de mesure 1/2. Soit A=B={0}. Alors, A4 B={0}.

TeEOREME 2. Soit G un groupe topologique compact quelcongue. Soient
A,BCG mesurables avec m(A)+m(B)>1. Alors on o A4 B=G.

En effet, soit #e@. Alors, m(z—4)=m(4), done (x—A)~Bsgp
(Pensemble vide), ce qui implique que e A+ B, c. q.f. d.
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A property of plane homeomorphisms
by
H. G. Eggleston (Cambridge)

In a real Euclidean plane E let (x,y) denote the Cartesian coordi-
nates of a point p, and let @ denote the set of all homeomorphisms of B
onto itself which are of the form

(miy)ﬁ(mlyyl)
where

.

o' =w, Y=0zy) or IF=Bwy), Y=Yy

It is supposed that either the first alternative holds for every point (z,y)
of F or the second alternative holds for every point of E. Denote by &
the group formed by all finite superpositions of any of the tramsforma-
tions of . S. Ulam?) has raised the question as to whether it is possible
to approximate to any arbitrary homeomorphism of the plane onto itself
by members of =.

The solution of the problem depends upon the meaning to be as-
signed to the word “approximate”. In § 1 of this paper it is shown that
if the approximation is to be uniform then the answer is in the negative,
that is to say, if for any two homeomorphisms $,,$, of the plane E

we write
8($1, ) =up. bil. o($:(p), Hap)),

where ¢ denotes the Euclidean distance, then a homeomorphism & can
be constructed such that for any member § of 5, §($H,6)>1.

The example that is constructed here, depends essentially upon the
fact that the plane is not compact. If we restrict ourselves to compact
subsets the situation is different. In §§ 2 and 3 we prove that if 8 is
a closed square with its sides parallel to the coordinate axes and if 6
is the subclass of the members of @ which leave each frontier point of S
fixed and it =’ is the group generated by finite superpositions of mem-

1y 8. Ulam, Probléme 60, Fundamenta Mathematicae 24 (1935), p. 324.
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bers of @’; then given any plane homeomorphism & of § onto itself that
leaves the frontier points of § fixed, there exists a sequence of homeo-
morphisms §, belonging to 5’ such that

5'(5”03):11?;;3(1. Q(Sjn(p),@(p))ao as n—>oo.

The result proved in § 3 is used in § 4 to show that if we interpret
Ha—>0 a8 n->oco to mean that $,(p)— G(p) for every point p of E then
to any given homeomorphism & corresponds a sequence of homeo-
morphisms §,, belonging to & such that $,—~® as n—>oo.

§ 1. Uniform approximation

Let A denote a simple arc with end-points a,,a, in the plane E and
let p be any point of the plane which does not belong to 4. Tet q de-
note a variable point on 4. Consider the change in direction of the line 4,
directed from p to ¢ when ¢ describes 4 from a, to ay. It we fix on a di-
rection through p from which to measure angles, say pl, take a particular
sense of rotation as positive and assign a particular appropriate value

to <Ja;pl, then there will be two points (or more) of A say ¢' and ¢”
such that fmj all ¢ of 4,

LgPI<Igpl << g'pl.
‘Write
(1) L4'pl—Xg'pl=0o(4,p),
(2) ‘ B(A)Y=nup.bd. a(4,p).
peE~A

a(4,p} is independent of the sense of description of A and of the par-
ticular way in which the angles X ¢pl are measured. It is always a po-
sitive or zero number. It is also finite (for if it were infinite 4 would
wind round p infinitely often and since P is at a positive distance from A
this wonld mean that 4 was not loeally connected) but f(4) may be

infinite. However we shall use this funetion of 4 only when it is finite.
We then have the following lemma:

Levma 1. If B(A) is finite and H is a homeomorphism of the class @
then

®) B(S(4)) <2n-+8(4).
Suppose that § is (&, y)— (#',") where

» =, 7J'=¢(ﬂ),fl/) "
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If H is of the alternative form the argument is similar with # and y inter-
changed. Since when p varies over E—4, $(p) varies over E—Sﬁ(A) it
is sufficient to show that for any p of E—4

4) o($(4),9(p)) <27+ a(4,p) .

In proving (4) we assume (without loss of generality since a(4,p) varies
continuously with 4) that 4 is a polygonal arc with no segments pa-
rallel to the y-axis. Let 4’ be a minimal subare of 4 for which

(5) a{$(4"),9(p))= o($(4), 5(p)) -

If A’ degenerates to a single point the result is trivially true, otherwise
let p be the point (&,¥:1)- )

Firstly consider the case when 4’ does not intersect the hm? T=1,.
Then $(A’) does not intersect the line #=g;. Thus, since this line con-
tains the point $H(p),

(6) a(§(4), 5(p))=o($(4"), $(p)) <a<27+al4,p).

Next consider the case when A4’ does intersect the line x=w,. Let A’
have end-points e,f and meet the line £=z, in points whose orde.r on A’
from e to f is py,Ps,---,Ps Where e may be p, and f may be Dn- Smf:e the
subare ep, of A’ lies entirely (except for the point p,) on one s1dfa of
x=a,, 5o does the subarc $H(ep,) of 5{(A’). Similarly 55(pr) 1}e5 entirely
on one side of #=u=,. Thus if the line $(p)m is in a fixed direction through
H(p) we have,

(0 dH(A"),$(p)) <27+ & §(p) H(p)m — £ H(p2) H(p)m|-
Further
(8) [ Papl — <y 1 = & H(p2) H(P)m— 5 H(p1) H(p) ]
and
(9 a(d,p) >a(4',p) > | X papl—Ep1PY -

Thus from (5), (7), (8), (9)
(10) a($(4),9(p)) < 2+ a(4,p),

and this is the required inequality (4).
We can now prove the main result which we state as a theorem.
TEEOREM 1. There are homeomorphisms of the plane onto stself which
are not the uniform limit of any sequence of members of 5.
Let K, be the arc whose equation in polar coordinates is

(11) r=(4+e-t—5e-tmm)(1—e-¥n)~1,  0<O<27; = n=1,2,...
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This are is part of a spiral which starts at r=5, =0 windg round the
origin » times with 7 monotonically decreasing and ends at the point
r=4, 0=2nzx. )

Denote by M, the arc obtained from K, by a translation parallel
to the z-axis by an amount 10n. The arcs My, My,..., M,,... are dig-
joint. There is a homeomorphism of the plane onto itself ,Which maps
the segment L,={(z,y); 1In—1<o< 10n, y =0} onto the arc M
nf-_—’ql,zﬁ'...h Denote this homeomorphism by & and let $ be a membgz"
oI & which we may suppose is obtained by the siti
bers 8y gL y the superposition of the mem-

Then f(L,)=x and thus by lemma 1,

(12) ,9(5(L,,))< (2s+N)m,  m=1,2,..

Consider the segment IL,.,. Let g be the i i i
. point with coordinat
2=10(s+1), y=0. Write p=G""(g). Then -

(18) 6(Le12) 6(p)) = (M1, )= (25+ 2) .

Now if it were the case that 8(9,6)<1, then $(L,y,) would be an arc
whose end-points would be distant at most 1 from the end-points of
®(Lsy1)=M,.; and which is such that when p’ describes L,,, the points
H(') and G(p’) are distant apart at most 1. But under ?Ilese circum-
stances ®(p’) winds round the point ¢ s+1 times keeping at a distance
of at .Ieast 4 from it. Thus $(p’) also winds round ¢ s+1 times except
that .1ts end-points may be such that it fails to complete the (s4-1)th
rotation by an angle less than 2 sin—1(1/4)?). Hence ‘

(14) a($(Lysa), G(p))>(25+2)w—2 sin-1(1/4) > (25+1) .

Since the inequalities (12) and (14) i icti
4) are In contradiction wit
another, §($,®)>1 and the theorem is proved. i one

8§ 2. Homeomorphisms of certain subsets of a closed square
onto themselves

Let 8 be a closed square with sid
: s ! es parallel to the coordinate axes.
‘We shall consider approximations to homeomorphisms of § onto itself

C zh eac. i Yoy N .
whicl eave each fror er point of [lxed Let @ be he class of homeo
B

(15) r'=x, y'=0z,y) or F=0(z,y), Y=y

and which map § onto itself and leave each frontier point of § fixed.

®) The angle sin~1(1/4) that is needed here lies between 0 and /2
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In the present paragraph we consider homeomorphisms which are
defined over certain polygonal arcs contained in § and we shall use these
results to show that homeomorphisms of a closed square onto itself can
be uniformly approximated to by means of members of Z’, the group
generated by @'.

‘We require a number of auxiliary lemmas. The following convention
is used. If a segment L is such that, apart from its end-points, it belongs
to the interior of a closed Jordan domain T then we shall say that L
belongs to the interior of T. If X is any point set then we denote its in-
terior by X? and its frontier by Fr X.

Levma 2. If a simple polygonal are aqyq;-..¢mb, where m 0, foge-
ther with the segment ab bounds a simple closed Jordan domain T, then
al least one of the segments afgy,qofa;--sGi-1Gi+1y+--:Gm—1b belongs to the
interior of T.

Either g¢,b belongs to T° or there is a vertex g;, 750 such that ag;
belongs to T°. In the first case we replace agyq;...¢mba DY 4y41---4nbgy
and in the second case we replace agyg; ... ¢mba by agyq, ... ¢;-1950. In either
case we obtain a polygonal curve which bounds a domain contained
in T, has less segments than agyg;...g»ba and is such that all ifs segments
but one belong to agyg; ... ¢md. If this new polygonal eurve is not a triangle
then we repeat the process a finite number of times until we obfain
a triangle that hounds a domain contained in T and two of whose sides
belong to agyq;..-gmb. Now the constrnction of the new polygon from
agoqy ... gmb s such that the only side that does not belong to agig¢:..-gmd
is contained in T°. Thus finally the third side of the triangle which we
ultimately obtain is contained in T° and it is also one of the segements
agy,GoGas-+es Qi-1i+1s ey dm—1b-

The lemma is proved.

LeMMA 3. Two polygonal arcs apep;...peb and agyq...gmb, m>0,
together form the boundary of a simple closed Jordan domain T. The are
apop, - prb together with ab bounds a convexr set U and those of the vertices
GosGay-rrm which lie on the same side of ab as does U lie either on the
segment ab or interior to U, (it is assumed that U has interior points). Also
all the poinls pj,q; lie in the strip bounded by the two lines that are perpen-
dicular to ab and pass through a and b respectively. Then either

(i) the arc agyq;...qnb together with the segment ab bounds a conver set v

that is exterior to T, or )

(i) one of the segments aqy,qyGss .. sQi-1git1y-,qm—1b is contained in T°.

Let B denote the arc apgp;...Peb and let I denote the convex cover
of the arc ag,g; ... ¢nb. Since all the points ¢; lie inside the strip bounded

Fundamenta Mathematicae. T. XLII. 5


GUEST


66 © H.G.Eggleston

by the two lines through a and b perpendicular to ab both a and b are
frontier points of K. Thus Fr K consists of two ares that join e to b,
(The set K will have interior points because the arc ag,¢;...q,b has at
least three vertices where by a vertex i3 meant & point which is either
an end-point or a point that lies on two segments that lie on distinet
lines. We take the notation to imply that the segments agy,q,q,, for
example, are not collinear.) Let these tiwo arcs be 4; and 4,. Now no
points of B are interior points of K and, of all the vertices of K (which
are some of the points a,b,q,¢1,...,¢m), Only a and b belong to B. Thus
K meets B either in the whole segment ab or in just the two points a
and b. The first case can arise only when B is precisely the segment ab.
In this case U would have no interior points which is contrary to the
hypotheses of the lemma. We suppose then that B meets K in the two
points @ and b. '

The two arcs 4, and B bound a domain say W,. Similarly we de-
fine W, to be the domain bounded by 4, and B. Either every segment
of 4, belongs to W3 or every segment of A, belongs to Wi. We choose
the notation so that the first of these alternatives holds. If the whole
of A, belongs to the arc agyg;...q,b then it coincides with the whole of
this arc and the lemma is proved since (i) is trme. Tf however there is
a segment of 4, that does not belong to agyq;...¢.b then we can find
two points of the set a,qy,¢:,...,4m,b say »r, and 7, such that these points
belong to 4, and there are no other points of the arc QG- gmb that
belong to the segment ryr,. The points r, and 75 are not necessarily ver-
tices of K but they are vertices of the arc oGy .. Gmb.

) The points 7, and 7, are not consecutive vertices of 090G, --- ¢mb for
if they were the whole of the segment 7,7, would belong to the arc
adyq;.--mb. If they are separated in this sequence by only one other
vertex then the segment 7,7, itself iy of the form required in (ii). If how-
ever 7, and r, are separated by more than one vertex in the order
44y - §md then the subare of ag,g,...¢.b whose end-points are r, and 7,,
bounds with the segment #,7, a domain contained in 7. We can appfy
lepnma 2 to it and deduce the existence of a segment as required in (if)

The lemmsa is proved.

We now prove a result that will be needed in the next paragraph.
Suppose that the square S is cut by a number of segments parallel to
the z-axis. Let these segments, which join the two sides of S that are
parallel to the y-axis, be denoted by 4,,4,,...,4,. We also suppose
that the segments 4, and A, are sides of S and that the notation is such
that the ordinate of the line containing A4; is greater than or less than

that eont?a.ining A; according as ¢ is less than or greater than j. Denote
the totality of these segments by K.

icm
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THEOREM 2. If B is a homeomorphism defined over KL TFrS which
leaves every point of the frontier of S fized and maps each of the segments A;
onto a polygonal line contained in 8, then there is a homeomorphism § of
the group E’ such that for any point p of K 35((5_1(]3)):: P.

Write a;,b; for the two end points of 4; and use the symbols A;
for 6%4,). By the given conditions G™Ya;)=a;, and G (b;)=b;.

We need the following lemmas. :

Lumwma 4. If As is a polygonal line with ¢ segments, t>1, then either
(a) it bounds with the segment a,b, a convexr set that is exterior to the set
bounded by Aj,As, segment a,a, and segment by b,, or
there is a member $ of E' such that $H(A32) is @ polygonal line of at
most t—1 segments and every point of each A}, j52 is a fired point
under .
We apply lemma 3 with a, for a and b, for b, with a,a,b,b, for
apyp;... b and 4s for agyg...¢b. By that lemma if (a) is not true then
there are two consecutive segments of A; say ¢d and de such that the
segment ce is contained in 79, where T is the domain bounded by A1, 43z,
a,04,b,b,, 1. €. ce is, apart from its end-points, contained in the interior
of T. The segment ce does not meet any Aj with j542. We next select
two points d’ and d° on opposite sides of the line ce such that the closed
quadrilateral cd’ed” is convex, contains d as an interior point, does not
meet 4}, j5¢2, and meets A3 only in the segments ¢d,de. This last requi-
rement can be satisfied because only the end-points of the segment ce
belong to 4% and thus the triangle c¢de meets A3 only in the segments
ed and de. Join d to a point of ce other than ¢ or e, by a polygonal line
lieing in the interior of cd’ed”, such that each segment of this line is pa-
rallel either to the z-axis or to the y-axis. Let this polygonal line be
dr,Ty...7s, Where 7, is the point of ce.

We shall now show that there is a member of £’ say J; such that

(b)

(16) Jib=r  Jed=cr;  Julde)=rie,

and such that every point on the frontier of or exterior to the quadri-
lateral cd’ed” is fixed under ;.

Suppose for the moment that such a homeomorphism exists, then
the lemma follows. For just as we have defined J;, so we can define R
such that

Ji(rima)=11, Jileri)=cry, Ji(rimae)=1se, 1=2,..,8

and every point on the frontier of or exterior to the quadrilateral cd'ed”

is fixed under ;. Then the homeomorphism J;Js—1...J: maps ed onto cre

and de onto 7.e. Since all the other points of 43 are fixed it reduces the
5%
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number of segments of Az by at least one. Also every point of every 4/
j#2 is fixed and the lemma is established. v

Thus we have only to construet the homeomorphism J;. Suppose
that dry is parallel to the y-axis. In the other case we use the same argu-
ment with # and y interchanged. On a particular line a=g', , is de-
ffned as follows. All points exterior to or on the frontier of c¢d’ed” are
fixed. If the line z==" meets the pair of segments cd,de in one point
say p, then it also meets the pair of segments er;,re in one point ¢. De-

fine J,(p) to be g and complete the definition of J; on w=a' by linearity.

If the line #=a' meets ¢d,de in two points say p’ and p” and the ordi-
nate of p’ is greater than that of p”, then the line also meets the segments
¢ryyme in two points which we may call ¢* and ¢” where the ordinate
of ¢’ is greater than that of ¢". Define y(p’) to be ¢’ and J,(p") to be q"
and complete the definition of J; on the line by linem‘ity.. If the line
x=2' contains the whole ¢f the segment ¢d or de then it also contains
the point 7;. Define Jy(d) to be », and complete as hefore by linearity.
If the abscissae of the two points d’ and d” are equal to one of or 1}e
between the abscissae of ¢ and e then the definition of %, is complete.
Otherwise we still have to define it for those lines =g’ that meet the
quadrilateral cd'ed” but. do not meet the pair of segments cd,de. In this
case there is a line z=4" on which J; has been defined, and which Das-
ses through one or more of the points ¢,d,e, and which is such that the
segment of the line x==y" that is interior to the quadrilateral ed’ed”
say tu, forms with either d’ or d’, say d’, a triangle that contains t,ha’é
part of the line =2z that is interior to the quadrilateral ed’ed’. Let
t}le part of w=21" that is contained in ¢d’ed” be the segment »w. To de-
fine J; on vw, join d' to a point say z on vw, produce to meet tu in 2.
Le?; J3u(?'), which has been defined to be a point of tu, be the point 2.
Join 2} to d” eutting »w in 2,. Define Ju(2) to be 2.
Then 3, has heen completely defined, iti is of the form

(@,9)~(2,y') where «'=w, y'=0(z,y),

and has the properties stated in (16).
The proof of the lemma is complete.

@ Levma 5. 4 rectangle? T is given with its sides parallel to the coor-
- dinate aves. A homeomorphism R defined over the frontier of T is of the form
(17) where

(@, y)—~(",y) ' =P(x,y).

F-m*ti.‘aer £ leaves _fia:'eol the points of the sides of T that are parallel to the
’y-a.ms. Then there is a homeomorphism which is of the form (17), maps
the whole of T onto itself and coincides with K on FrT.

icm
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Suppose that T is the rectangle a; <z < as; b <y<b,. Consider the
two rectangles

o)

Ty @ <T <My, 5 (b0 <y <hy,

t

Ty a, <r<as, by <y <3 {bi+by).

<

(IR

In 7, define the homeomorphism $ by (x,y)—(x',y) where
. 1 /1
o= (012, —a) [y ~F Oa 2]/ 5 0000

In 7, define § by (x,y)—(z',y) where

, 2=+ (@(.ﬂ,bl) 71‘) (% (b + bz)—y)/%(brbl)-

It may be verified that § is a homeomorphism with the properties
stated in the lemma.

LEMMA 6. There is a member § of E' such that H{A))=4;, j=1,..,0

Consider 4;. By lemma 4, either A; is an arc convex with respect
to a,b, and A} lies on the same side of a,b, a8 41, or we can find J; of ="
whieh reduces the number of segments of 43 and leaves every point of
every A}, j#2, fixed. By successive repetitions of this argument it fol-
lows that we can find a member of 5 say §, such that either F(4s) is
the straight line segment ayd, or it is convex with respect to a,b, and
lies on the same side of a,b, as does 4j. In either case F(432) together
with the segments a,ay,dasbs,bsby, bounds a convex set. We may now
apply lemma 3 to 43 exactly as we applied it to Aj in the proof of lemma 4.
We obtain §, of 5 such that every point of every Af, j>3, and of 4,
Fi(435) is fixed, and such that §,(43) is convex with respect to the segment
145b; and lies on the same side of a;b; as does AL, or alternatively §.(43$)
is a straight line segment. Proceeding in this fashion we eventunally ar-
rive at a member § of 2’ such that each F(4)) is either the segment a;b;
or bounds with «;b; a convex set.

Now every line parallel to the y-axis that meets F(A5) at all does
%0 in exactly one point and also meets 4; in exactly one point. Suppose
that such a line meets F(4}) in z; and 4; in ;. Then the points &;2s...2,
oceur on this line in the same order as ¥;Ys...Yn. We define a homeo-
morphism on this line by mapping «; onto y; and making the mapping
linear between «; and z;41. Such 2 mapping is defined for all the points
of 8. For points outside S we define each point to be its own image.
Denote this mapping by 2. Then LF is a member of Z* with the pro-
perty stated in the enunciation of the lemma.
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‘We can now complete the proof of theorem 2. This theorem is nearly
contained in lemma 6 but although that lemma provides a homeomor-
phism that maps 4} onto 4; we do not know that it coincides with &
for each point p of G Y(p). To secure this result we proceed as follows.

The homeomorphism 2FG ™ maps each segment A; onto itself and
leaves each point of the frontier of § fixed. If lemma 5 is applied to the
rectangle that is bounded by 4;, 4,41, and the two segments a;a;.,,
D;b;4+1 then there is a homeomorphism of the form (17) say M, that maps
this rectangle onto itself and coincides with £F® ™" on the frontier of
this rectangle. Denote by 9t the homeomorphism of the whole plane onto
itself that coincides with 9i; in the rectangle in which it is defined and
leaves every point exterior to § fixed. Then for any point p of K M(p)
is the point 8FG *(p). Thus p=M* LFG (p), that is to say the homeo-
morphism 9 LF which is a member of the group £’ has the property
required in the theorem.

§ 3. Homeomorphisms of a closed square onto itself

As before let § denote a closed square with sides parallel to the
axes. In this paragraph all the homeomorphisms concerned map S onto
itself and leave the frontier points of § fixed. This class of homeomor-
phisms is denoted by I. Again we write @ for the class of homeomor-
phisms that helong both to I" and to @, and we write &’ for the group
generated by finite superpositions of members of @'.

THEOREM 3. If G is a homeomorphism belonging to the class I', then,
given a positive number ¢ there exists a homeomorphism § of E' such that

59, 6)=up. bd. o(H(),6(p)) <e.

Let 1 be the side length of § and choose a positive integer n so large
that :

4-2"% < me.

Divide § into n* equal squares each of side length I/n and let the ver-
tices of these squares be ay, i=1,2,..,n1, j=1,2,..,n+1, where
the vertices of § itself are au,ainy1, @411, 0111 Denote the segment
@G by A;and the segment ay;a,.1,; by B). Also write ~(4;)=A4},
6 N ay)=ay, (ﬁ_l(Bj)zB}; and let B, be the subarcs of A4/ with end
points aj;,a;;41 and Fy; be the subarcs of Bj with end points aj;,aiiy;.
Let the axes be such that the z-axis is parallel to each A; and the
y-axis is parallel to each B;.

Define # to be a positive number, less than the least distance apart
of any pair of nonintersecting ares E;; or Fy.
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Let Cj; be the closed circle whose centre is a;; and whose radius
is 5/3. No two of the circles (; intersect; let ¢ denote their point-set
union. The arc A contains a subarc that is minimal with respect to the
property of joining Cj; to Oy, and which we denote by Ly, j=1,2,...,n,
i=1,2,...,n+ 1. Similarly there is a minimal subarc of B; that joins Cj
t0 Cjpuiy 58y My, j=1,2,...,n, i=1,2,...,n41.

Any two segments of the form A; or B; either do not meet or do
50 in one of the points a;. Thus any two of the arcs A}, B; either do not
meet at all or if they do meet their point of intersection belongs to the

" set 00, Thus all the arcs of the form L; and M, are disjoint from one

another. Also of all the circles C;; the arc L, meets only two namely
the two circles Cp and O 441, similarly M,, meets only the two circles
C,s and C,41,. For suppose that the arc I,, met a circle other than the
two stated above, say it met C,, then on the one hand L, is a subset
of B, and is thus at a distance of at least  from any of the ares Ejy
or F;; which do not actnally meet E,, and on the other hand ay, lies on
two arcs of the form E;; and on two arcs of the form Fy. It follows
that aj, lies on an are of one of these two types that does not meet E,,.
Thus the point a7, is distant at least % from IL,, and L, does not meet
Cp. In fact Ly, is distant at least 25/3 from Cy,.

Let 7, be a positive number less than the distance apart of any two
ares L;; or M, and let u, be the smaller of the two numbers » and 7.
Let P;; be a polygonal line joining the end-points of Ly and lieing both
inside § and within a distance of #,/3 of L; and outside Cf and Cjjs1,
$=2,3,...,m, j=1,2,...,n. Let the point of intersection of the arc Ly
with the circle ¢y be 1j; nad the point of intersection of L; with Cjj41
be I5. Let P be the polygonal line consisting of segment ajj'i;, poly-
gonal line P;;, and segment Ij;a};4:. We also suppose that Py is the
segment ¢q;¢1;41 and that Pryq; is the segment aniyjdnivj+1- Finally

n
let P; denote the union U Py, i=1,2,...,n41. -
i=1

Next define polygonal lines @; in the same way as P; has been
defined but using the minimal arcs M, in place of the minimal ares
L“ 8)_

The polygonal lines P;,Q; approximate to A; and Bj respectively
and have the following properties:

(i)  P; intersects Q; in exactly one point namely ai;.

(i) Of the points af;; P; contains in oxder the points af,@k;..., Ainy1r

(ili) Of the points aj;; Q; contains in order the points AN LTI ATy S

(iv) The four sides of the square § are P;,Ppni1,Q:1,@n+1-

) Q,,» Q/, are defined first with respect to M,.
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Next let & be any homeomorphism of the class 7" such that
SEF)=4;  K(@)=B;.

It is clear that such a homeomorphism exists. If 2 is a point of § then
it belongs to a domain bounded by four ares of which two are of the
form Ej; and two are of the form F,. # may belong to more than one
such domain. (We take these domaing to he closed.) Suppose that z be-
longs to the domain bounded by By, Fjpy, Bipyy,Fy. If 2, j<n~1,
then = also belongs to the domain Dbounded by the polygonal lines
Pi—l,j—l;’-Pivl,j,Pi’—l,jt}-lyQ§~1,]—! 15Q1{,j+17Q;+1,j+17-Px{+.l,j+11P1{+1,J7P;+1.j-—15(1)t{'|-1,j—1;
Qii-1,@i-15-1. A similar statement is true when one or both of i or j
is one of 1 or n. Thus we have i

(18) o(8(), 6(2)) < 2.2 (Um) < 2.

Hence it is sufficient to show that there is & member $ of 5" such that
- for every point # of §

1

(19) o[(8(), $()) < e
By theorem 2 there is a member ¥ of 5’ such that for any point P
of any of the polygonal lines P; j=1,2,...,n+1, J(p)=K(p). Consider
the h'omeomorphlsm K57 This mapping leaves fixed each point of the
frox‘mer of § and of each of the segments 4;. Denote by T that rectangle
which has 4; .and Aj41 a8 two opposite sides. 7T, is contained in § and is
ma,ppeq onto itself by ®%~". Thus for any point p of S the ordinate of
Kp) dlff&I:S from that of J(p) by at most the width of one of the rect-
angles T, 4. . by at most I/n.

lwowithe homelomorphism {37 not only maps T; onto itself but
.also leaves each point of the frontier of T; fixed, and (even though T
is é, rectangle and not a square) all the preceding argument is valid with
lj_ in place of. 8. Thus by an argument similar to that used in theorem 2
wﬁ;‘h # and y interchanged we can show that there is a homeomorphism §;
Wh;cy bel;nfﬁ zof &, maps each point of the frontier of 7', onto itself
and 1s sueh that for any point p of 7' the abscissae of §§ & 5
differ by at most I/n. ! G nd 857
' I?)efme & to be the homeomorphism which coincides with & in 14
]:1,u,...,%j‘ 1, and leaves every point of E exterior to § fixed, Then R
belongs to &’ -and for any point p of § we have:

(i) .’I{he ordinates of F(p) and K ~Y(p) differ by at most I/n because
these points both belong to the same rectangle 7',

(ii) The absecissae of F(p) and K37 Y(p) differ by at most In.

icm
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Hence

e H1/2, 1
o(iFtp), K37 (p)) < 1) < Fe-

Now for any point ¢ of § there is a point p such that p==3J(g), and thus
for any point ¢ of S
1

(p)) <3¢

0(33(0), K(9) =o[F(p), 83~

and this is the inequality (19) as required with §J as the homeomor-
phism $.
Theorem 3 is proved.

§ 4. Non-uniform approximations

In this paragraph we use theorem 3 to establish the result stated
in the introduction. .

THEOREM 4. If G is any given homeomorphism of the plane onto iiself,
then there ewisis a sequence of members of Z say {$.} such that for every
point q of the plane, $.(q) tends to G(g) as n fends to infinity.

Let C=C(p,R) denote the set of points of the plane whose distance
from the fixed point p is not more than R, and let G(C) be D. It is suf-
ficient to show that given two positive numbers R and e, there is a mem-
ber of = say §, such that the distance apart of the points $(z) and G(z)
for all points & of C(p,R) is less than .

Let S be a square so large that it contains both ¢ and D in its in-
terior. We show first that there is a homeomorphism J of % onto itself
that coincides with ® on C and leaves each point of the frontier of &
fixed. Let §, be the set 89— C and let S, be the set S°—D. Both §; and S,
are open, connected, and doubly connected sets. Thus there are con-
formal mappings say M, and M, such that M,(S,) is an annulus 4, and
Wy(S,) is an annulus 4,. Since Fr§, Fr(, and FrD are all Jordan curves
we can extend M, and MW, to he homeomorphic over the closures of 8
and §,. We use the same notation 9, and M, for these two homeomor-
phisms of the closed sets. Let € be a homeomorphism of the closure of 4,
onto the closure of 4, such that for any point p of Fr8 CMy(p)=Dtu(p)-
Let the circles bounding 4, be K and L and suppose that L is the image
under PV, of Frs.

We next define a homeomorphism of K onto itself say K, as follows.
For ¢ belonging to K write

RKg) = CILGEM g) -
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Now we can extend & so that we obtain a homeomorphism of the clo-
sure of A4, onto itself say X with the properties,

it peK  3Jp)=Rp), i pel Sp)=p.

Now define J as follows. For p ¢ ¢, J(0)=6(p); for p ¢ Fr 8 J(p)=p;
for p e 8~ 0 S(p)=M*CIMy(p); for p ¢ 8 J(p)=p. Then 3 Is o hy.
meomorphism of the required form.

By §3 we can find a member § of = such that for every point z
of 8, $ and ¥ differ by at most s The homeomorphism -§ has the re-
quired property and the theorem 4 is proved. .

Regu par la Rédaction le 5. 4. 1954

Uber eine Abschwiichung des Auswahlpostulates

W. Kinna (Solingen) und K. Wagner (Koln)

Es sei M eine Menge. Wir bezeichnen die Elemente von M mit
a,b,..., hingegen die Teilmengen von M mit 4,B,... Die Potenzmenge
von M (d.h. die Menge samtlicher Teilmengen wvon M, einschlieflich
der leeren Menge 0) bezeichnen wir mit M*.

Definition. Wir sagen, eine Menge M habe die FEigemschafi (E),
wenn es eine eindeutige Abbildung ¢ von M* in sich gibt, so dap fiir jedes
aus mindestens zwei Elementen bestehende ACM gili:

0Cp(A)CA1).

Unsere Bedingung (E) steht in einem engen Zusammenhang mit
dem bekannten 2) Auswahlpostulat. Wie man ohne weiteres sieht, ist (E)
formal schwicher als das Auswahlpostulat. Man kann aber auBerdem
leicht zeigen, daB das Kontinuum € noch (E) erfiillt. Denn mittels der
unendlichen Folge der rationalen Zahlen gelingt es, da diese relativ zu ¢
dicht liegen, jedes aus mindestens zwei Zahlen bestehende ACC in ein
echtes Anfangsstiick und ein echtes Endstiick von A4 zu zerlegen. Ver-
steht man dann unter ¢(A4) dieses echte, nicht leere Anfangsstiick von 4,
so folgt unmittelbar unsere Behauptung. Wir sehen, unser (E) ist nichts
weiter als eine gewisse Abschwichung des Auswahlpostulates.

Sarz 1. Jede Menge M mit der Eigenschaft (B) lift sich ordnen.

Beweis. Wir setzen 3) p(d)=A4 —¢(4) fir jedes ACM. Dann folgt
auch )

0Cp(4)CA
fiir jedes aus mindestens zwei Elementen bestehende 4 CM. Ferner folgt

1} D. h. also, @(4) ist eine echte, nicht leere Teilmenge von 4. Die vorliegende
Arbeit enthilt die wesentlichen Ergebnisse der (unverdffentlichten) Dissertation (K6ln
1952) des erstgenannten Verfassers, der durch diese vom letztgenannten Verfasser stam-
mende Definition sowie durch den Satz 1 angeregt wurde.

%) 'Siehe [7], Abschnitt 2, S. 514.

®) Es ist im folgenden bequem, fiir die aus nur einem Element bestehenden 4,
also (kurz geschrieben) far die a e M, einfach p(a)=a vorauszusetzen. Ferner setzen
wir im folgenden fiir die Nullmenge ¢(0) =0 voraus.
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