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In particular, it follows that if we join every point & of the (n—1)-
-dimensional sphere 'S, lying in F,, with its antipode #* by an acyelic conti-
nuum (z) = d(z*) and if G(z) constitute a family over S, then the interior
region of § is swept out by the sets P(x).
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Examples of sets
definable by means of two and three quantifiers

by

A. Mostowski (Warszawa)

There are many categories of mathematical papers. On the one
hand we have first-class papers which -are read with interest by many
mathematicians and which further the development of mathematical
thought. On the other hand we have also papers which are studied exclusi-
vely by referees appointed for that task by editors of bibliographical
journals and which even by these casual readers are put aside with
a sigh “why do these people publish so much?”

The present paper belongs to the second rather than to the first
category. I have collected in it a number of very special results which
belong to the theory of recursive functions. More explicitly I consider
fractions of the form 10 *a(2,y) where a is a primitive recursive function
and investigate the set of those integers y for which lim 10 *a(z,y)

exists and belongs to a preassigned class of real numbers. A %ypica,l result
is given in the following theorem (cf. theorem 7 below): The set Zz® of
those ¢’s for which lim 10 "a(x,y) exists and is integral is the most

general set of the class Qg”, 4. ¢., the most general set definable in the
form F[]N]]R(y,u,v,w) with a recursive R. The expression ‘‘most

generay” umleags that if a Tuns over the set of primitive recursive functions,
then the set Z® runs over the whole class Q%

Investigating this example and other similar omes I encountered
some phenomena which I found interesting. If, for example, we narrow
down the variability of o’s to the set of functions for which lim 10 a(z,y)

always exists (4. e., exists for y=0,1,2,...), then the GOITBSPOIchding sets Z9
cease to represent arbitrary sets of the class Q. As o runs over the nar-
rower class of functions, the set Z® runs over the whole class Qf which
is known to be different from Qg). No such reduction oceurs if in-
stead of Z® we consider sets Z® containing all such y’s for which
lim 10 ¥ a(x,y) exists and is irrational. In this case the set Z® runs
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over the whole class QF both when « runs over the set of all primitive
recursive functions and when it runs over the set of such funectiong ¢
for which lim 10 o(z,y) always exists. '

One 00)1011(1 ask what will happen of instead of integral or irrational
values prescribed for the limits lim 107" a(#,y) we consider limits belong-
X

ing to an arbitrary class of real numbers. This general problem is not
touched in the paper.

The results obtained allow us to construct effective examples of
sets definable by means of two or three quantifiers but not definable by
2 smaller number of them. From theorem 7 quoted above it follows for
instance that if U(n,x,y) is a (general recursive) funetion universal for
‘the class of primitive recursive functions with two arguments, then the
set of pairs (n,y) such that lim 10™*TU(n,x,y) exists and has an integral

value belongs to the class QF but not to P®. Thus the minimal number
of quantifiers needed for defining this set is 3.

There are many interesting sets of integers for which the exact
number of quantifiers needed in their definitions is not known. For some
sets the determination of this number represents an important problem
{e. g., for sets encountered in the theory of constructive ordinals). It seems
to me that the construction of effective examples in which the minimal
number of quantifiers can be determined may contribute to the solution
of the more serious problems mentioned above.

The lower case Greek letters always denote primitive recursive
functions. The class of all these functions is denoted by & whereas &*
denotes the class of those functions @l@,y) for which lim 10 *g(z,y)
exigts for every . *

The logical symbols used in this baper are the same as in my pa-
per [2]. We denote by P;° the family of sets having the form

E {En "'[¢(x11."- 1y Y1y ooy Yu) = 01}
AN

(xy ey

n quantifiers
and by Q¥ the family of sets having the form

E {[] .fY“'[‘P(mI:"-7-l'k’$/1;“'7yn) =0]}2).

[T

e
n quantifiers

Detinition 1. ZP=F 3 [] [y(z,y)=0].
¥ xgx>xg

) Eaeh y, in this and the immedi

ately preceeding formula can be laced b
a complex y,-(,y,,,...,yjk!. replaced by
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THEOREM 1. The family {Z},co is identical with PS2).

Proof. It immediately follows from the definition that 25’ e Py
Tt remains therefore to show that for each ¢ in @ with three arguments
a function ¥ in @ can be found such that

(1) Sfl[Q(p,s,y)=0]E§xgn[w(w,1/)=0]-

We define y along with two auxiliary functions = and ¢ by a simul-
taneous induction:

7(0,y) = 0(0,0,y), 72(0,y)=0, a{0,y)=0,
p@+1,9) = ofnl@,9)+1,0,9) [ 1= (1=yla,y) |+ A
+ ofa(@,9), ol@,y)+1,3) L =92, )],

ale+1,y) =[a(e,y) +11-[1= 1=yl ) ]+ 2@ y) [1=2@ )],
o(w+1.y)=[o(e,y) ~1]-[1=v(r.y)}
To explain the meaning of these definitions let us arrange all the pairs
(i,j) into an infinite system
(0,0),(0,1),(0,2),...
(1,0),(1,1),(1,2),...

and consider a variable point P, which moves over the system in suc.h
a way that in the zth moment its coordinates are (n(m,y),a(m,y)). It is
clear from the definitions of functions = and o that in the (z-1)st mo-
ment the point P, either moves one place to the right in the same row
or jumps to the initial point of the next row. The fi._rs? move oceurs if
y(w,y)=0 and the second if y(x,y)5%0. Furthermore, it is clear f4rom the
definitions that y(z,y)=0(n(z,9),0(x,¥),9), i ., that y(z,y) gives the
value of o(p,s,y) calculated for the coordinates (p,s) of the point P .
Hence, if o(p,s,y)=0, then P, moves from the point (p,'s) to the point
(p,s+1) and if o(p,s,y)70, then P, moves from the point (p,s) to the
oint (p-+1,0).
P I\ngv 191; 1)15 assume that 3 [][e(p,s,y)=0]. Let p, be the smallest
integer such that g(po,s,y)z% for s=0,1,2,... For _ea,ch 1<p, there
is a (smallest) integer s; such that o(¢,s:,%)50. II} this case th.e moves
of the point P, may be described as follows: starm'ng at the point (0,0)
it moves s, places to the right, then jumps to the point (1,0) and moves s,

?) A theorem equivalent to theorem 1 has been proved independently by Mark-
wald [1].
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places to the right, jumps again to the point (2,0) and so on; eventually
it Teaches the pgth row and moves on it indefinitely. Hence y(2,y)=0

for & >8,-+ 8+ -+ Sp, - e
Let :13 now assume that [T S [olp,s,y)#0] and let s, denote the smal-

lest integer sueh that g(p,s};,y);é(). Repeating t@e previous argument
we see that the point P, passes through all points (p,s,) and hence
p(o,y)70 for infinitely many .
Formula (1) is thus proved. .
Remark. A theorem similar to theorem 1 holds also for the ela,fss Py,
In order to obtain this more general theorem we replace the “y” in the-

orem 1 by “(Yyyeee ¥a)-
Definition 2. 2= F [lim 10 y(z,y) <1].
‘ Yy x>0 .
TaroREM 2. The family {Z),co is identical with PP
Proof. For each y, Z& ¢ P{ since

m‘am—xm,y)aE% > ] layle,y) <10%(g—1)].
x L'

r x>r

Now let us assume that Z ePél). According to theorem 1 there is
a primitive recursive function 6 such that Z= 2. Put

7@,9) =107 1= (1= 8(z,p)) |.
If yeZ, then 6{x,y)=0 from a certain x on, and hence htcr?ll()"xy(m,y)zo.
If y ¢ Z, then §(z,y)#0 for m.flmgly liany 2 and 10 %y(z,y)=1 fg)r
infinitely many . It follows that hfnlo y(@,y)=1 and hence Z=27,".
Definition 3. Zﬁ.”:[;‘[]ilg 10 *y(w,y) exists and is equal to 0.

THEOREM 3. The family {Z%),cp is identical with Q.
Proof. For each y, Z5 ¢ QF since

lim 10~ y(z,9)=0=[] 3 [] [py(e,y) <10°].

p#D g x>q

Now let us assume that Z e QF, i. e. that

yeZ=[] Y []lelp,q,7,9)=0], = ¢c®.
P aqr
Since the set F X [Tlo(p,q,7,5)=0] is in P, there exists by theorem 1
»p e r
a primitive recﬁn?sive function y(p,,y) sueh that

(2) yeZ=[[ 3 g[ﬂp:m,y)=0]-

P xq x>x

®
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We denote, as usual, by [m/n] the inbegral part of m/n and put
[m/0]=1. Furthermore, we put

7 @50 ) =010p1(1= (1= (p,2, 1))
and define by induetion an auxiliary function a{e,y):
(0,y)=0,
a(r-+ 171/)2{1_.“[1;" <%7 ;}'(l‘,;r—i— 1,91 ‘(ﬂl')ﬂ(x,y)[')’l(l‘r-r‘f‘ 1,y)20]+
vssalx,y
+nlz,y)+1]-[1= ¥ )7’('v.x+1,y)]-
T,y
Here (uv),[...] denotes the least integer <t such that ... or 0 if no such »
exists.

The above definition of = is eéquivalent to the following one: If there
is a v <z(z,y) such that y'(0,2-+1,4)50, then =(x+1,y) is equal to the
smallest such »:
(3) z(‘v"’17y)=(/40)n(x,y)['}’l(’v7w+1ay)’7’;0]'
If no such v exists, then
(4) z+1,y)=xn(z,y)+1.

We shall prove the equivalence

(5) ye Z=1lim n(z,y)=oo.

First let us assume that yeZ. By (2) there exists for each P & smal-
lest integer w, such that y(p,2,y)=0 for #>z,. Liet p be arbitrary and
o>max ;. If a(z,y)<p, then from 2> max z; it follows that

Jj<p isp

Y(r,z+1,y)=0 for v < (2, y),

and hence, by (4), a2+1,y) =n(z,y)+1. If a(z,y)+1<p, then by
the same argument a(x+2,y)=n(®,y)+2; I alz,y)+2 is still less
than or equal to p, then repeating the same argument we obtain
a(@+3,y)=a(z,y)+3. It is clear that after at most p+1 steps we
shall obtain an », such that

max 7;< $,<p+ 2--max x; and a(xq,y) >p.

i<p . i<p
We shall show that w(@,y)>p for all z>x,. This is evident for =y,
Let us assume that =(x,y)>p for an 2=w,. I m(x+1,y) is defined by
means of (4), then evidently w(x+1,y)>p; if n(z-+1,y) is defined by
means of (3), then again =(z-+1,y)>p since Y'{a@+1,y),2+1,y) %0
by formula (3), whereas »'(v,z-+1,9)=0 for v<p since z+1>x, and
hence (@, +1,y)=0=9"(v,2--1,y).
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We have thus proved that [] [x(e,y)>p) and, since p was @rbltra,ry,

xzZXo
this proves that 31‘13“1: a(x,y)= oo ' )
Next we assume that y ¢ Z. By (2) there exists a sma,llesf; ;_j?) Sl%g-e
tha‘t‘there are infinitely many values of = su‘ch ?hat P(Poy Ty Y .
denote these values by &1,%a;. and have therefore

() P (Daymy,y)#0  for j=1,2,3,0

Exactly as before we can show that =(x,¥) ? Po fro)m (a)w fcg,;tzjilpmo ;Iil(i
i hat y(v,2,¥)= °
assume that 2, is chosen so large ,

Wi ;:a‘nlaf.ss:A>xo+ 1, othen the relation between 7u(@;,¥) and n(m,'—fl -,y)
fsex;).regsedj by formula (3) and the smallest 'v<n(m.,-—'1.,y)1 satis ying
y'(v,2;,Y)F0 I8 equal to p,. Hence a(w;,y)=p, for infinitely many j,

? b
which proves that
{7) Tim 7u(2;, ) =Po-

j

la (p) is thus proved. . ' »

I];;):)rrglltafle( (ieﬁnition of y' we easily obtain the inequalities

{3a) y'(p,x,y)<107)p  for arbitrary P,2,¥,

(8b) —1410%p <y'(p,z,y) i Y(@2,Y)F0

{ift p=0, then fractions with the denominator p must be taken equaldto gl).
=0, ‘

Now let 6(w,y)=y’(n(m,y),x,y). Tf yeZ, then from (5) and (8a)
we obtain lim 107%8(z,y)=0. I y ¢ Z, then we use (6), (7) and (8b) and
infer that xlO”"’a(mj,y)>—10”"+'1/p., for infinitely many a;; hence
lim 107 6(x,y) either does not exigt or is different from 0. This proves
x
that Z=29, q.e.d. . ' Y

THEOREM 4. The family {Zﬁ’)}yew is identical with Q%.

Proof. Tt y e ®*, then Z& ¢ QF since

[lim 10 y(z,y)=0]= ”D 3107y () <1/p].
x P70 x

Let us now agsume that Z e Q(gl) and let Z' be the complement of Z

Since Z' ¢ P&, we can apply theorem 1 and obtain a function § such that

yeZ'=Y [] [8(z,y)=0].

Xq X>>XQ

Let
5(:”;;’/):1"_2 o(t,9), 7’(‘”73/')=[10x/’vﬁ(m7y)]'
=x

®
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It is evident that
Ale,y) <pla+1,y),
¥ € Z=[lm f(x,y)=co],

—1077+1/B(z,y) <10 "p(z,y) <1 p(x,y).
From these formulas we easily obtain y e ®* and Z=2%"

Remarks. 1. It follows from the above proof that if ye Z, then
lim 10™"y(2,y) is rational but not integral since B(z,y) >1 and f(z,y)
X
is constant from a certain x on.

2. Let us ecall a real number 1 recursive if there are functions ¢,f ¢ ®
such that 1=lim a(z)/f(z). Theorems 3 and 4 remain true if we replace 0

in the deﬂﬂitign 3 by a recursive real number 1.

Definition 4. Let ©** be the subclass of &* containing all the
functions ¢ such that among the numbers Im 10 "p(x,y), y=0,1,2,...

there are only finitely many different numbgl‘?
THEOREM 5. The family {Z9),com is identical with P& ~ QP.
Proof. First let us assume that y « &**. We denote by y,,9s,...,¥x
integers satisfying the conditions )
lim 107(z,y;) #lm 10~ y(2,y5) for js#h,
X x
Em10™p(z,y;)%0 for j=1,2,...k
if im 107 y(x, )40, then 25‘; [lim 10™"p(z,y) =1im 10 y(z,¥;)].
* I x x

The existence of integers y,, ..., 4 follows from the assumption y e ®**,
We do not exclude the possibility k=0; in this case lim 10™y(w,y)=0
for all y.

From definitions 3 and 4 we obtain
yeZP=[] I[107y(z,y) <1pl,
P70 x

yeZy=3 [I S[107(p(z,y)—rlz,y,) <1/p].

i<k p=0 x

It follows from these formulas that 22 ¢ P°~ QY. This result holds
true also in the case of k=0 since then Z® containg all the integers.

Now we assume that Z e« PP~QY. By theorem 4 there exist two
funetions a,,a, e * such that

{9) Y€ Z=Hm10 " ay(x,y)=0,

(10) Y € Z=1m 10" a)(,y)=0.


GUEST


266 A Mostowski
Let
@ [ 10%a,(2,y) ]
rasy)= o,(®,9) -+ ax(®,Y)
T @) yereto-tegy < HED
(@, y)+ aslz,y) [ ay(@,y) +as(@,y)

we easily infer from (9) and (10) that y e &** and Z =79,
Definition 5. Z9=F [lim 10" y(x,y) exists].
TueoREM 6. The fa-m;ly ’Ezgﬂ}m is identical with Q.
Proof. Z¥ ¢ QF since

yeZ¥= n 3Tl > a)( wz>q S 107 (@, ,y) — 10 (a,9)] <1/p}.

q X1,X2

It Z < QP, then by theorem 3 there is a y ¢ @ such that Z= =zZ®,
Putting ﬁ(2m,y) —10~(z,7),B(2w+1,y)=0 We obtain Z=Z, q.e.d.

Definition 6. Z‘” E[hml ~*y(z,y) exists and is mtegrg.l].

TusorEM 7. The fmmly {Zm} seo 18 identical with ov.

Proof. We denote by {a} the distance from a to the nearest integer
and put )

[p/107]= (un), (10"n>p)—
(p,%)=min (p —10"[p/10"], —p+107-+107p/107]).
It is then obvious that
{p/107}=10""(p,).

Rince {a} is a continuous function of a, we have the equivalence

ye 2 =(lim {107(@ ,y)}=0)E(Em"‘(y(w,y),w)=0)
= HZ n (10_"('}'(‘”7?/)5“) < 1/17)7

which proves that 2 ¢ QF.
‘We assume now that 7 « Q. By theorem 3 there is a funetion y « ¢
such that Z=2%. Putting

B2z, y)=y(z,y),  Bl2w+1,y)=0,
we obtain a funetion § such that Z=20=29.
THEOREM 8. The family {Z},con is identical with QP.
Proof. Z¥ e QP for y e &* since

¥ 20 =lm 107 (o,y)}=0=[1 3 {10~w,y) 0] <1/p).
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HZe Qg”, then it follows from remark 1 on p. 265 that there is a func-
tion y e®* such that Z=2%.

Definition 7. 2= F[lim 10 p(z,y) exists and is irrational].
¥y x

THEOREM 9. The family {Z9),cq is identical with Q.
Proof. Z¥ e QF since

y €2 =(im10™"y(x,y) exists)-[] [ 3 [11[10~y(x.y)—~p/q > 1]

g¥F0 n x

=[] 3 [1 [0 p(@s,y)—10""p(z,u)] <1/s).

$=0  x1>fXx3>1

1111 3 [TTA0™"y(@sy)~pld >1/n)

Let us now assume that Ze QP, i.e, Z=2Z2 for a ye®. Let
J3—1+510"¢, and g(@)=310"c,. The function ¢ is primitive re-
n n=1

cursive. Further let 8(2z,y) =y(z,y)+¢(®), f(2x+1,y)=g¢(x). It is evident
that hm 107"B(x,y) exists if and only if hm 10 p(x,y) exists and is

equaJO i. e., for y e Z. In that ca.sehmlO"‘ﬂ(m y) 2 —1 and hence Z=25.

TeoREM 10. The family {ZP}co is identical with Q.
Proof. In view of theorem 9 it is sufficient to show that for each
Z e QS there is a y e ®* such that Z=2%. Let us assume therefore that

(11) ZIEZEUE”[Q‘(PJJJI)ZOL ge®.
ir s

We now repeat the construction carried out in the proof of theorem 1
replacing the function o(p,s,y) by the funection o(p,s,j,y) oceurring in
(11) and treating 7 as a new parameter. We obtain a funetion =(x,j,y)
with the following properties:

(12) a(e+1,j,y) >ale,j,y),

(13) it [] ¥{e(p,8,j,5)#0], then lima{z,j,y)= oo,
p s x->00

(14) if py is a smallest integer such that [J{e(p,.s,j,¥)=0], then
5
Lim a(x,j, )= 1Ppo-
X—00

We put ='(z,j,y) ==(z,j,y)+1 and denote by a(x,j,y) and p(x,j,y)
the numerator and the denominator of the jth convergent of the conti-
nuous fraction

1| 1.
20,0 T a1y
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To this effect we take
ofz,0,y) =1, B(#,0,y) =='(,0,y),
ofz,1,y)=="(2,1,Y), Blz,1,y) =="(=,0 ) w' (@, 1,y)+1,
a(w:j+2:?/)=7ll(w:j+2yy )ral@, 4+ 1,9)+ al@,i,9),
Bla,i+2,9) =="(z,j+2,9)-B@,j+1,9)+ B(@:7,9)-
It is evident that lim a(a:,j,y)=lijm B(@,j,y)=oc. We put
J

o(x,y) = a(z,2,9), (@, y) =pz,2,Y)
and have therefore ’
i 1 | 1]

1) Henoed) = oo oot e )

We shall now calculate lim (p(z,9)/y(@,y)). Let us first assume that
yeZ, i.e., that for each jx there is a smallest p,=p,(j) such that
U[g(pn,s,y',y):o]. According to (14) we have
(16) Hinﬂ’(m,i,y)=z?o(i)+l=106(i) for j=0,1,2,..

Let A be the irrational number

=+

and let R,=P,/¢, be the nth convergent of this continuous fraction.
As is well known, [A— RB,|<1/Q,Q,_. whenee-it follows that if ¢(0),¢(1),...

is a (finibe or infinite) sequence which in its first # terms coincides
with the sequence pg(0),pa(1),..., and if u=: q(0|+|q11 ..., then
—R,|<1/Q.Qx and hence |

iz_(l rORERS ?{ )l<-¢/QnQn_1

Let >0 be arbitrary; choose n so large that 2/Q,Q,_,<e. By (16)
there is an z, such that for z>z,

a'(@,7,9) =pa(j) for j=0,1,..,n—1.

Thus the first n terms of the sequence ='(x,0,y),x "(#,1,y),... coincide

with the first n terms of the sequence 20(0),p5(1),... and hence for
o >Max (%y,n)

iz—(__ﬁl f 1|
| ;n’(m707y)+”.+j:’zl(ﬂ?,$,1))l<8'

@
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This inequality together with (15) yields

plr, )z, y)—A<e

and, since ¢ was arbitrary,

Lim (g(a,y) /(. 1)) =

X200

Next we assume that y ¢ Z, 4. e., that there is a (smallest) j, such
that []3[e(p,8,70,%)70]. Thus for j <j, we have formula (16) whereas
from 1;(1:3) it follows that

lim /(2 jo,y) = oo
We obviously have )
1] 1! 1
R E X = v Rl e e

1 1 1)
————t ] =0,
xﬂ(!n'(m,an,yﬁ T Rw,5,9)

Using (15) and (16) we obtain therefore

(& >Fo)s

whence

by 1
0|7 (22,0 et [7"(#,50—1,9)
1] 1]

=10 T T =1

lim (p(=,9)/p(2,)) =Lim

and hence lim (p(z,y)/p(z,y)) is rational.

Now let y(x,y)=[10"p(z,y)/p(z,y)]. It is evident that this function
is primitive recursive and

107 (@, y) < 9@, y) /9@, y) <10 p(2,y) +107

It follows that lim 10 y(x,y)= lhn(<p(m,y)/1p(m,y)). Hence Lim 10 y(z,y)

exists for an arbitrary ¥ and is rational for y ¢ Z and irrational for y e Z.
Hence y e &* and Z=2°.

We conclude by stating an open problem. Let X be a recursively
enumerable set of non-negative rational numbers (. e., there are funec-
tions ¢,pe® such that r e X if and only if it can be represented in
the form r=g(x)/w(z)). Let Z,(X)=F [lim 10 (x,y) ¢ X]. The problem

¥y x

is to determine the family {Z,(X)},coe=F(X).
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Trom theorems 4, 8, and 10 we obtain the followmg' partial answers
to that problem: if X, contains only the number 0, X; i8 t}he set'of all
non-negative integers, and X, is the set of all non-negative rationals,

then F(Xq)=QP, F(X,)=0QF, F(X,)=P.
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Contributions to the theory of definable sets and
functions

by
A. Mostowski (Warszawa)

In this paper we collect some scattered results concerning sets and
functions definable in elementary arithmetic. We shall use consistently
the terminology and notations of the paper [2], with which, we assume,
the reader is acquainted. In particular we denote by Ry the set of k-ples
(#1y %2, ... %) =m1, where the 23 are non-negative integers, and by P
(or Q) the set of functions from R, to B, whose graphs are in P**P
{or in QF+D).

1. We begin by establishing some simple properties of the classes
P®ang Q. ,

TaEoREM 1. P&C Q.

Proof. The theorem is evident in case #n=0. Let us, therefore,
assume that n>0 and f e P¥. It follows from the definitions that there
exists a set B e Q¥L? such that

{fm)= my= Y {(m,m,x) eB}.
Hence :
{fm)z= m}= 3 {{(m,p,x) e B]- (p=£m)}
§ xS
which proves that the graph of f is in Q¥ q.e. d.

THEOREM 2. If n>1, then PE)— Q%20 Q% P,

Proof. It is well known that there are sets M which belong to
PR, . Q¥ without belonging to Q®. Let f be the characteristic funetion
of such a set M. The graph of f is in P¥%Y, since

{y=Fm)}={{y=0)-(mé M)+ (y=1)- (m « M)}.

As {me M}={f(m)=1}, the graph of f is not in Q¥**. Hence f e P — Q.
Slightly more intricate is the proof that Q" —P%:£0. Let
CeQP—P® and let B be a set in Q¥ such that

me¢ O=3[(m,z) € B].
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