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Trom theorems 4, 8, and 10 we obtain the followmg' partial answers
to that problem: if X, contains only the number 0, X; i8 t}he set'of all
non-negative integers, and X, is the set of all non-negative rationals,

then F(Xq)=QP, F(X,)=0QF, F(X,)=P.
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Contributions to the theory of definable sets and
functions

by
A. Mostowski (Warszawa)

In this paper we collect some scattered results concerning sets and
functions definable in elementary arithmetic. We shall use consistently
the terminology and notations of the paper [2], with which, we assume,
the reader is acquainted. In particular we denote by Ry the set of k-ples
(#1y %2, ... %) =m1, where the 23 are non-negative integers, and by P
(or Q) the set of functions from R, to B, whose graphs are in P**P
{or in QF+D).

1. We begin by establishing some simple properties of the classes
P®ang Q. ,

TaEoREM 1. P&C Q.

Proof. The theorem is evident in case #n=0. Let us, therefore,
assume that n>0 and f e P¥. It follows from the definitions that there
exists a set B e Q¥L? such that

{fm)= my= Y {(m,m,x) eB}.
Hence :
{fm)z= m}= 3 {{(m,p,x) e B]- (p=£m)}
§ xS
which proves that the graph of f is in Q¥ q.e. d.

THEOREM 2. If n>1, then PE)— Q%20 Q% P,

Proof. It is well known that there are sets M which belong to
PR, . Q¥ without belonging to Q®. Let f be the characteristic funetion
of such a set M. The graph of f is in P¥%Y, since

{y=Fm)}={{y=0)-(mé M)+ (y=1)- (m « M)}.

As {me M}={f(m)=1}, the graph of f is not in Q¥**. Hence f e P — Q.
Slightly more intricate is the proof that Q" —P%:£0. Let
CeQP—P® and let B be a set in Q¥ such that

me¢ O=3[(m,z) € B].

Fundamenta Mathematicae, T. XLIL 18


GUEST


979 A Mostowski

We select an a,rbiti‘a,ry point 1, outside ¢ and put
Mm)=m, if (sfk’(m),sz(m)) ¢ B,
h(m)=sP(m) i (sl(k)(m),sg(m)) ¢B,
where s and s, are primitive recursive functions with the property that
the formula m=> (s{")(m),sg(m)) establishes a one-one correspondence

between elements of Ry and elements of Rpya. .
The set Ri— C coincides with the set of values of the function .

The graph of h is in P¥™ -Q¥D since
fm=h{m)}= (m=mo)- [ s£m),sa(m)) ¢ B]+
+ (=8 (m)]- [(s{k)(m) ,8a(m)) B] .
Let us put )
F=F {(me0)-(m=0)+($>0).[m=h(m—1)]-KH [m=£h(z—1)]}.
(m,x) 7<x

We have then F e QF™, because the set
m=nz—1)]- h(z—1
(ml"—,;){(w>0) [m="h({z—1)] 1<£I<x[m# (z—1)1}

Dbelongs to PF.Q%* (see [3], theorem 3.3). From me O=(m,0)<F
we infer that F ¢ P¥0,

We shall show that F is the graph of a function. If m ¢ O, then
{(m,0) ¢ ¥, and hence Y (m,z)cF. If m¢ O, there is an integer y such
that m=~h(y). Assumjn’é that y is the smallest integer with this property
and putting =y-+1, we obfain again (m,z)<F. Hence the formula
I (m,x) ¢F is true for every m.

It remains to prove tﬁat
[(m,2,) e F]-[(m,22) eFlom=am,.

If meC, then z,=0 and z,=0. If m¢C, then #; >0, £,>0, m=h(z,—1)
=h{z,—1), and m#h(z), for every 2<z;,—1 and every z<x,—1. It can
be easily seen that either of the assumptions, @, <@, %<, leads to
contradictions.

The set F is thus shown to be the graph of a function. Since
F e QY _PED thiy function is in Q% but not in P, q. e. .

2. In this section we shall establish some properties of the functions
of the class Q.

TreorEM 3. If ¢ Q&P, then the set F [m<f(m)] is recursively enume-
T, -
rable (i e., belongs to the class P¥D),

® .
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Proof. Let B be a recursive set such that
{f(m)=m}=[] {(m,m,z) ¢ B}.
X
We have then the equivalence

{m<f(m)} Elg 2 m,j,x)e Bl,
J<m x
which proves the theorem.

Remark. If fis the characteristic function of a set M « P - Q& —P®,
then the set A= F'[m<f(m)] is not recursively enumerable sgince

e M=(m,1) e A. 'F]’;is shows that theorem 1 is, in general, false for
functions f e P&,

THEOREM 4. If a function f € Q{"D 48 majorized by a recursive function,
then | is recursive (i.e. belongs to P&).

Proof. Let B be a recursive set such that
{m=fm)}=[][(m,m,z)eB], BePH?
x

and g a recursive funection such that f(m)< g(m). Without loss of generality
‘we may assume B to be primitive recursive. We denote by & the characte-
ristic function of B and put
h'(m,m,0)=1-h(m,m,0),
X
r'(m,m,z+1)=[1-k{m,m,z--1)]~ Z,’oh’(m,'m,y).
=

Thus %' is & primitive recursive function which vanishes everywhere

except in points (m,m,x), where x is the least integer such that
(m,m,x)¢ B.

H m=f(m), then there is an & such that h'(m,m,z)=1; no such =»
exists if m=f(m). Hence

y(g'n) ®._,
> 2k (m,m,x)=g(m)
m=0 x=0

and the funetion

om
)= 3K (m,m,z)=g(m)]
is (general) recursive.
¥{m)
I m#f(m) and m<g(m), then Y h'(m,m,x)=1; if m=jf(m), then
x=0 .

7am)
Zn" K (m,m,x)=0. Hence we obtain the formula

fm) = (m)g 3 1, m,0) = 0]

18%
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in which (um)[...] denotes the least m, satisfying the inequality m<a
and the condition [...] (or 0, if no such m exists). This formula proves
that f is recursive.

3. Let a set XCRyyy be such that [] X (m,m)e X. A function f is

m m
called a selector of X it [] (m, f(m)) eX.
m
THEOREM 5. Recursively enumerable sets possess recursive selectors.
Proof. Let X ¢ P¥™ and let B be a recursive set such that

(m,m)e X=3 (m,m,x)eB.

The function
)= ] (m, 8°(),5a(2)] < B])

is the required recursive selector of X. ‘
TapoREM 6. g« QP and g is nmot recursive, the set E)[m>g(m)] is
(m,m;
in Q{"*’D and has no recursive selector.
This theorem follows immediately from the theorems 3 and 4.

4. Kleene [1] has constructed two disjoint recursively enumerable
sets X,¥, such that there is no recursive set Z, satisfying the conditions
XCZ, YZ=0. H in this proof we change the words ‘recursively enume-
rable” into “element of P®” and “recursive” into “element of P,* - Q®»,
we obtain the proof of

THROREM 7. For each n>0 there are disjoint sets X, ¥ e P® such
that the formulas XCZ, YZ=0 are not satisfied by any set Z « P®- Q.

Theorem 7 is not true for sets of class Q,Ek). On the contrary,
we shall prove

TrroREM 8. If X,Y ¢ QF and XY =0, then there is a set Z ¢« PP - Q¥
such that XCZ and YZ=0.

Sinee the case n=0 is evident, we assume that n>0 and denote
by M and ¥ two sets in P*%® such that

(1) {m eX}ElI{(m,w)EM}, {me Y}ELI {(m,z) e N3.
It follows from XY—0 that Re=(Ri—X)+(R.—¥) and hence
2) {“'IxZ’{{(m,m)éM]+[(m,-v)éN]}-

~ The graph of the function

flm) = (uw){{(m,z) ¢ M]+[(m,z) ¢ N]}
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iom
way be represented in the form

(3) F [z=f(m)]=4—-B

n.x)

This follows from the equivalence
w=f(m)z’1<7[(mﬂ) « M-N1-{[(nt,2) e M]+[(m,z) e N}

where 4,BeP%iP.

and the observation that the sets,

E [[[m,z)e M-N]  and

(m,x) z<x

E {l(m,») ¢ M1+4[(m,z)e N1},
(m,x)

belong to the classes P& and Q¥ (cf. [3], theorem 3.3).
Let us put

(4) U= {“; [mafm))e ], V= g[(m, flm)) ¢ ¥,
(8) Z=V-T.
Formula (2) proves that U4V =R,. Using (1), we obtain
me X —(m,f(m)) e M>meé T

and hence XCRy—U=(U4V)—~U=V—-U=2Z. In a similar way we
show that YCU—V and hence ¥YZ=0.

It remains to evalnate the class of the set Z. From (3) and (4) we
obtain

me U= {[z=fm)]-[(m,r) ¢ M]}
E;;,’ [(m,2) e (4 —B)—M]
=[] {lz=ftm)]~>[(m,2) ¢ M}
=[Il(m,2) e B+ (Biya— A) + (Beya —M)].

These equivalences prove that U e PM. Q,(.k). In a similar way we
prove that V e P Q®. It follows from (5) that ZeP® - Q®. Theorem 8
is thus proved.

References

[1] 8. C. Kleene, 4 symmetric form of Godel’s theorem, Indag. Math. 12 (1950),
p. 244-246.

[2] A. Mostowski, On definable sets of positive integers, Fund. Math. 34 (1947),
p. 81-112.

[3] — On a set of integers not definable by means of one-quantifier predicates, An.
de la Soc. Pol. de Math. 21 (1948), p. 114-119.

Reeu par la Rédaction le 27.9.1954


GUEST




