A remark on order-types
by

K. Padmavally (Madras)

1. 1. Sierpinski [5] has shown that

(a) every order-type C of power s, is imbeddable in the “co-i'ng?lete power’
2 ({@,)) (Hausdorff [1], p. 460), (1. e. the set of all zrmwfmztg sequences
of zevos and ones, of length w;), w; denoting *) the initial ordinal cor-
responding to the cardinal number ;.

J. Novak [2] has vefined this result as follows:

(b) If s, denotes the minimum cardinal number of a dense subset of the
conlinuous order-type C,then C is imbeddable in the complete power
2((rm))-

In the paper [4] (which was submitted for publication before I came
across J. Novdks result) I had proved (Theorem 3.6) that
{¢) If o, is an initial ordinal 2) such that neither o, nor its inverse wy is

imbeddable in the order-type C, then C is imbeddable in the complete

power 2((wy))-

The purpose of this note is to point out some relations between
these results.

2. It may be noted that (b) follows immediately from (a) by ob-
serving that if a dense subset D of a continuous order-type C is imbed-
dable in an order-type A which has no gap sections and which possesses
both extremities, (4. e. which is =4, its completion — cf. Fausdortf [1],
D. 448), then € is imbeddable in 4. This can be proved by considering
@ subset B of 4 similar to D, and the set I of limit points of B in 4.
Since A=4, corresponding to every gap or missing extremity g of B,
there exists a point ¢’ of L. Hence Bu L and therefore A containg a subset
similar to C. Hence, in view of 2((w,)) being its own completion ([6],
Theorem 1), (b) follows from (a).

') This notation is adhered to in what follows, 1. e. , denotes the initial ordinal
corresponding to ®,. ’

*) The result is proved for any indecomposable ordinal 2 such that neither 1 nor 4*
is imbeddable in (. Therefore, since an initial ordinal is indecomposable, () follows.

@
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2. In what follows the initial ordinal w,, corresponding to x,, the
minimum cardinal number of a dense subset of €, is denoted by u(0),
the smallest initial ordinal wy such that € is imbeddable in 2((wx)) by »(C),
and the smallest initial ordinal w, such that neither w, Dor its inverse o}
is imbeddable in € by A(C). Then if »(C)=w, (=wi(C)), we have the
following

2.1. THEOREM. A necessary and sufficient condition for pu(C) 1o be
<#(C) for the continuous order-type C is that ), 2= x,.

x<k
The proof depends on the fact that the minimum cardinal of a dense
subset of 2((wy)) is ), 2% which is >%¢. This follows by arguments similar
n<k

to those used by Hausdorff ([1], p. 490-493) in proving that the set 8(o)
has power (s,,+x,,),,=d2 (s.+¥3)%. This former result, namely that the
<Ny

minimum cardinal of a dense subset of 2({wy)) is (3 2%>x,), evidently
<k

implies that the condition is necessary, since 3[2((we))] < wx. The converse
depends on the fact that if ¢ is any continuous order-type imbeddable
in 2((w;)) and D any dense subset of 2((w;)), then ¢ has a dense subset D’
which is imbeddable in D. This can be proved as follows. Corresponding
to every element d « (D— C) thereis a maximal segment I, of 2((w;)) con-
taining 4 and free from points of the subset ¢ of 2((w;)). Since the order-
-type C is continuous, one of the extremities of I, say I, belongs to C.
The union of D~C and the set of elements {I;}s.p is dense in O, for, since (!
is continuous, between any two elements p,q of C, there is a non-empty
interval of 2((w;)) and hence an element d of the dense subset D. Heuce
either d e O, or there exists a segment of the form I; and therefore an
element Iy between p,q. Also the union of D~C and of the set {lataep s
similar to a subset of D, since each I; can be made to correspond to a d
belonging to the corresponding I;~D. Hence (C’.—\D)ud ZD Iy is the required
€

dense subset of €' imbeddable in D. Henee if >'2%=x; so that 2((c;}) has

a dense subset of power &;, & necessary condition for ¢ to be imbeddable

in 2((w;)), i. e. for w; to be >»(C), is that ¢ have a dense subset of po-

wer <x;, or equivalently, that u(C)<ew;. Hence if 3 2%=x,, u(C)<»(C)
=<k

= wy. This proves that the condition is sufficient.
2.2, THEOREM. A necessary and sufficient condition for u(C) to be

<A(C) for all continuous order-types C is that 2% <s, for every »<n,
for all n.

It may be noted that this condition is equivalent to the one stated
above, extended to all w; (. e. to all continuous order-types C).
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Since, on account of result (¢), AC)>»(0), it follows immediately
ffom the foregoing result that the condition is sufficient. To prove that
the: condition is necessary, suppose that for some # there exists »<n
such that 2%>sx,. Consider any ordinal & such that o, <&<w,. Then
for the order-type 2((&))= 0, A(C)<w,; for, by Theorem of Hausdortf
([1], p. 472), stating that every series of 2((£)) is cofinal with an “argu-
mental” or a “basic” series, it follows that every well-ordered (inversely
well-ordered) subset of 2((£)) is imbeddable in &(£*). Hence neither o,
nor w} is imbeddable in 2((£)). Thus for the continuous order-type C,
formed from O by coalescing consecutive points ([3], p: 253), we have
2Cy) <w,. But p(0), and hence u(0,) is >w,, for 2((w,) is similar to
a set of disjoint proper segments of 2((£)) (namely the “complete segments”
of order w,, as defined in[4]) and hence to a set of disjoint proper segments
of C, also. Hence every dense subset of C; contains a set similar to 2((w,))
(as can be seen if we take one element from each of the set of disjoint
proper segments of order-type 2((w,))), <. e. every dense subset of C, has
power 2%>y,, and thus u(0;) >w,. Hence for the continuous order-type
€y, we have u(C;)>A(C)), which proves that the condition is necessary.

2.3. Remark. For n=0 the condition referred to above holds,
i.e. X 2=x,. This is in accordance with J. Novak’s observation that

<o
#(C)=2(C) for the case where (' is the real number space which is formed
from 2((w)) by coalescing consecutive elements. Here u(C) is also the
smallest ordinal £ such that € is imbeddable in 2((£)).

8. An example of an order-type P for which A(P)=y»(P) is the smal-
lest ordinal & such that P is imbeddable in 2((£)) can be constructed as
follows. The construction depends on the following lemmas:

3.1. If C is an order-type for which A(C) ewists and >w, and in which
every well-ordered or inversely well-ordered series has a limit, (4. e. has no
gap sections and possesses both exiremities), then O contains no isolated
subset similar to itself.

Proof. Let E be an isolated subset of ¢ similar to ¢. Let f be a one-
oue order-preserving map of ¢ onto E. Consider any element p of .C' for
which f(p) >p. Then a well-ordered series {pp} of C can be defined by in-
duction as follows. et p,=p. Suppose that the well-ordered set‘{ppv}
?ms b.een defhlefl for a‘H. B<y, so that f(ps)>ps and pji1=F(ps). Then
if ¥ is a non-limiting ordinal =81, p,=p,;.;=F(ps) >ps. Since f is
one-one order-preserving, it follows that f(p,) >f(ps)=p,. Let p,.1=1(p,)-
If yisa limiting ordinal, let p, be the limit in ¢ (which exists by hypo-
thesis) of the well-ordered series {Ps}s<y. Then, since ¥ is an (isolated
subset of C, p, e E. Therefore, since f is order-preserving, f(p ) >Pys
and p,.; can be defined as f(p,). This definition of P, can evidelztly be
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applied for all ordinals y, i e. (' contains any desired well-ordered
series, contrary to the hypothesis that A(C) exists. A similar argument
nolds for the case where we start with a p e € for which f(p) <p. Also
either of these cases must hold for at least one p e ¢ sinece f(p)=p for
all p e C would imply that C is finite, confrary to the hypothesis that
() >w. This proves the lemma.

3.2. Let w,.; be any non-limiting regular initial ordinal. Consider
the “general product” P with argument 2((w,)) whose base consists of
the elements 0,1, as defined by Hausdorff ([1], p. 461). P is the set of all
complexes X={xz,} where, for each X, the index y varies in the argument
2((w,)). The coordinate x,=0 for all values of y except a well-ordered
subset F=F(X) of values of y, and x,=1 for y e F(X). The set F(X)
varies unrestrictedly in 2({w,)) as X varies in P. The set P is ordered
according to first differences, i.e. ={ay}<< X,={25} if there exists
2 e 2((0,)) such that ef=2a for y<z, 2t <22 (i. e. 22=0, 23=1). The exi-
stence of gz is ensured by the hypothesis that F(X) is well-ordered for
every X ¢ P. Hence P is a completely ordered set. It can be shown, as
below that P is not imbeddable in any complete power 2((§)), & <wyi1,
while A(P)= 1.

To prove the former result, i. e. that P is not imbeddable in any
2((£)), E<wny1, by the foregoing lemma, it is sufficient to prove that
every 2((£)), & <w,1; is imbeddable in P. For, assuming this latter result,
suppose that P is imbeddable in 2((%)), § <wns:. Then 2((n+3)), being
imbeddable in P, would be imbeddable in 2((#)). Therefore, since 2((7))
is similar to an isolated subset of 2((y7+3)) (or equivalently to the set
of all elements of 2((n-+3)) given by x,.2=0), 2((y)) is similar to an
isolated subset of itself. But this contradicts the lemma, since 2((z))
has no gaps and possesses both extremities ({3], Theorem 1).

To show that 2((£)),£ < w,41 is imbeddable in P, consider the subset §
of the argument 2((w,)) (regarded as the set of all X={xs}, f<w,, Where
each z; is 0 or 1) consisting of all X ={x;} such that zz=0 for even f,
i. e. B of the form 2y, while xz=1 for all odd g (which are not even).
This set is evidently an e,-set (Hausdorff [1], p. 487) since every element
has eharacter w,w* and every gap is either cofinal with w, or coinitial
with %, Hence by Theorem 18 of Hausdorif [1] it follows that every
set of power <&, and in particular every ordinal &< w,41, is imbeddable
in 8, and hence in 2((w,)). Consider the set of all X e P such that F(X)
is a given subset of 2((w,)) similar to £ This set has order-type 2((&)).
It follows that every 2((£)), & <w,.1, is imbeddable in P. Hence, by the
foregoing, P is not imbeddable in any 2((§)), &§<was1.

The result that A(P)= w,,; follows from the fact that for the argu-
ment 2((w,)) we obtain A[2({w.))]=w,s1, by using an extension of The-
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orem 14 of Hausdortf [1]. This theorem states that every well-ordered
(inversely well-oredred) series of a product whose argument is well-
-ordered is cofinal (coinitial) with an argumental or a basic series (or
the inverse of an argumental series). Applying this result to the product
2((wn)), we immediately find that every well-ordered (inversely vell-
-ordered) series of 2((w,)) is cofinal (coinitial) with a regular injtial
ordinal (or its inverse) <w,, 4. ¢. that neither 41 NOT o is imbeddable
in 2((ws)), so that A[2((w,))]=w,41. Theorem 14 of Hausdorff can be

extended as follows to the case where the argument is not necessarily
well-ordered:

3.8. Consider the general product P whose argument E— (which is
not necessarily well-ordered) is such that A(E) <wny1, and the base O(y)
corresponding to each y ¢ F is also such that AL0(W)]<,i1. P consists
of the set of all X={x,} where, for each X e P, y varies in E and =,
varies in an ordered set Cf(y) depending only on the element yeEy
and where z,=t, is a fixed element of C(y) (independent of X) for ali
but a well-ordered set F=F(X) of values of ¥, @y being unrestricted in
O(y) for y e F(X). The set F(X) of B, asin the previous definition, is
an unrestrictedly varying well-ordered subset of B as X varies in}P.
The set P is ordered according to first differing coordinates. Then if
{Xshp<o Xp={af}) is a well-ordered (inversely well-ordered) subset of P,
&< Wpyi-

Following Hausdortf, let us denote b ( for each pair
ordinals <a the place of first differing Zoofdii);)ates of X,,IjX ,.ﬁ'ﬁleflf
a8 has b.een Dpointed out by Hausdorft, for o given B,for y>p (8, y)7 is a nonZ
-Increasing function of y, and since E=F, has a minimum 7(f) in E.

As has also been shown by Ha:us(lol'ﬂ Tt 18 & non-decreasin, flln('atvlon
] (/3) creasing

) Case 1.. There exists # < a for which the minimum 7(B) of {(B,¥)}p<y<e
is n‘ot attained. {(8,7)}p<,<q is an inversely well-ordered subset S of E
having no lowest element. Hence there exists series {y:}s<, cofinal with «

:;‘éﬁ that each (8,y;) is <(B,¥s+1), s0 that 7 is similar to 8* and cofinal
a.

Case 2. Case 1 does not hold, . e. a(f) is attained fo

same argum(?nt as that given by Ha.usdoﬁ?ﬁf (111, p. 472-;731)1 i/z Tlg(;dT}ﬁ]s
fshOVf’ that  is cofinal with some 4 such that either 7 or n* iy imbeddable
in either # or some C(y),y € B. Hence @< Wpey. k

and ﬂé::hpizi:eg P (:,om-udered 'in 3.2 above, whose argument is 2((w,))
z c (y) is the ordinal two, evidently satisfies these condi-
ions, since A[2((wn))]= wnyy and A2)=3. Hence MP) is while P is
not imbeddable in any 2((8)), £ <wnqp. It follows " ‘ '

icm
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3.4. THEOREM. The ordinal % given by Theorem 3.6 of {4] cannot be
lowered.
The above generalization of Theorem 14 of Hausdorff also leads
to a generalization of a result of Sierpinski’s [6], namely

8.5. THEOREM. For every non-limiting regular initial ordinal w,..,
there exists a transfinite ascending sequence of power equal to the cardinal
number next higher than 2™, (i.e. of type a where |a|= the cardinal next
higher than 2%) of order-types {Cglsca, each of which has power <2+,
and where each iA{C3)< wps1.

(The order-types are ordered according to the definition given by
Sierpifski [7], i. e. Cp<<(, if C;is similar to a subset of C,, but not con-
versely.)

Let C, be defined as 6, the order-type of the real number segment

<ax<1. Suppose that the members {C;} of the required sequence have
been defined for all B <y, where the power of y is <2™, and each C;=Cy,
its completion. Then if y is a non-limiting ordinal = 6+-1, let C, be defined
as 3-C,. Csis evidently a subset of C,, while ¢, is not imbeddable in C;:
otherwise this would give an isolated subset of Cj similar to itself (Cs
being similar to an isolated subset of C, and hence of C;), contradicting
our lemma since Cs=0C;. Hence C; < C,. If y is a limiting ordinal, then,
the power of y being <2™, and the power of 2((w,)) being 2%, a subset §
of 2((w,)) of distinet points {ys}s<, can be found. Consider the product P,
whose argument is 2((w,)) and each base C(y) is the corresponding Cp
for y=1y; ¢S, while for y ¢ 8, C(y) is the ordinal two. Then, since each
AC;) as well a8 A[2((0,))] <521, by the foregoing extension of Theorem 14
of Haunsdortf, therefore A(P)=A1(P) <w,.;. Hence, by Theorem 3.6 of [4],
P is imbeddable in 2((w,-1)), and thus P has power <2™, Also P (and
hence P) can easily be seen to be greater than each (4, f<y, since each
subset T of P consisting of all X=/{x,} where , is fixed, (i. e. indepen-
dent of the particular X e Tj), for all ys%y;, while x, for y=y, varies
nnrestrictedly in Cj, is evidently similar to the corresponding C,. Hence
each C;, <y, is imbeddable in P. It follows that P is not imbeddable
in any Cj, B <y, since otherwise, 1. e. if P were imbeddable in Cj, every Cg,
&<y, would be imbeddable in C, contrary to the hypothesis that {Celec,
is an increasing sequence. Hence P >(; for all g <y. Letb P be defined
as C,. This defines C, for all y such that [y|<2™, . e. for |y| < the smallest
cardinal higher than 2%.

8.6. Using the same method as above, we can show that at least
one of the following two results holds for each w,.s.

If every member (); of the sequence defined above has power <2%,
it is clear that
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{d) There ewists an ascending transfinite sequence of power equal to the
smallest cardinal s higher than 2%, of order-types of power <2% each,
If (d) is not true, so that some Cp has power >w, i. 6. >2% then

if we use this C; instead of 2((w.)) in the foregoing, it is clear that mem-

bers {C} of the ascending sequence can be defined for all y having po-

wer <, 4.6

{e) There exists an ascending transfinite sequence of power eqha,l to. the
smallest cardinal number R’ higher than s, (the smallest cardinal
Righer than 2%) of order-types each having power <x.

These can be looked upon as the analogues of the result proved by
Sierpifiski [6], namely that there exists a descending sequence of power
2% of order-types having power 2 each.

I wish to thank Dr. M. Venketaraman for his help in preparing this
note.
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Sur certains ensembles indénombrables singuliers
de nombres irrationnels

par
J. Popruzenko (Lod7)

Dans ce Mémoire, je m’occupe de certains phénoménes mathémati-
ques qui ont été découverts et étudiés par d’autres auteurs 4 laide de
I’hypothése du continu. On trouve ces questions dans les sections 2 et 3du
présent travail.

Tes raisonnements qui vont suivre et dont le but prineipal est d’éli-
miner les prémisses hypothétiques des démonstrations de Pexistence de
ces phénoménes reposent sur la notion d’ordre de croissance des suites
infinies d’entiers positifs, done —au fond — sur les propriétés des rela-
tions d’ordre partiel. Nous commencons par établir un théoréme général
a ce sujet.

1. Ensembles fondamentaux. Soit S un espace abstrait indé-
nombrable quelconque. Soit ¢ une relation dont le champ d’existence est
un certain ensemble de couples formés d’éléments de M. Il est supposé
que g établit dans M un ordre partiel. Tne telle relation est done par
hypothese

1o non-réflexive
et

20 transitive.

Cles deux conditions supposées remplies, nous pouvons préeiser cer-
taines notions, dont nous nous servirons constamment dans la suite.

Un ensemble N sera dit borné selon la relation ¢ lorsqu’il existe un
élément ¢ de M tel que pog quel que soit p e N.

Une suite transfinie {ps}s; formée de certains éleménts de M sera
dite bien ordonnée selon la relation o en type @ordre & lorsque inégalité
£ <& «<b entraine toujours peopy.

Elle sera dite saturée selon la relation o si, en outre, I'ensemble de ses
termes n’est pas borné selon la méme relation.

Nous supposons que la relation o est assujettie & une condition sup-
plémentaire, essentielle pour nos raisonnements.
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