Linear operations in Saks spaces (II)

by
W. ORLICZ (Poznan)

3.1. We shall prove now some general theorems concerning the Saks
spaces ).

Let X denote the fundamental Banach space or an incomplete Ba-
nach space with the norm || |, and let || |* be a B- or F-norm, defining
together with the former norm the Saks space X,.

(A) Let us denote by X, the space composed of the elements of X, with
the norm :
1) llllo= [l -+ lll* 5

then X, is a IFréchet space.

(A) If we apply, in the definition of a Saks space, the norm llwllo as the
“starred” norm, then the sphere ||5|<1 forms a Saks space (X,), satisfying
conditions (Z,),(Z,) and ().

(A'") If the set X" 4s dense with respect to the norm || || in the sphere
||| <1, then it ds dense in X,.

To prove (A’), let us suppose that |j@,|[<1, |l@,—2p/l,—0 as n,m->oco.
The space X, being complete, there exists an element x,¢ X, such that

1
@, —,; since (as we have noticed in 2.2, p. 266) the space X is such that

Yn—>Y, implies
i [fy, | > g,

N—0
1 i .
we see that x,—x,,—x,—x, implies *

Lima |2, — | 2l — a5

M—>00

1) This is the second part of the paper [8] which will be denoted by the abbre-
viation LO(I). Subsequently some definitions and notations of LO(I) will be used.
The results of this paper, as those of LO(I), were presented on 26th September 1948
to the VI Congress of Polish Mathematicians.
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2 W. Orlicz

and since |jg, —&,| >0 a8 n,m—>oco, We see that \|mn——m(,|!~>0 and, since
s —ato||* 0, we get [l —qlly—0 Thus the space (X,); is complete.

To prove that the space (X satisfies conditior'ls. (ZQ,(EEQ, aﬂfld
(=3), it is sufficient in virtue of 1.32 to state that condition () is sz?ms-
fied at every point of a dense set in X,. For this purpose, let us congider
the sphere [z—alh<e, I#I<1, lmll<1. The element g{—.;(l—a)wq,
0<a<cl, lies in this sphere for sufficiently small a. Oondltmn‘(zl) is
satisfied at the point v, because |jzll,<<é=1—]y|| implies y4we Xy,

Statement (A) immediately results from the completeness of the
space (Xp)s- T

To prove (A’') let us notice that if |lzoll <1, then there exists ”f,"X
such that |[F—a,ly<e(l—|mll) for 0<p<1. Hence [E|<I, [ —a|” <o,
and since the set of the elements o, satisfying |lm|l<1 is obviously dense
in X,, the set X* iy dense in X.

(B) If woeX and |z,]| -0 implies e, =0, then X is a Banach space
with respect to the morm || ||, and conversely.

Only completeness with respect to the norm || || is to be proved.
By hypothesis, [[&,—,/]>0 a8 m,n—>occ implies nmm—w,,u*»-m, whence
also ||, — ullo—~0 (where || [l is the norm defined by (1)). It suffices to
notice that the space X is complete with respect to the norm || [j, in vix-
tue of (A).

Suppose now t X, with the norm || ||, is a2 Banach space. From
(A) it follows th is complete also with respect to the norm || {|p; more-
over, |z,llo>0 . iplies |®,|->0, whence, by a well-known theorem of
Banach, |[2,]|—0 implies ||#,[,—~0, which in turn implies g, I = 0.

A-, B- or F-norm || ||, is called equivalent to the norm || ||, if [[2,]L,~0
implies |ja,/l;—0, and, conversely, ||#,ll;—~0 implies [la,,—0.

(C) Bach of the following conditions is necessary and sufficient in
order that the norm || |* be equivalent to the B-morm | ||:

(a) X is a Banach space with respect to the norm | || and o, |I* 0
implies |[x,]|—0,

(b) X is a Fréchet space with respect to the norm || | and |ju,/|->0
“implies ||z, =0,

(¢) X is a Bamach space with respect to the norm || || and the set X" =

=E{llzll<1} s of the second category in X,.

: Ad (a) and (b). If the norm | ||* is equivalent to || ||, then the norm
Il Il is equivalent to || || and || ||*; by 3.1 (A) X is a Banach space with
the norm | ||*, whence (a) and (b) are necessary.

If (a) is. satisfied, then |&,|"—0 implies |jm,/-0 and in virtue of

3.1 (B) |lz,]|=0 implies |jw,|* 0.
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‘If (b) is satisfied, then by 3.1(B) X, provided with the norm | |,
is a Banach space, and since this space is also an F-space with respect
to the morm || |* and since |,||->~0 implies |jm,|*~0, therefore also
][ 0 implies ||z,|—+0, by the theorem of Banach cited above.

Ad (c). The necessity is obvious by (a). To prove the sufficiency,
it is enough, in virtue of (B), to prove that |jz,||" >0 implies |a,|| 0.
Suppose that it is not so. Then there exist afeX, such that [lz|*—0,
]| =1. Write

X, =E{ls)<1—1/n} (n=2,3,...),
T

and let K (x,,0) be an arbitrary sphere in X,;. We shall prove that there
are points y in K(x,,e) such that |y|=1. If |lz)|=1, then y=a, gives
the desired result; if |jm||<<1, let us choose a sequence ¥, of numbers
such that |lz,+9,25)|=1 for n=1,2,... Then
Lim |#,| < oo
for 1=ljmy+8, apl| =10, 2| —liwoll =] —%o]l. Tt follows that |8, ap)" >0,
whence y=a,-+3,2%¢K (z,,0) if sufficiently large n is chosen. Since the
set Xy is closed, it follows that it is non-dense, whence the set X*= 3" X5
N=1

is of the first category, in contradiction to the hypothesis.

(D) Buery (X, Y)-linear operation may be extended in a unique way
to an operation V(x) defined in the whole of X, and (X,, Y)-linear.

For weX let us set V(z)=pU(x/g) where |g|>|ja]. Since

(e'l)U(mfe")=TU(wfe) for |o[=lel = lal,
the definition of ¥ (z) does not depend on the choice of ¢ and since
oU(x/e)=TUl(z) if ||l2||<<1, V(z) is an extension of U(x). Let us choose
o> max (|l2[l, lyll, lz-+yll), then
Vie+y)=eU(@+y)o)=eUlz/o) +eUly/e) =V (®) + V (3).
Let |j&, —ll,—0; then there exists a o=|x,| for n=0,1,..., whence
&, /o —o/ell" 0,

1 1
V(@) = 2 U (@/e) >3 Ulzy/0) =V (2y).

Finally, it is obvious that the requirement that the extended operation
be (X;, ¥Y)-linear determines uniquely the operation V(z).

3.11. Sometimes, if the norm | |* is equal to the norm || ||, we shall
say that X, is a Banach space.

1%
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3.2. In the sequel U, (») will stand for (X,, Y)-linear opemtiogs ir}bo
5 Banach or Fréchet space Y. We shall denote by o(x) the oscillation
of the sequence {U, (@)} at @, 4. e the number defined by the formula

o(@)=lim sup || U,(@) —Un(@)l.
F—oom,nzzlk
We shall denote by R, and 8, the sets of the points » at which o (2)=0
and w(x)<o respectively (the number o may be equal to oo). Then S,
is F-set, since the sets
E{ sup [|U,(@)—

.  manzk

Un (@) <0}

are closed for each finite a.

By C we shall denote the set of those points of X, for which w(2)=0,
i.e. the sets of points of convergency of the sequence {Un(w)}; D will
stand for the set of divergence of this sequence, i.e. J)== { (@) £0).

3.21. The functional e(#) is, in general, of Baire’s seeond class and
therefore may be discontinuous everywhere; this functional has the
following properties:

(a) U, (w) converges at x, if and only 'if (@) =03 w(0)=0.

b) |ow@)—owly )|<2m( o—4)/2) if w(®) and w(y) are finite.

(0) If my,m, mtaye X, then w(ml-i—mz)gw (1) -+ ().

(d) The sequence {U,(w)} is bounded at @ if and only if

lim e (Pz)=0.
90

If Y is a Banach space, this condition is equivalent to w(w)<oo. In general
Fréchet spaces the inequality o(w)<<oo is only necessary for the boundedness
of the sequence.

e) If the oscillation w (x) s continuous at 0, then the sequence {U, (x)}
18 bounded everywhere in X,.

(£) If the oscillation w(x) is continuous at &y, |wll<l and w(m)=0,
then o(x) is continuous everywhere.

(g) Let the space X, satisfy condition (Z,). If w(®) is continuous at
a point x, belonging to the closure of the set C, then it is continuous in the
whole of X,.

(h) Suppose that the space X, satisfies condition (Z,) and «(x) vanishes
in a set dense in X,. Then either o(x)=0 and hence it is continuous in the
entire space, or w(x) 18 discontinuous at any point, whence it is of Baire's
second class.
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The proofs of (a) and (c) are trivial; (b) follows from the inequality
U (®) = Un (@)l = 1T (y) — U 0| < 12LUn(2/2) — U (w/2)]—

ol )57

To prove the sufficiency of (d), choose an &>0 such that |y]<Ce,,
[#<1 imply [#yll<e. This is possible by 1.22. There exists a 6, such that
0<<d;<<1 and such that o(dz)<e, if [ﬁ!gél. Thus we can find a k such
that |6 U, (%) — U (2)|=]1U,(8,®) — U, (6,2)||<<e; for m,m>=k; hence we
get U, 19w)— w(B2)|<e if |9|<d;,- m,n>=k. The boundedness of the se-
quence { } follows from the inequality

19 Un(@)| < T (9)[| + || Uy (d2) —
valid for sufficiently small ¢ and n>Fk.

Suppose now that the sequence {Un(m)} is bounded. Given an &>0
there exists a 9,>0 such that |9|<dy, n=1,2,..., implies ||# T, ()| <e/2.
Hence Uy (d2) =T, (dx)|<e for |#<dy, n,m=1,2,...; it follows that

w (9z)<e.

(e) follows immediately from (d). .

We prove (f) only for #,=0. By (e) and (d) we get w(z)<oco every-
where; then we apply (b).

Now we prove (g). By the continuity of w(x) at z, we get w(z,)=0.
Given any e>0 we have w(r)<<¢/2 in a sphere K (#),0). By (Z,) there
exists a 6>0 such that |jz]* <6 implies v=2x, —,, 2, e K (2, 0), 26K (24,0),
whence (z)=w(z,)+w(w,)<<e. Thus w(z) is continuous at z=0 and
it is sufficient to apply (f).

(h) follows directly from (g).

3.3. For a more detailed study of the convergence and divergence
of the sequence {Un(m)} we shall introduce some numerical constants
connected with this sequence.

The supremum of the numbers 4 for which the set R,7#0 will be
called the index of oscillation or shortly A-index of the sequence {Un(m)}.
Thus

—2U,(y2)—

n(¥2)]I<

U, (92)] < 2¢

2y = sup o ().
TeXy .
The greatest number o for which the set E, is residual will be called
the index of residual oscillation or shortly oy-index of the sequence
{Uﬂ(w)}. Its: existence follows from the fact that ¢,—~o0, o,<o, implies

R,=][] R,,.
n=1
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The number

w, = lim sup o (»}
o0 [r<se

will be called the zero-oscillation or shortly the w,-oscillation of the ge-
quence {U,(#)}-
The number
po=lim sup [|Un()l

g0 ()lIl*<e

will be called the zero-modulus of continuity or shortly me-modulus of the
sequence {7, (@)} o
These constants may assume infinite values.

3.4. TemorEM 1. If the space X, satisfies condition (%), then
() wy < 209,

(1) th < 205

Proof. Let gy<co, 6y<<o. Then §, is an F_-set of the second category,
whence 8, contains a sphere K (%, 0). By (£,) there exists a >0 such
that |lo|*<6 implies s=0, —a, With @;,%,¢ K (%, ¢). Hence

o (@) < o(ey) + o (@) < 20,
and this implies (i).
Now let us prove (i'). It is sufficient to consider only the cage ¢y<<oo.
Let ¢>0 be chosen freely, then let o,<o<lgy+t& and set

8t =1 { sup || Up(®) — Un (@) < o — 1/k};

& nmzk

these sets are closed, Su—_—zs’;, and since S, is of the second category,
k=1

one of the sets S¥, say 8%, containg a sphere. By (Z;) we get for lloo]* < &
Sup U, (@) — U (#)]] < 20 — 2/1< 20, + 2
mynzl
sup || Un ()| <204 + 2 + | Ur(@)]],
mzl
whence for sufficiently small |j|*

o — £ < sup (| Up (@)1 < 200 + 3g,
mzl

and therefore u,<20,.
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THEOREM 2. In every space X, the following inequalities are satisfied:

6] g 2= 0, (39 @y < 24t
If X, satisfies condition (Z,) or (Z,), then the inequalities .
(G p<200  or (i) o < daoy

are satisfied respectively.
Proof. Since w(x)=0, is a residual set, we get
sup w () = o
lizli*<e
and hence wyz>0,. The inequalities
sup (U, (@) — Un (@) < 2sup | Uy ()]
man=k )

imply (j'), without any additional hypotheses about X,.

If X, satisfies condition (Z;), condition (j'') directly results from (i)
and (j).

Now let us consider the case where X, satisfies condition (X,). Choose
1
a sequence #,—0 and a sequence {,} of indices so that

1 [T, (2| = -

n—>00

By (Z,) there exists a sequence {ﬂ?;k,.} satisfying conditions (Z,):
(i)-(iii) of 1.31 and condition 2° of LO(I), p. 270, and such that

Um || Uy, (@5, = #o
N—»00
where m, =1, . Similarly to 2.4 (proof of Theorem 2), we can prove that
|@,|<1 implies )
0
Y a, iy, [2eX,°).
n=1

For any a={a,} belonging to the space (I) (cf. LO(I), p. 243) con-~
gider the sequence of operations {V,,(a)} defined by the formula

Vi(a) = 21 afnUi(é’kn [2).
N=

Denoting the zero-modulus of continuity and the zero-oscillation of this
sequence by u? and wf respectively, we get 2ug=>u,, of<w,. Hence, space
(I) satisfying condition (), we get u§ < 2wf, uy <4w,.

?) In LO(I), p. 270, line 12, 14 and 17, %, is misprinted for Ty [2-
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3.41. We need the following o
TEMuA. Let K (5,,0)%) be a fiwed sphere, and denote by y the mfmmum
of the numbers o for which the set 8, is dense in K (wy,0). Then, gtven any

we K (24,0),

(k) o(@) < 2wy +y-

Suppose that w;<<oo; then w(z)<loo everywhere. If weXK (2,,0) and
ze8, K (2y,0), 0>y and the distance d(%,s) is sufficiently small, we get

by 3.21(b), £>0 being arbitrary,
o(z)— (@) < Zw((m — i)/Q)g 2w, + & (@) K2+ 04 &

3.42. TEHEOREM 3. Suppose that the sequence {Un(w)} converges im & set
dense in Xy Then

O A= ) A=ou )

Proof. (1) and () trivially result from the definitions. To prove

(1) we apply lemma 3.41 (in this case y=0).

3.43. THEOREM 4. If the space X, satisfies condition (Z;) or (Z), then
the following conditions are equivalent:

(m”)

20y 2 Ay -

(m) w; =0, =0,

(m") w(z) is continuous everywhere.

Proof. The equivalence of (m) and (m') results from Theorem 1
and 2; w,=0 is equivalent to the continuity of w(x) at 0, and this by
3.21 (f), implies the continuity of w(x) in the whole of X,.

"Remark. By Theorem 2, (m) and (m") follow from (m') without
any additional assumptions on X,.

TamorEM 5. If the space X, satisfies condition (X,), then each of the
conditions (m), (m’), (m") is equivalent to the following:

(n) gy =0.

Proof. This is an immediate consequence of theorems 1,2 and 4.

‘We complete these theorems by the following remark. If X, and ¥
are Banach spaces, then the u,-modulus may assume the values 0 or oo

only; p,=0 if and only if lim |U,|<oc, where
N—>00
U, = sup T, (@)]s
ze Xy

3) ¢ may be infinite here. In this case K (,,00)=X

icm
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Indeed, if uy<<oo, then there exists a o>>0 such that ||U, (om)||<pe+1
for n==1,2,... and || =|z|*=1, whence

nUn<w>u<—"‘°@iuwu for  weX,;

it follows hence that the puy-modulus of the sequence {Un (@)} is equal
to 0. The last inequality implies also |[U,||<t/o. If

”'—hjin U, < oo,

then from the inequalities ||U,(#)|<||U,|l [lz|l it is apparent that u,=0.
Let us notice that every Saks space has the following property:

3.44. If K (x,,0)CC, then 0=X,.

For the proof let us remark first that we may assume |jz,||<1. Let
o’=min(1—|lz||,¢). Then every element z satisfying the inequalities
lo—woll<e'y llo—ml <’ is in K (;,0). Therefore w,+g"2eK (x,,0) for
every ze X, and sufficiently small ¢”, whence %,+p"2¢0, and ¢ 0 implies
zeC.

3.45. ToEOREM 6. 1° Let uy,=0; then for every Saks space X, the
set O of the points of convergence is either non-dense or identical with the
entire space.

2° If uy>0, the set C is of the first category, whence D is residual if X,
satisfies condition (%,); if X, satisfies condition (Z,), the set D is dense
in X,.

Proof. Ad 1°. If u,=0 and X, is an arbitrary Saks space, then by
the remark which follows Theorem 4, the set C is closed. It suffices to
apply 3.44.

Ad 2°. If X, satisfies condition (3,), it suffices to apply Theorem 1;
if X, satisfies condition (%,), Theorems 2, 3 and 3.44 lead to the desired
result.

The following theorem is mow immediately obtained:

THEOREM 6'. Let X, satisfy condition (X,); then the set C of convergence
of the sequence {Un(m)} is either of the first category, or identical with Xj.

We complete Theorem 6 by the following remark. Let X, satisfy
condition (Z,) or (Z,) and let the sequence {Un(w)} converge everywhere;
then this sequence converges uniformly om every compact set.

Suppose that the set X" is compact and that the sequence {U,(x)}
does not converge uniformly on X*. Then there exists an >0 and elements
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n *
@, ¢ X" such that the sequence |z} converges to an element x, of X

and
(Ui (@, — Bl = 5 [ U (@) — U (@)} 2> €

for 4=1,2,... This, however, is impossible for u,=0.

TagorEM 7. Let Uy (w)—~U (@) in the whole of X,. If X, satisfies con-
dition (Zy) or (), then U(x) is a (X;, Y)-linear operation®).

Proof. The additivity of U(®) is obvious. By Theorem 6, u,=0,
whenee it immediately follows that U(x) is continuous at 0. Now it
guffices to apply 2.2 (A).

3.46. Theorem 6 and 2.2 immediately imply the following one:

Let X, satisfy condition (Z;) or (Z5) and Tet Y* be a family of linear
Functionals in X, such that every Sequence e Y contains o subsequence
conwergent everywhere in X then the functionals 7 eY* are equicontinuous.

3.5. By B we shall henceforth denote the set of those we X, for which
the sequence { U, («)} is bounded, by T the set X,—B, i. e. the set of those
points at which the sequence is unbounded:

TrsorEM 8. Let X, be an arbitrary Saks space. Then B=X, if and
only if the following condition is satisfied:

(%) given any e>0 there is a 9>>0 such that

@ <Py, lal" <Oy implies |9TUn (@)l <e for n=12,...

Proof. Let V,(z) denote the extension of U,(®) as in 3.1(D). If
B=X,, then the sequence {Va(@)} is bounded for every weX,, as can
easily be seen. By a known theorem (Mazur und Orliez [4]) there exists
a 6>0 such that

(3) Va@l<e for n=1,2,.., llol} -+ llel" <.

Leb us choose & so that |ol*<é’ imply [[#al"<d/2 for [H<1. Let
$,=min(1,8’,8/2),l|<1. Since |9|<{ty, <P, implies dweX, and
{04 - |0a]|" < 8, it follows from U, (x)="V,(x) and (3) that (2) is gatisfied.
' To prove the sufficiency let us notice that condition () implies
19, U (@) =11 U, (8, 2)|<e for almost all n’s if &,—0.

3.51. (A) The inequality |#|" <9 in condition (2) may be replaced
by weX, if one of the following conditions is satisfied:

(a) the fundamental space X is complete with respect o the morm | |,

() || |I* is @ B-norm.

%) Concerning this theorem in the case when the condition () is satisfiod cf.
Alexiewicz [1].
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*The prooi.*s result from the fact that in case (a) [#,]|—0 implies
Jlz,* =0 and in case (b) the norm | ||* is homogeneous.

Let us denote by uy(4) the zero-modulus of continuity of the sequence
{0, (x)}. Then it is easily seen that

(B) Condition (*) is equivalent to the relation

(4) : Him gy (9) =0.
40
For 9|1 the inequality
(8) #o = o (D)
18 always satisfied.
THEOREM 9. 1° For arbitrary X, if Lim u,(9) =0, the set B of points
B0

of boundedness is identical with the whole space.
2° For every X, if
Lim e (8) > 0,
40
the set of unboundednes U is demse in Xs. If X satisfies condition (Z,), B
is of the first category, whence the set U is residual.

Proof. Ad 1°. It suffices to apply Theorem 8 and 3.51 (B).
Ad 2°. As in 3.44, we can prove that if B containg a sphere, then
B=X,. If

9= Tim 5y () > 0,
H=—>0

and X, is an arbitrary Saks space, then the set U is non-empty whence,
by the foregoing remark, it is dense in X,. Suppose that X, satisfies con-
dition (%;). There exist a sequence %,—0, a sequence of elements {wk}
and a sequence {n} of indices such that |8, Uy,(zx)[>v,/2 and [l ] 0.
Then the zero-modulus of the sequence of operations {d U,,k(w)} exceeds
0y/2, whence by Theorem 6 this sequence diverges in a residual set D.
Obviously DCU.

Suppose that the set C is dense in X, and B=X,. If X, is a Banach
space, then by 3.51 (A) and (2)

19U, (@) <e for
whence the inequality
1T (@) = [0 Unla[9)ll <&

is satistied for |a||=/a|" <.
It follows that w,=0 and, by Theorem 6,1°, C=X, in this case.
Let us notice that for arbitrary Saks spaces, even those which satisfy

n=1,2,..., ceX,,

n=1,2,..,
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condition (%) or (I,), the condition B=2X, does not imply pu,=0; the
set ¢ may in that case be dense in X, without, however, being identical
with the whole space X,. On the other hand, by (8), pe="0 implies B=X,.

3.6. Let y;, be dements of a Tréchet space Y satisfying the following
conditions:

(0,) the seb Yg, 6,m=1,2,..., is bounded,

(02) Supilymi!=nn>71>0 for n=1,2,...,

(03) the series Z'Hﬁym]], i=1,2,..., are uniformly convergent in

the 'mtemml 0<q9<1
(0) limyy=Yyn for n=1,2,...,

(0;) lim y,=0.
N—> 00

Under these hypotheses there exists & nought-or-one sequence [l } such
that the series

(6) %y = Z AnYim
=1

converges for i=1,2,..., and the sequence {4} is bounded and divergent.
Proof. Suppose, for a momenb, that y,=0 for n=1,2,...; this,
together with the hypotheses (o;)-(0,), implies the possibility of defining
two increasing sequences of indices {’ch} and {n,} such that
1° 2 uﬂyml|<—2—k for  i=1,2,...,%, 0O,
A=ty

Mgt

2 D osal <3 <z for 01

i=7;k+1?7;k+1+17"',

(we set 4o=1). For iy < i<y, k=1,2,...,
equality is satisfied:

00 k-1 o0
) IZI Byl < 121 1% il - {0y +l=%r 1llﬂymll<1/5’4’““2-l- (199, 41 /22
..) such that

0<9<1, the following in-

By (0,) there exists an index j, (n=1,2,.

3
[l 2 ik
Let us write

1HI(—1)
2= —’(2—- for n=mn,k=1,2,...,
0 elsewhere;

then we define the elements ; by formula (6).

icm
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-The sequence {2} is bounded by (7) and (o,). Now

Tl 0
= %Zn?/in‘}' }‘nkyink'i" 2 Znyiny

=Nty
whence if we set j, =i, there follows

3 1 3

ll2; y>zn———2k_1—>zn

k-1 z’l'zlla” = ”yi;k’"ﬁn“ —2

as k->co; thus the sequence {2} diverges, for (o,) implies 4 -»occ.
Now we remove the hypothesis that all ,=0. Choose elements Y1,

80 that the series '[9y, ]| be uniformly convergent for 0<<9<1 and set
n=1

Yin=Yu,—Y;,- The elements yj, satisfy conditions (o,)-(0,); moreover
lim y,=0.
400

By what has just been proved there exists a nought-or-one sequence
{43} such that the sequence

= 2 Z'uym

is bounded and divergent. If we set
2 for i=

0  elsewhere,

P l, n=1,2,..,

we may easily verify that sequence (6) is bounded and divergent.

TeroREM 10. Let ¥ be o Fréchet space in which some neighbourhood
of the element O is bounded. Let the sequence of operations {Un(w)} have
the following properties:

(p1) the sequence {Un(a;)} converges in @ set W dense in X,

(D2) if wie W,10,50 and U, (wg)~U(w,), then U (w)~9,

(ps) the set U of points of unboundedness of the sequence {Un
non-empty.

Under these hypotheses there ewists an element m, such that the sequence
{U,(@)} is bounded but divergent.

()} is

Proof. Let us remark first that if xeB, then sup|d U, (»)| is a conti-
()
nuous function of #; this immediately follows from the inequality

NS T (@)l — 19" Un ()l < WS — &) Un ()]

and from LO(I), 1.2. By (p;) and Theorem 9 there is an £>0 and for

every n=1,2,... there exist elements #, and numbers 0<<#,<1/n such
that
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10 supld, Us(®@a)lZ20;
(@)

20 "< 1/m,

3° the sphere [yl|<eg in ¥ is bounded.

The set W being dense in X, it 18 possible to choose elements wl W
and numbers 9% such that 0<#<1/n and

1o sup 95U (wh)l=¢0,
i€)

2 Jwhl*<1/n.
Choose an increasing sequence of indices {i,) such that the series

o]
STl for  i=1,2,...

m=1

be uniformly convergent in the interval 0<<9#<1, and such that
=<} o0
DH<L, Y
n=1 n=1

1
this is possible, for #{wi->0. Let us set

Yp=TUs(0008) for im=1,2,...

By the hypotheses and by 1'°, 2 it follows that the hypotheses of
Temma 3.6 are satisfied whence there exists a bounded and divergent
sequence of elements of the form

Ry= Zln?/in= E)"n Ui(ﬂo.wgn) = Ui(z ln?()‘%.wg,;)}
n=1 N=1 =1
now it is sufficient to put
Bo= D, A0 05, «
=1

TaEoREM 10'. Theorem 10 remains true if we replace in tls hypotheses
X, by a Fréchet space X, the l-convergence in (p,) by the convergence n X,
and if the continuity of U,(m) is understood as (X, XY)-continuity.

The proof iy quite analogous.

3.7. In this section ¥ will stand for a Banach space, and Y for its
conjugate space. Y,CY will denote a fundamental set of functionals in Y
(for the definition see 2.3). A sequence {y%} of elements of Y will bo cal-

“led Yyweakly convergent to yye Y if 5{y,)>n(y,) for every neYy. It Yy==1,
then aceording to the usual terminology Y,-weakly convergent sequences
will be called simply. weakly convergent.

Let us notice that for every fundamental set the Y -weak limit —
if it exists — is uniquely determined.

icm
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Given a sequence {U,(x)] we shall denote by C,,(Y,) the set of those
2e X, for which this sequence is Y-weakly convergent to an element of Y.

TeroREM 11. Let Y be o separable space and let X satisfy the con-
dition (X,); then the set O, (Y,) is either of the first category or identical with.
the entire space.

Proof. Suppose that the set C,(Y,) is of the second category. By
Theorems 6 and 7 for every neY, the functionals »(U,(s)) are conver-
gent in the whole space X, to a linear functional &, (z); moreover, there
exists v(w)eY such that £, (z)=n(v(x)) for zeC,(Y,). Let 7y, since
the norms || are bounded, the separability of ¥ implies that the se-
quence &, (z) contains a partial sequence, convergent for every xeC, (o),
whence, by Theorem 6, in the whole of X,. The functionals £, (x)(neY,}
are thus, in virtue of 3.46, equicontinuous everywhere. This implies

(8 o (@) — v (@)l >0
when a;,;¢C, (Yy), a;i_l> @y mj_lmo.
Indeed, it is sufficient to choose %7¢Y, so that
| &3 (@i—2) )| =|r (3o (@) — v (@))| > dlio(@) — v (@)/2,

and then apply equicontinuity at 0 of the functionals &,; (in the formula
above, ¢ denotes the constant in condition 2.3 (fl)). Now we define, for
zeC,(Y,), the operation )

¥ (@)= limo(z)

where z;¢C,,(Yy), as,;—l> x. By (8), this kind of definition is justified and the
defined operation is wuniquely determined; moreover V(z)=wv(z) for
2e0,(Y,) and V(z) is a (X,,Y)-continuous operation in C,(Y,). Since
mi_l> 2y, 2y € Cppy(Yy), me Y, implies

&, (m)=n (v (2;)) = &£, (%),
(v (@) >V (@)

we get £n(:vo)=n(V(o:(,)) in Eu,(ro). There exists a sphere K contained in

0, (Y,); therefore

(9) £,@)=n(V (x)

for every zeX. Hence, by (%), we see that the operation ¥ (m)'ma;y be

extended over the whole space X, so that (9) be satisfied.
TeROREM 11'. The assertion of Theorem 11 remains unaliered if we

replace the hypothesis of separability of ¥ by that of separability of X, and
suppose, moreover, that Yo=Y.
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Proof. Let Y, denote the closed linear span of the elemezﬂ;s {Uﬂ(ao)']
where zeX,, n=1,2,... The space X, being sepamble, (Xg, Y)-conti-
nuity of U, (x) implies that the get ¥, is sepa;rajble. Since, for every seC,(T)
and 7eX, n(Un(w))—an(v(w)) where v(2)eY, it fo}loyvs b,‘y_a'n Wel‘].-known
theorem that the elements v(z) are in ¥, and it i§ sufficient to apply
Theorem 11 with ¥ replaced by Y,.

TemorEM 12. Let the sequence {U, ()] be Yo-weakly convergent o U@)
for every xeX,. Bach of the following conditions is sufficient in order that
the weak limit U(z) be an (X, Y)-linear operation:

() Y is separable; X, satisfies condition (Zq);

(,) Y is an arbitrary Banach space, X, is separable and satisfies
condition (Z;), and Yo=Y}

(t,) X 4s an arbitrary Banach space satisfying condition (Z) (see
LOI), p.271), X, satisfies condition (Z);

(t) Y ids an arbitrary Banach space, X, satisfies condition (Z,),
and Y,=T.

Proof. Let us remark first that in each case under consideration
the uniqueness of the weak limit implies the additivity of the operation
U(w). Moreover, by Theorem 7, 7(U(#)) is a linear functional in X,
for every neY,. In cases (r;), (1), and (r;) the (X,,Y)-continuity follows
by the application of Theorems 1, 1, and 3’ of LO(I) regpectively.
Tn case (z,) the proof is analogous to that of Theorem 1 of LO(I). Only,
it is to be noticed that, actually, in the proof on p. 268 in LO(I) we do
not use the separability of the whole space ¥ but only of the closed li-
near span Y, of the elements U (). The hypothesis Y,=Y ensures the
separability of ¥,.

3.8. Let A denote the space of nought-or-one sequences A=|4,},
Y — a Fréchet space. The series
()

where y,eY

is called perfectly bounded if for arbitrary Aed the partial sums of the
series Y A,%, compose a bounded set; the geries is called perfectly con-
n=1

vergent it for every Ae the series 3'1,%, is convergent. It ig easily seen

n=1
that every perfectly convergent series is perfectly bounded. In some
spaces perfect. boundedness of a series implies its perfect convergency;
according to the terminology adopted in LO(I) such spaces are said

icm°
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to have property (Z). It Y is a Banach space, then the series (x) is perfectly
bounded if and only if there exists a K>0 such that

Hé'l/lnyn!|<K for every {i,}ed and i=1,2,...

The set Z, (the set Zj) of those sequences z=[y,} for which the se-
ries () is perfectly convergent (perfectly bounded) forms a linear space
under the usual definitions of addition and multiplication by scalars.
If we define the norm of the element zeZ, by the formula

13
lletlo=sup|| 3} A3l
(K)aed n=1

then Z, hecomes a Fréchet or Banach space according to the space Y.
The same norm may be defined in the space Z5. The series () is called

absolutely convergent if the series Y'|ly,|| converges. Let Z, denote the set
n=1
of those sequences z={yn} for which the series converges absolutely.

3.81. The set Z, is Uinear wnder the wusual definitions of addition
and multiplication by scalars if and only if the following condition is
satisfied:

(0) There exists a,>0 such that |aj<a, implies |lay|| <K (a)yll for
|lyl|<e, where K (a)<<oo, and ¢ may depend on a.

If (o) is satisfied, then it is easy to prove that, given real a,f, there
exists a K <Coco such that for sufficiently small |jy’||,|y"|]

lley’ -+ By"ll<< K (Ily"ll 4 ly"lD)-

Hence ZIHZI;LIKOC and Z;Hy;'bl|<°°; implies 21||a(ll;b+ﬂ’!/;;“<°°-
n= n= M=

Suppose now that the set Z, is linear and condition (o) is not satis-
tied. Then there exist an a>0 and a sequence {y,} such that

loayal = Eallyall,  lal<1fe®,  Fpy=n for n=1,2,...

Let us choose positive integers 7, so that 1/n’<r,||y,|<2/n% set
7o=0 and let

yi=y, for rFrd. e, <i<rbnt. A,
Obviously
oo (o]
. 2
EH%HS “,;"?<°°,

q=1 n=1
Studia Mathematica XV )
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on the other hand, however,

o0 00
.1 Vn

D) logfl= D)~ =oo,

i=1 N1

which iy contradictory.
3.82. In Z, we define the norm as

(10) Hz”amgluyn”'

The set 7, with the norm defined by (10) is a Fréchet space if and only
if condition (o) is satisfied. »

The necessity being trivial, we shall prove the sufficiency only.
We need the following Lemma:

Let &,(a) be continuous functions in —oo<<a<<oo, satisfying the con-
ditions: , , ]
1° &.(a) are subadditive, i.e. &, (a'+ a")<<é (a')+ & (a”) for arbi-
trary «',a”,
2 & (—a)=£(a),
3° limé,(a)<oo for every a.
N—>00

Then there ewist @ >0 and K>>0 such that
Li)<KE  for  al<g n=1,2,...

The proof may be carried out by the clasgical category method,
similarly to the proof of the well-known theorem on sequences of linear
operations. _

Now we proceed to the proof of our theorem. If condition (o) is
satisfied, then it is obvious that norm (10) satisfies econditions 1.1 (a), (b)
and the space Z, is complete. It remaing to prove 1.1 (¢’). For this pur-
pose it is sufficient to prove that in condition (0) we may always assume
that ¢ does not depend on a, K (a)<<K < oo, provided that o, is sufficiently
small. In the contrary case there would exist sequences ¢,-0, ¥,->0
such that |la,y,|/|lysll—oo. This, however, is impossible, for the functio-
nals &,(a)=|lay,||/lly,| satisty the conditions of the lemma (8° follows
immediately by (o)), and the assertion of the lemma does not hold
for these functionals.

Let Zf (y>1) denote the set of all sequences #={y,) for which the

series
oo

2 [Yallf < oo,

n=1

Linear operations in Suks spaces (II ) 19
In Z, we define the norm as
(10 llefle= ( Z: a7 .
P

In the same way as for Z,, one can prove

3.83. The space ZY, with norm (10°) 4s a Fréchet space if and only if
condition (0) is satisfied.

Theorem 38.82 and 3.83 may be completed by the trivial remark
that if ¥ is a Banach Space, so are the spaces Z, and Z7. Condition (o)
is obviously satisfied if the norm is monotonic, i. . satisfies the inequality
llyell<llyll for 0<<a<C1, y €Y (this is the case in the spaces S, L, 1" (0<a<<1)
which are not Banach spaces).

3.84. TuworEM 13. Let X, satisfy condition (Zy); then the set of those
points © where the series

o0
2, Un(®)
converges perfectly (is perfectly bounded) is either of the first category, or
identical with the space X,.
A similar proposition holds also for the set of the poinis of absolute

convergence and for the set of those points for which {Un(2)}e 2, the norm || |
in Y being supposed to satisfy condition (o).

Proof. We shall prove the theorem for the set of points of perfect
convergence. Suppose that the series converges perfectly in a set of the
second category. Let us define an operation Vi (@) from X, to Z,, setting

Vi(@) = {Us(2), Up(®),..., Uy(@),0,0,...).
It is easily seen that if the series (x) converges perfectly, then the
series }'4,y, form a sequence convergent to 0 as n->oo uniformly in A°
n=k

Set V(z)={ Un(m)}; then ||V (@)—V ()]j,~0 as koo in a set of the second
category, whence by Theorem 6’ the sequence {Vk(m)} converges in Z,
for every weX,.
3.9. In this section we shall illustrate the applications of the fore-
going theorems on sequences of operations by means of some examples.
Let 4=(ay,),,n=1,2,... be a matrix of real numbers. Let us write

[=+} k L=
-Ai =2|“m|: —Ai = Zla'inl'
n=1 n=fo

In the sequel we shall deal with matrices satisfying some of the
following conditions:

o
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(&) sup 4;<o0,
()
(®) lim 2 iy, = O
i->00 =1
(y) limag, =, for n=1,2,...
i—r00 ) n " )
As X, let us take the space (I) of pO(I), i. e. the space of bounded
sequences @ = {4y}, the norms being defined as

ol = 3 ol 2"

K3

loof} = sup |ty
()

This space is compact (for the J-convergence) and satisfies .(.',onq.i.tionl.ﬁ
(Z,) and (Z,). If we suppose that A;<oo (i==1,2,..) then the functionals

) | Ado) = 2 Bt

are X,-linear. It is easily seen that, given ¢>0, for sutficiently large %
the following inequalities hold:

sup Al < sup |4i(@)],
(12) 0 Swetce
1
, Cyupd; < sap |4y (®)),
(12 % (i)p i

and given k, for sufficiently small o,
1 ke
sup |4,(@) <5supd;+ supAi.
(a3) u).nwnl*)sa T
Tt follows that sup 4,<co implies
()
o= lim sup Af .
k—oo (1)

Tiet us consider the conditions

(®) m<oo, () m=0. ‘
By (12') and (13) it follows that («)=2(3); (s) i8 equivalent to () and
(q) lim sup A% =0.
k—oo (i)
Let us notice that, in virbue of («), (3) is equivalent to B=X,. If (v)
is satisfied, then p,=0 implies
(‘&) ]lm Z la’iw - a‘n\ =0.

100 n=1
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By theorem 1.6 and from the above remarks it follows that:

(a) If the sequence {Ai(w)} converges in a set of the second category,
then 4t converges in the whole of X, u,=0, and the conditions () (B, (v)y
(), (%) are satisfied.

(b) If 0<py<<oo, then the sequence {A;(x)} is bounded, but in a re-
sidual set its oscillation is greater than 2.

(6) If mo=oo, then the sequence {A;(x)} is unbounded n a residual
set. .

(d) If uy=0 and condition (y) is satisfied, then the sequence {4;(=)}
converges in the entire space X,°).

3.91. Let us suppose now that the matrix 4 satisfies condition 3.9,
(@)-(y) with 0=1, a,=0 for n=1,2,... Every matrix of this type defines
a permanent (matrix)-method of summability, with the field of summa-
bility 4*6). By A(z) we shall denote the A-limit of the sequence z; by
Ay, A5, A; we shall denote the subsets of 4* composed of bounded
sequences, bounded sequences A-summable to 0, and sequences A-gum-
mable to 0 respectively. The term “summability method A= (a,,)” will
mean the method of summability corresponding to the matrix (ay,).
Let us now consider the Saks space X, (LO(I), p. 243-244) whose elements
are sequences of Ay, with the following definition of norms:

ol =supla uwn*=n§ ] 27+ 5D 4, 0]

where 4, (z) denotes the m-th transform of the sequence z, defined by
formula (11). As shown in LO(I), p. 248-249, the space satisfies condi-
tions (Z;) and (Z,).

TEEOREM 14. Let A=(a;,) and B=(by,) be permanent methods of
summability. If every bounded A-summable sequence is B-summable, then
A(w)=B(z) for every med; (Mazur and Orlicz [5] and [3]).

Proof. The transforms B,{(z) are linear functionals in the space X,,
and, by hypothesis, B, (r)>B(z) in X,. By theorem 7, B(z) is a X linear
functional. The set of the sequences converging to 0 and with the terms
absolutely less than 1 is dense in X, (Mazur and Orlicz [5], p. 137), and
since, for every sequence converging to 0, B(z)=0, this relation must
hold in the whole of X and thus in Aj,. To complete the proof, it suffices
to write every sequence x=/{a,}e4; in the form a,=a)+4 (), and notice
that, by the permanency of method 4, {a}}eA},.

5) Theorems (a), (¢), and (d) are known.
%) Concerning the principal concepts of the theory of matrix-summability
methods see, for instance, Mazur and Orlicz [5].
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TamorEM 15. Let A=(ay) be a permanent method, non-equivalent
10 the identical method, consistent with every permanent method not weaker
than A. Then there ewists o bounded bu divergent A-summable sequence
([81,3.7.2). .

Proof. The field A7 is an F-space if we define the norm as

sup | Ay (@)

21 e 9l MA@ L, $1 w 3
Il = % 5 Thia] T 4P T4 14,61 P Sy Mt

()
‘where 5
Aik (%) = Zaz‘nan 7)'
=1

Now we define linear functionals in Ajg:

U,(@)=a, for n=1,2,...

The sequence |U,(«)} is not bounded in A} (Magur and Orlicz [5},
p. 181). U, (#)->0 if » is & sequence convergent to 0; and by hypothesis
the sequences converging to 0 compose & dense set (in the sense of the to-
pology induced by | [p) in A} (Mazur and Orliez [5], p. 145). Thus th?
hypotheses of Theorem 10° are satistied, whence there exists an zyed,
such that the sequence {U, (%)} is bounded but divergent.

3.92. The very relevant method applied to the proof of Theorem 14
makes possible various generalizations. It can be applied to the pro-
blems of consistency for summability methods based of sequence-to-
functions transformations, or to integral function-to-functions trans-
formations, or to the transformations where a; belong to a Banach
space. To give an example more we shall consider continuous summability
methods.

Let g,(f) denote, for m=1,2,..., continuous functions in {ty,00).
Let us write

(14) B(t,0) = 3 pult) -

n=1
The sequence » is called summable by means of the functional con-
tinuous method Op,) (or briefly &{p,}-summable) to P(v) if functions
(14) are meaningful for te(f,o0) and
lim @ (t,2)=D ().
t—o0
The method ®{p,) is called permanent if lima,=a implies B{p,)-
-summability of the sequence #={a,}, and moreover & (z)=a. The field

7) Mazur and Orlicz [5], p. 134.

icm°®
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of the method &{g,}, ¢.e. the set of all ®{g,}-summable sequences, will
be denoted by ©*; its subset composed of those sequences for which
@ (#)=0, or of those which are bounded, or of those which satisfy both
of these conditions will be denoted by &;,d;, and &, respectively.

TerOREM 16. Let tb{(pn} be a permanent continuous functional method
of summability such that the series

(15) .S 1w )]

converges uniformly in every interval (t,,t> where t,<<oo. Let the matrix-
-method A== (a,,) be permanent, and let every sequence xe D, be A-summable.
Then A(x)=D(x), for every wedy. }
The theorem remains true when the method A is replaced by a per-
manent continuous functional method Plp,}®). .
Proof. Let us denote by X, the Saks spaece whose elements are
the sequences of @;, the norms being defined as

llee]|=sup | @]y I[~'EII"=§’o @] 2"+ sup |D(2,)|.
{n) fn=1 fo<st<oo

‘We shall prove that the sequences converging to 0 form a dense
subset of X, and that conditions (¥,) and (%,) are satisfied in X,. Then
the proof of our theorem may be carried out in the same way as that
of Theorem 14.

The permanency of the method @{(pn} and the hypothesis on the
geries (15) imply
(16) K= sup - Y|, (f)] < oo.

fy<<t<oo n=1
Let K(x,,0) be an arbitrary sphere in X,, let z,={a,}. To prove
(%) (and (Z,)), it is sufficient, in virtue of 1.32, to prove that there
exigts an element wekK (x,,0) for which the condition (%) is satisfied.
For 4=1,2,... let us define the sequences

a%)z{a;’, for n=1,2,...,1,
0 elsewhere.

Let m={al)}, f;(t)=D(t,2;), f{{)=P(t,x); by the hypotheses of
our Theorem and by (16) it follows that the functions f;(t) and f() sa-
tigfy the hypotheses of 1.51 (B). By this Lemma, for every positive inte-
ger s there exist non-negative numbers ag,de1;-..,0,, such that

87

Say=1
=8

sr
and sup |3 o;®(t,2;) — D(t,u)| < o/4-

ly<i<oo i=8

8) Under analogous hypothesés, this theorem was first proved by M. Altman [2].
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Choose s so large that

Z Eﬁég:

n=38+1
and seb
1 o0
T 4R
Let us consider the sequence w=={b,} with terms

0 847 .
bn—_~ (1—— IZ—:) 2 CL,;CL,(,:)

VI =g

8

(n=1,2,...).

Analogous estimations to those in LO®), p. 249 (we suppose,* mo-
reover, that K>1), show that for every y:{an}eXS such that |ly||"<é,
the element y--w belongs to X, and

an fleo—azol|" < ‘

Since almost all the terms of the sequence w vanish, (17) easily im-~
plies also that the space X is separable.

3.93. Now let X, be space (III) of LO(I), i. e. the space the ele-
ments of which are measurable funetions in {a,b>, bounded almost every-
where, and in which the norms are defined by

b
o =sup ess|a (),  ll" = [lo ()] di.
<i<h a

a

X, is a separable space satisfying conditions (%) and (Z,). Given a se-
quence v, (#) of integrable functions in {a,b), We ghall need the following
conditions:

b
(o) S(u)p af [y ()} @< 00,

(8) lim [y,(t)d exists for a<r<h,

N->00 A
{(y) the functions @,(v)= [ |y,(t)|d¢ are equicontinuous in {a,b>.
Let us write

¢n(E)=E[lyn(i)ldt for HC<a,b),
$=1lm sup D,(E).
e—0 (n),|El<e
Condition (y) is obviously equivalent to

) &=0.

icm
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Let us consider the sequence of linear funectionals in X,
b

(18) Tn(m)=ufm(t)g/n(t)dt.

The following propositions are valid for the sequence {Tn(m)}:

(8)  condition (a) implies D=y,

(e)  condition (a) 18 equivaleni to puy<<oo,

(n) condition (y) is equivalent o py=0.
Hence theorems 1, 6, 9 imply that

(a) The sequence {Tn(a:)} converges in the whole of X if it converges
in a set of the second category. Moreover, in this case, py=P=0 and con-
ditions («)-(y) are satisfied.

(b) If 0<py<<oo, then the sequence {Ty(w)} is bounded; in a residual
set, however, its oscillation is not less than D[2.

(¢) py=oo implies the unboundedness of the sequence {Tn(a:)} m @
residual set.

(d) If condition (B) is sabisfied and u,=®=0, then the sequence
{Tn(cc)} converges in the entire space®).

%) Theorems (a), (¢), and (d) are known.
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