

A limit theorem for a modified Bernoulli scheme

by

M. FISZ (Warszawa)

1. An essential role in the considerations of this paper is played by the known theorem of Kolmogorov [2], stating that the probability function P in the space (x_1, x_2, x_3, \ldots) is uniquely determined by the set of all finite dimensional marginal probability functions $P_{l_1, l_2, \ldots, l_s}$ of P defined for all Borel sets in the corresponding s-dimensional space $(x_{l_1}, x_{l_2}, \ldots, x_{l_s})$ for $s=1,2,3,\ldots$ and for arbitrary integers l_1, l_2, \ldots, l_s .

DEFINITION 1. We shall say that the denumerably dimensional probability function P, given in the space (x_1, x_2, x_3, \ldots) , is not singular if for $s=1,2,3,\ldots$ and for arbitrary integers l_1, l_2,\ldots, l_s the marginal probability function P_{l_1,l_2,\ldots,l_s} is not singular in the usual sense.

DEFINITION 2. We shall say that the sequence P_n of denumerably dimensional probability functions in the space (x_1, x_2, x_3, \ldots) converges, as $n \to \infty$, to a probability function P if for $s = 1, 2, \ldots$ and arbitrary integers l_1, l_2, \ldots, l_s the sequence $P_{n(l_1, l_2, \ldots, l_s)}$ of s-dimensional marginal probability functions of P_n converges, as $n \to \infty$, to the corresponding marginal probability function $P_{l_1, l_2, \ldots, l_s}$ of the limiting probability function P.

DEFINITION 3. The non-singular probability function P in the space (x_1, x_2, \ldots, x_s) is of the *Poisson-normal type* if it is a probability function of a variable (ξ, η) where ξ is a j-dimensional Poisson²) variable, η an (s-j)-dimensional normal variable $(0 \le j \le s)$, ξ and η being independent.

DEFINITION 3a. We shall say that the non-singular denumerably dimensional probability function P in the space $(x_1, x_2, x_3, ...)$ is of the

$$P(y_1 = A_1 k_1 + B_1, y_2 = A_2 k_2 + B_2, \dots, y_j = A_j k_j + B_j) = \prod_{m=1}^{j} e^{-\lambda_m k_m^{k_m} / k_m!},$$

where $k_m = 0, 1, 2, \ldots$ and $\lambda_m > 0$, $A_m \neq 0$ and B_m are real constants.

Poisson-normal type if each finite dimensional marginal probability function of P is of the Poisson-normal type.

Let us now consider the multinomial distribution given by the formula

(1)
$$P_n(x_1 = k_1, x_2 = k_2, \dots, x_r = k_r) = \frac{n!}{k_1! \, k_2! \dots k_r!} \, p_{n1}^{k_1} \, p_{n2}^{k_2} \dots p_{nr}^{k_r}$$

where $0 < p_{nm} < 1, p_{nm}$ are arbitrary functions of n and the k_m (m=1,2, ..., r) are non-negative integers satisfying the equality

$$\sum_{m=1}^{r} k_m = n.$$

The variable (x_1, x_2, \dots, x_r) can be reduced with probability 1 — in view of the last equality — to an (r-1)-dimensional variable.

The following theorem has been proved by the author [1]:

THEOREM 1. Let the random variable $(x_1, x_2, ..., x_r)$ be distributed according to (1) and let the sequence G_n of probability functions of the random variables

$$(A_{n1}x_1+B_{n1},A_{n2}x_2+B_{n2},\ldots,A_{nr}x_r+B_{nr}),$$

where $A_{nm} \neq 0$ and B_{nm} (n=1,2,3,...; m=1,2,...,r) are real numbers, converge, as $n \to \infty$, to a non-singular (r-1)-dimensional probability function G. Then G is necessarily of the Poisson normal type.

Let us now modify the multinomial distribution given by (1). Namely, let us suppose that the number r in (1) — which we shall denote by r_n — is a non-decreasing function of n, increasing to infinity, as $n \to \infty$. The following theorem answers a question put to the author by G. Hajos:

Theorem 1a. Let the sequence G_n of probability functions of the random variables

$$(A_{n1}x_1+B_{n1},A_{n2}x_2+B_{n2},\ldots,A_{nr_n}x_{r_n}+B_{nr_n}),$$

where $A_{nm} \neq 0$ and B_{nm} $(n=1,2,3,...; m=1,2,...,r_n)$ are real constants, converge, as $n \to \infty$ and $r_n \to \infty$, to a non-singular denumerably dimensional probability function G. Then G is necessarily of the Poisson-normal type.

Proof. Let the assumptions of theorem 1a be satisfied. Thus the sequences of arbitrary s-dimensional (s=1,2,3,...) marginal probability functions of G_n converge, as $n\to\infty$, to the corresponding marginal probability function of the limiting probability function G. However, from theorem 1 it follows that arbitrary marginal probability functions of G are of the Poisson-normal type. Thus, taking into account definition 3a, we obtain the assertion of theorem 1a.

¹⁾ The probability function P, defined in the space (x_1, x_2, \dots, x_s) , is called *singular* if the whole mass of probability lies in a z-dimensional hyperplane, where z < s.

²) A j-dimensional random variable (y_1, y_2, \dots, y_j) is called a *Poisson variable* if its probability function is given by the formula

Let us now observe that, the assumption of theorem 1a being satisfied, one can assume 3) that the set $M=\{1,2,3,\ldots\}$ of indices m can be divided into two subsets $M_1=\{m_{1_1},m_{1_2},\ldots\}$ and $M_2=\{m_{2_1},m_{2_2},\ldots\}$ in such a way that for $m \in M_1$ the relation

$$\lim_{n\to\infty} np_{nm} = \lambda_m,$$

where $0 < \lambda_m < \infty$, holds, and for $m \in M_2$ the relations

(3)
$$\lim_{n \to \infty} p_{nm} = p_m, \quad \lim_{n \to \infty} n p_{nm} = \infty$$

hold. Let us introduce new variables

$$y_m = x_m \quad (m \epsilon M_1),$$

$$y_m = (x_m - np_{nm})/\sqrt{np_{nm}} \quad (m \epsilon M_2).$$

Let

$$\varphi_{ns} = \varphi_{ns}(t_{m_1}, \ldots, t_{m_j}, t_{m_j+1}, \ldots, t_{m_s})$$

denote the characteristic function of the random variable $(y_{m_1},\ldots,y_{m_i},y_{m_{i+1}},\ldots,y_{m_i})$, where s is an arbitrary constant integer and $m_v \, \epsilon \, M_1$ for $v=1,2,3,\ldots,j$ and $m_v \, \epsilon \, M_2$ for $v=j+1,\ldots,s$. As has been shown in the cited paper [1], it follows from relations (2) and (3) the following one:

$$\begin{array}{ll} \text{(5)} & \lim_{n \to \infty} \log q_{ns} = \sum\limits_{v=1}^{s} \lambda_{m_{v}}(e^{itm_{v}} - 1) - \\ & -0.5 \left[\sum\limits_{v=i+1}^{s} (1 - p_{m_{v}}) t_{m_{v}}^{2} - 2 \sum\limits_{v=i+1}^{s-1} \sum\limits_{v=v+1}^{s} \sqrt{p_{m_{v}} p_{m_{v}}} t_{m_{v}}^{\ \prime} t_{m_{v}} \right]. \end{array}$$

On the right side of (5) we have the logarithm of the characteristic function of a non-singular (s-1)-dimensional probability function of the Poisson-normal type. It is easily seen that the whole set of finite dimensional distribution functions of the Poisson-normal type given on the right side of (5) satisfies Kolmogorov's [2] consistency conditions, thus it determines a denumerably dimensional probability function of the Poisson-normal type. We have obtained the following conclusion:

If for some constants A_{nm} and B_{nm} the assumption of theorem 1a holds then it holds also for the norming of (x_1, x_2, x_3, \ldots) given by (4).

Let us now consider the special case with equal probabilities p_{nm} , i.e. for each value of n let

$$p_{nm} = \frac{1}{r_n}$$
 $(m = 1, 2, ..., r_n).$

Then we conclude from (2) and (3) that if we use the normation (4), the limiting probability distribution will be of the Poisson type if $r_n = O(n)$ and of the normal type if $r_n = o(n)$. The conclusions obtained are in accordance with intuition.

Thus if we use the χ^2 -test in a very large sample and divide the sample into classes with equal theoretical probabilities⁴), the number of classes should be of order o(n).

The theorem 1a can have the following physical interpretation. Let n denote the number of particles of gas contained in a vessel V divided into r_n parts $V_1, V_2, \ldots, V_{r_n}$. Let us imagine a machine pressing the gas into the vessel V and at the same time dividing this vessel into more and more parts so that one can assume that n and r_n converge to infinity. Let the joint probabilities of finding k_m $(m=1,2,\ldots,r_n)$ particles of gas in V_m be given by (1). Then if a limiting probability distribution assumed in theorem 1a exists then 1° this limiting distribution must be of the Poisson-normal type, 2° the rapidity of the convergence of r_n to infinity is restricted by the rapidity of the convergence of n to infinity.

References

[1] M. Fisz, The limiting distributions of the multinomial distribution, Studia Mathematica 14 (1954), p. 272-275.

[2] A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, 1933.
[3] B. Mann and A. Wald, On the choice of the number of class intervals in the application of the chi-square test, Annals of Mathematical Statistics 13 (1942), p. 306-317

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 15.9.1954

^{*)} Following a method of Cantor, we can choose a subsequence n_{α} for which the relations (2) and (3) hold. As one can consider only this subsequence, the assumptions (2) and (3) do not restrict the generality of our considerations. The case $\lambda_{m}=0$ is — as has been shown in [1] — excluded by the assumed non-singularity of the limiting probability function.

⁴⁾ Comp. the paper of Mann and Wald [3].