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1. An essential role in the considerations of this paper is played
by the known theorem of Kolmogorov [2], stating that the probability
function P in the space (@,2,,%;,...) is uniquely determined by the set
of all finite dimensional marginal probability functions Py, ; of P de-
fined for all Borel sets in the corresponding s-dimensional —ép'a:ce (g, 2,
.ony@y,) for $=1,2,3,... and for arbitrary integers l,l,,...,%. v

DEerFINITION 1. We shall say that the denumerably dimengional
pmbabih’ty function P, given in the space (w,,%,,%;,...), is not singular
if for s=1,2,3,... and for arbitrary integers 1,,1,,...,], the marginal
Pprobability funection Py, .5 18 not singular') in the usual sense.

) DI}FINITION 2. We shall say that the sequence P, of denumerably
dimensional probability functions in the space (w,m,,a,...) converges,
as n—>o0, to a probability function P if for s=1,2,... and arbitrary integers
ll,lz,....,la the sequence P,q ; i of s-dimensgional marginal probability
fungtmns of P, converges, as n—>co, to the corresponding Jnarginal pro-
bability function Ph,la,u.,l. of the limiting probability function P.

DerINiTIoN 3. The non-singular probability function P in the space
(@, @,,...,a,) is of the Poigson-normal type if it is a probability function
of a variable (¢,7) where ¢ is a j-dimensional Poisson’) variable, %
an (s—j)-dimensional normal variable (0<j<s), &£ and 7 being independe,m:.

' DrrFINITION 3a. We shall say that the non-gingular
dimensional probability function P in the space (2, ,iz,wz,.(.i?)mil;n zza}u)lllz

) 1 ’{‘he probability function P, defined in the space (.
singular if the whole mass of probability lies in a z-dimensio
2<s.

. %A j-dimensional random variable (y,,y,,..
if its probability function is given by the formula

1p%g000,8,), 18 called
nal hyperplane, where

++¥;) 18 called a Poisson variable

P(y1=A1k1+Bl,yﬂ=A2ka—|—Bz,...,y,:A{k,—{-B’) = ﬁ e-’-m},’:""/k 1,
mel "

where k,=0,1,2,... and 2,>0, 4 %0 and B, are real constants
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Poisson-normal type if each finite dimensional marginal probability func-
tion of P is of the Poisson-normal type.

Let us now consider the multinomial distribution given by the
formula
n)

. Ly ke ¥,
PniPna++-Pnr

(1) P;n(%:kum2=kz:--"wf=kr):m

where 0<Ppm<l,Ppm are arbitrary functions of n and the %, (m=1,2,
..,7) are non-negative integers satisfying the equality

The variable (z,,2,,...,%,) can be reduced with probability 1 —
in view of the last equality — to an (r—1)-dimensional variable.
The following theorem has been proved by the author [1]:
TemorEM 1. Let the random wvariable (y,%,...,%,) be distributed
according to (1) and let the sequence G, of probability fundtions of the random
variables
(Anlml_i_ Bnl7An2m2+ an LARRS ‘A-ﬂ,rwr"}' Bm-)7

where A,,+#0 and B, (n=1,2,3,...; m=1,2,...,7) are real numbers,
converge, as n—>oo, to a non-singular (r—1)-dimensional probability fune-
tion G. Then G is necessarily of the Poisson mormal type.

Let us now modify the multinomial distribution given by (1). Na-
mely, let us suppose that the number r in (1) — which we shall denote
by r, — is a non-decreasing function of =, increasing to infinity, as n—-oo.
The following theorem answers a question put to the author by G. Hajos:

THEOREM la. Let the sequence @, of probability’ functions of the ran-
dom variables

(An1w1+ Bnl E An2w2+ B‘n‘.’ bR 7—Am‘,‘wrn+ Bm‘,,)’

where Ap, 70 and By, (n=1,2,3,...; m=1,2,...,7,) are real constanis,
converge, as n—-oo and 7,00, to a non-singular denumerably dimensional
probability function G. Then G is necessarily of the Poisson-normal type.

Proof. Let the assumptions of theorem 1a be satisfied. Thus the se-
quences of arbitrary s-dimensional (s=1 ,2,3,...) marginal probability
functions of G, converge, as n->co, to the corresponding marginal proba~
bility function of the limiting probability function @. However, from
theorem 1 it follows that arbitrary marginal probability functions of G
are of the Poisson-normal type. Thus, taking into account definition. 3a,
we obtain the assertion of theorem 1la.
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Let us now observe that, the assumption of theorem 1a being satis-
fied, one can assume®) that the set M ={1,2,3,...} of indices m can be
divided into two subsets My={m,,m,,...} and My={m, ,my,,...} in
such a way that for meM; the relation
(2) Hm npmn:}'m ’

00

where 0<CA,< oo, holds, and for meM, the relations

(3) LM Py, == Pomy

lim #p,,,= oo
N—r0Q0 N—>00

hold. Let us introduce new variables

(4) Y= Tm (MEMI)}
Ym= (B — npnm)/l/'"’p‘nm (m € Mz) .

Let
Prns= Pns (tmly oo 7tmﬂtm,v+17- o Jtm,)

denote the characteristic function of the random variable (¥, ,...;%m,,
Ympar+++1Ym,)y Where s is an arbitrary constant integer and m:eMl 'f(;r :
v=1,2,3,...,j and m,e M, for v=j+1,...,5. As has been shown in the
cited paper [17, it follows from relations (2) and (3) the following one:

i
(5) lim log zpﬂs—-—Z‘zm(g“m__ 1) —
n—r00 V=1

8 §-1 8
—0,3 1—pp )2, —2 D '
) [02%:—1( Do) bm, vg;]_l w§+lem,pmwtmvtmw .
(?n the right si.de of (5) we have the logarithm of the characteristic
fux:}ctlon of a non-smgul?;r (s—1)-dimensional probability function of the
Poxsgonjnor{zaal type. It is easily seen that the whole set of finite dimension-
a;.l distribution itux%etions of the Poisson-normal type given on the right
gide of' (8) satisfies Kolmogorov’s [2] consistency conditions, thus it
det‘:ermmes a denumerably dimensional probability function of the
Poisson-normal type. We have obtained the following conclusion:
If for some constants A, and B,,, the as i
] n sumption of theorem 1a holds
then it holds also for the morming of (®,,@y,8,,...) given by (4).

*) Following a method of Cantor, we can ch

E ; oose a subsequence n, for whi

t?m relations (2) and (3) hold. _As one can consider only this subsélquenoe :he &snsvlvlm(;)}t

tions (2) and (3) do mnot restrict the generality of our considerations. Th’e cage A,=0
e

is — as has been shown in [1] — excluded b; i i
Hniting meobability foctina. y the assumed non-singularity of the
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Tet us now consider the special case with equal probabilities Pnm,
i. e. for each value of n let

Pyan = — (m:l,?,...,?’n).

Then we conclude from (2) and (3) that if we mse the normation (4),
the limiting probability distribution will be of the Poisson type if 7,=
=0(n) and of the mormal type if rp=o0(n). The conclusions obtained
are in accordance with intuition.

Thus if we use the y>-test in a very large sample and divide the sample
into classes with equal theoretical probabilities*), the number of classes
should be of order o(n).

The theorem la can have the following physical interpretation.
Let n denote the number of particles of gas contained in a vessel V di-
vided into 7, parts V,,Vs,..., V. Let us imagine a machine pressing the
gas into the vessel ¥ and at the same time dividing this vessel into more
and more parts so that one can assume that » and r,, converge to infinity.
Let the joint probabilities of finding kp (m=1,2,...,7,) particles of gas
in V,, be given by (1). Then if a limiting probability distribution assumed
in theorem la exists then 1° this limiting distribution must be of the
Poisson-normal type, 2° the rapidity of the convergence of r, to infinity
is restricted by the rapidity of the convergence of » to infinity.

4) Comp. the paper of Mann and Wald [3].
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