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additives uniformément bornées — une suite partielle convergente. Soit

s A)y=lm p,, (A4). D’une maniére analogue que dans le tmyail [2] on
Nng

peut former l'expression suivante:
T(x) = 22 [ 1(£)dw(4p)+ [ [ logle—C| ™ dr (4y)de(4y),
r F

(od 7 représente une distribution quelcongue de la masse unité sur F)
et démontrer que
log (1/d(Fy,)) = I(puy) < L(7) -

D’aprés (7) on peut présenter la fonction log &0 (2, 7i™) sous la forme
suivante:
(1)  log @z, ™) = AF(2)+

+ [ Tog(le—t1 exp{ —ALF (&) +F(2)1}) dyt, (4 —log (4™
F

Lorsque k tend vers oo on obtient de (11) ’égalité?):
(12) log &(z,4f) =flog!z——élduu(zlc)—fo(é)d,uu(zlg)+log (1 (T ye,)).
b3 P

Désignons par U(z) la fonction
U(2) = [ logle—C™ duy(4) +-2F (2)
F

etzposons
yar = log (@(F, ) —4 [ F(0)dpuzy ().
r

D’aprés (12), il suit de (5) que U(2) =y, pour chaque poing z ¢ F'y. Lorsque
zeF, on a U(z) = yy.

Dans le cas général 1>0 et f(2) 7~ const I'ensemble F'—F,, n'est pas
vide. Néanmoins, lorsque A—0, on peut démontrer [4] que la distance
d'un point queleconque z, de F & F, tend vers zéro.
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On the epidermic effect for ordinary differential
inequalities of the first order

by W. Mrax (Krakow)

The aim of this paper is to generalize the epidermic effect in the
case of finite systems of ordinary differential inequalities. The proof
given in this paper is different from the proof given in [3].

I am glad to express here my thanks to J. Szarski for many valuable
remarks which helped me to obtain the above-mentioned generalization.

We introduce the following

Assumption H. The functions fi(t,%,...,¥s) (t=1,...,n), con-
tinuous in the open set Q2 of the space of points (t,Y,...,4y), satisfy the
following condition:

(M) If A= (6, @1,y G136 Biyrye oy O )y By== (0,01, 305106, b501, -5 )
and a,<b, for v=1,2,...,i—1,i+1,...,n, then [,(4;)<f:(B;).

Let us consider the system of differential equations

(1) i =Tt e 0, (8=1,2,...,m).

It is known (see [2], p. 122, theorem I) that, if the functions f; fulfil the
assumption H in the open set 2, then for every point (f,97,...,¥5) there
exists a right maximal integral =, (f),...,7,(t) of the system (1) such that
¥ =73{to)-

The integral 7,(t),...,7,(t) may be prolonged to the boundary of .

One can easily prove the following

LeMMA. Let v,(t),...,7,(t) be the right maximal integral of the system (1)
valid in the interval [ty,t]. Suppose that the system (1) satisfies H and the
system of functions T (t),...,(t) forms a right maximal integral of the
system

Vi =Lt ¥y t)+H1p (B=1,2,...,m; v=1,2,3,...)

sueh that 7i(ty)==7;(t,)-+1/r (1=1,2,...,n).

Under these assumptions, for » sufficiently large, the functions =i(t)
are determined in [tg,4,] and ©i(8)->7;(t) wniformly in [4,4] (i=1,2,...,n).
At the same time, for telty,t,] and i=1,2,...,n, we have Ti(t)>z;(t) for »
sufficiently large.
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Now we formulate the epidermic theorem for systems of differential
inequalities.

THEOREM. Suppose that the followmg conditions are fulfilled:

1. The sequence Ty(t),...,7,(t) forms a vight mavimal integral, valid
i [ty,ty-+a) (a>0), of the system (1). The right members of (1) fulfil H.

2. The functions @ (t),...,@,(t) are continuous in A=[t,,t+a) and

(t,(pl(t),...,%(t))eQ for ted.
3. The functions e;(t) (4=1,2,...,n) are continuous in A and &(t)>0
for ted.
4. For 1=1,2,...,n we have ¢;(t,)<v;({y).

5. Let k be an arbitrary number of the sequence 1,2,...,n. or e

the inequality T, (8) <gp(t)<tw(t) -+, (t) implies the imequality
D_gu(t) <fultsor(2)s- -, (t)) -

Under the assumptions given above the inequalities

) <7u(@)  (1=1,2,..,m)

hold for te[ty,t-+a).

Proof. Condition 5 we call N condition. The assumptions of the lemma
are satisfied. Using the notation of the lemma we need only prove that,
for every interval A4 (t1)=[t0,t1] (to<<ty<ty+a) and for » sufficiently
large, the inequalities

2) ei(f) <7(t) (i=1,2,...,n)
are satisfied for te A(¢,). Because of the continuity of ¢;(¢) and the uniform
convergence of 7}(t) there exists », such that for »>v,

(3) 0< B(t)—n,(t) <elt) for ted(t), i=1,2,...,n

Suppose that there exists »’>», such that for some k (L<k<n) and

te A(t,) the following inequality holds:

7 (1) < gulf).
Therefore the set

B=

M=

@’{ y te A())

is not empty. We put £=inf#. Then we have t,<¢
(4) @ty <7i(t) for
(5) P:(8) <Y (&) for

=

-

h<t<§ i=1,2,...,n,
’5:1,2,...,%
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There is such an s (1<<s<(») that

(6) Ps () =73 ().
By (3) and (6) we have
(7) Ts(£) <5 (&) <7 (E)+2(8).

According to the condition N and to (7) we have

D_g,(£) <fs(£,¢1(§)a I 1777»(5))'
Because of (5), (6) and (M), according to the definition of =% (t), we get
D_ps (&) < fol&,% (). Tn(&) 1" = D_7, ().

Consequently, according to (6), the inequality 74 (t)<<g,(t) holds
for 1< ¢ and # sufficiently mnear £ This contradicts (4). Therefore E is
empty and the inequalities (2) hold for »>v,.

Remark 1. Let us consider the function

ffk(za'avl

The condifion N means that the inequality D_wy (¢)<C0 is true in the open
set;

Zy = E{Tk(t) < () < me (1) +-ex(8), te A},

On the other hand the following theorem ig true ([1], p. 203): if for a funec-
tion continuous in a given interval, one of Dini’s derivatives is non-posi-
tive at every point of that inferval with the exception of a denumerable
set of points, then the function is non-increaging in the given interval.

Applying this theorem to the function () and the components
of the set Zy, one can gee that the condition N ig equivalent to the follow-
ing one.

Condition N;. In every component of the set Z;,, with the exception
of a denumerable set of points, one of the inequalities
Do) <fultsr ()., ()
D_gi(t) <Fult 1 (), @ (1)
D, gw (8) <Fult 01 (8), -, (1))
D_gi(t) <falty 01 (1), g t))

is satisfied.

In particular, in different components of Z, inequalities for different
Dini’s derivatives may be satisfied. The epidermic theorem remains true
if we replace the condition N by N;.


GUEST


40 W. Mlak

Remark 2. The assertion of our theorem remains true if g,(t) are
AQ@ in A. In that case the condition N may be replaced by the following
one. For almost all points of the set

Zy, = E{‘fk(i) <pr(t) < v (t) +ep(t), te d)
the following inequality holds:
(8) ol <ty n(®) 5+ 5 ().

¢r(t) denotes here the approximative derivative of the function g (s) at the
point ¢. It iy easy to see that the condition given above implies the con-
dition. N. In fact, if @ (t) is ACG in 4, s0 is

t
%(t)mpzc(i)—tf T (2,01(2) 500 (2)) de.

The inequality (8) states that almost everywhere in Z, the approxima-
tive derivative of ,(f) is non-positive. Therefore one can conclude
([1], p.225) that the function ¢, (!) is non-increasing in every compo-
nent of Z,. But it is sufficient for the inequality

D_gi(®) <Fults 91 (B)se s pm (1)

to be satisfied in Z,. Thus the condition N holds. )

Remark 3. What has been proved for the right-hand maximal
integral can also be proved in a similar way for the remaining extreme
integrals.

In the case of the left-hand integrals one must introduce a suitable
condition instead of (M) for the right-hand members of differential equa-
tions ([2], p. 137).
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Equations satisfied by the extremal schlicht functions
with a pole

by J. ZAMORSKI (Wroeclaw)

In the present paper I give the differential functional equations
which must be satisfied by extremal schlicht functions with a pole. These
equations are analogical to the Schaeffer-Spencer equations for the regular
schlicht funetions.

Consider the class X of functions regular and schlicht for 0<je|<1,
which have the expansion of the form F(z)=z"'4b 2+, +...

The first p coefficients of each funetion of this form determine a point
of the real 2p-dimensional Euclidean space. To the function F(z)=2"'--
+bzb,2"* ... corresponds the point with the coordinates (,,¥,,%s,Ya,
.oy %,Y,) where b;=uax;+1y;. To the schlicht funetions corresponds
a certain set D in this space. This set contains the origin of the coordi-
nate system, because the function F(z)=z"" belongs to the class X, it
ig connected, since together with the funection F(z)=2~'+-bz+b,Z+...
the function oF(zo)=2""-+bg*2-... also belongs to the class X, which
means that every point of the set D may be joined to the origin of the
system by a curve lying in D. From the surface-theorem ([1], p. 72-76)
it follows that the set D is bounded and from the normality [2] of the
family X it follows that it is closed.

Now consider the region & in this space, which contains the set D
and define in it an arbitrary real-valued function E(z,¥%;,%:,%2,.--»
*y,Y) Oof 2p arguments, continuous together with its first partial
derivatives and satisfying the condition ¢

»
D ((0B/0m,)* +(0E[0y.)) > 0
k=1
for every point of the set D.
The function Z may be treated as a functional defined for the func-
tions belonging to the class X. Let us introduce additional symbolg

By, = }0B/ow,—i0B/0y,), B, = 0B /|ow,+i0B/0y,).

Since the derivatives do not vanish in the interior of the set D, therefore
the function B has the extreme value only on its boundary.
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