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Remark 2. The assertion of our theorem remains true if g,(t) are
AQ@ in A. In that case the condition N may be replaced by the following
one. For almost all points of the set

Zy, = E{‘fk(i) <pr(t) < v (t) +ep(t), te d)
the following inequality holds:
(8) ol <ty n(®) 5+ 5 ().

¢r(t) denotes here the approximative derivative of the function g (s) at the
point ¢. It iy easy to see that the condition given above implies the con-
dition. N. In fact, if @ (t) is ACG in 4, s0 is

t
%(t)mpzc(i)—tf T (2,01(2) 500 (2)) de.

The inequality (8) states that almost everywhere in Z, the approxima-
tive derivative of ,(f) is non-positive. Therefore one can conclude
([1], p.225) that the function ¢, (!) is non-increasing in every compo-
nent of Z,. But it is sufficient for the inequality

D_gi(®) <Fults 91 (B)se s pm (1)

to be satisfied in Z,. Thus the condition N holds. )

Remark 3. What has been proved for the right-hand maximal
integral can also be proved in a similar way for the remaining extreme
integrals.

In the case of the left-hand integrals one must introduce a suitable
condition instead of (M) for the right-hand members of differential equa-
tions ([2], p. 137).
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Equations satisfied by the extremal schlicht functions
with a pole

by J. ZAMORSKI (Wroeclaw)

In the present paper I give the differential functional equations
which must be satisfied by extremal schlicht functions with a pole. These
equations are analogical to the Schaeffer-Spencer equations for the regular
schlicht funetions.

Consider the class X of functions regular and schlicht for 0<je|<1,
which have the expansion of the form F(z)=z"'4b 2+, +...

The first p coefficients of each funetion of this form determine a point
of the real 2p-dimensional Euclidean space. To the function F(z)=2"'--
+bzb,2"* ... corresponds the point with the coordinates (,,¥,,%s,Ya,
.oy %,Y,) where b;=uax;+1y;. To the schlicht funetions corresponds
a certain set D in this space. This set contains the origin of the coordi-
nate system, because the function F(z)=z"" belongs to the class X, it
ig connected, since together with the funection F(z)=2~'+-bz+b,Z+...
the function oF(zo)=2""-+bg*2-... also belongs to the class X, which
means that every point of the set D may be joined to the origin of the
system by a curve lying in D. From the surface-theorem ([1], p. 72-76)
it follows that the set D is bounded and from the normality [2] of the
family X it follows that it is closed.

Now consider the region & in this space, which contains the set D
and define in it an arbitrary real-valued function E(z,¥%;,%:,%2,.--»
*y,Y) Oof 2p arguments, continuous together with its first partial
derivatives and satisfying the condition ¢

»
D ((0B/0m,)* +(0E[0y.)) > 0
k=1
for every point of the set D.
The function Z may be treated as a functional defined for the func-
tions belonging to the class X. Let us introduce additional symbolg

By, = }0B/ow,—i0B/0y,), B, = 0B /|ow,+i0B/0y,).

Since the derivatives do not vanish in the interior of the set D, therefore
the function B has the extreme value only on its boundary.
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THEOREM. The function F(z) regular and schlicht for 0<C|z|<<1, whose
the coefficients give the emtreme value of the function B, satisfies the equation

D+l D+1

((F'(@)[F ()] Y 4F* () = — D) (Bulaw)
k=2

k=—p—1
where »
s= 30,
n=k-1
»
By=) (n+1)re {b,B,},
n=1
By =By,
By=By—EB, ,, k=2,3,...,p—-1,
Bp:“‘ _Ep-—u
By = —By,
-~ o
By= D by Byn, k=1,2,...,p—1,
n=1
B—k:Eky k=1,2,...,p+1,

[F(2)] "=+ b, 0P

Let us observe that the obtained equation is not a differential equation
but a differential-functional one.

The proof of this theorem is based on the following

LemmA. Let I' be an analytic Jordan arc with the end points o and f,
which does not pass through the zero point on function F(2)=2""+b,2+...
and is contained in the region 0<|z|<1. Let p,(2) be a regular function
in the meighbourhood of the arc I’ satisfying the conditions

PRI < M, [p(2)—pu(2)] < Mle'—e"|, p,(a) =p,(f) =0

for le|<eo. Then for every sufficiently small ¢ there ewists a function, regular
and schlioht for 0<[z|<<l, of the following form:

F*'(?) =F(2)+
B
£ pu) ({uF (u)\* 2F(2)F(u) N2
T omi ) 20 {( ) ) T —F@ Py, WF(Z)}‘W"
i) 1
+'275 ’;‘;" {zF'() " e >}dﬂ+o(e>.

Pofu) s denoted by p(u).
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The proof of this lemma is identical with the proof of an analogical
lemma of Spencer ([3], lemma VI, p. 32) for regular functions. It suffi-
ces to replace the class of regular functions by the class of functions with
a pole, and the condition that the are I does not pass through the point
2=0 by the condition that it does not pass by the possible zero of the
function F(z).

Making use of the formula of the lemma we shall caleulate the
coefficients of the expansion of the function F*(z). Namely

k
e P(“) Fr(w))* 21 i1
b = b+ % o { ( F('M,)) 2 g b B () —

k—~1

2 ba
(A Db+ i =2 ) ] dut
n=1
- B _( ) k—1
e ry __omk+l k-1 | g
i | o {(k—|—1)bk 2% +9n§nbnu }du—i—o(s),
From E(F*(2)) ;E(F(z))=2 re { Zp’ By (b —by)} +0(z) follows
k=1
8 D41 D
* - & MQ_Q_ ' (w)\* k 17
E(F)—E(F)_Zre{%w;f o [ ( F(u)) QQF(u)n“k—lbn B,

14 p—k
1
E (k+1) by By +2 E k+l —2k Ez w El nb,,Ek+,,] du +
p pryme
»

— B _ »
e rpu) ka1
+7F¢f s [ E (h+1) by B —2 k; T B,

k=1
14 p—k
+2 2 E"Z by By +,,] dﬁ}—l—o(s).
k=2 n=1

Using the notation of the theorem we obtain

B(F*(2))—B(F(2))
P41

=——2re{2ma 7”2(%6 [( )ZA T ()4 2 ]du}-|—0 6).

Now suppose that the point corresponding to the function F(2)
gives the maximum of the functional E. We know that this point lies



GUEST


44 J. Zamorski

on the boundary of the set D. Then the increment at this point must be
non-positive. Since ¢ may be arbitrary, therefore its coefficient must
vanish. The integral must vanish for all the funetions p(u), and therefore
the expression in brackets must vanish, which proves the assertion of the
theorem.

The deduction of these equations is analogical to the deduction of
the equations for the regular functions contained in the book cited above.

This result may be used to verify a certain hypothesis of W. Woli-
buer [4] namely that the module of the pth coefficient of a schlicht fune-
tion with a pole assumes the greatest value for the function

D)
= [p+1)2 ~EDRIYOHY) Lyl T Py
= {2 -2 =g LA T
Do { F } 1 p+1 !

Let us observe that it a ecertain function F(z)=2~'--byz-..: gives
the maximum of the module of the coefficient b, then the function
exp[—id|(p+1)1F(exp[ —id/(p+1)]2) = 27 +bz+..., & == arg {b,)

gives the maximum of the real part of b,. Therefore we may assume that
E=re{h,}=u,. Obviously this functional satisfies the desired conditions
and

0 for k#p,

By, =
1/2 for k=p.

The equation for this functional has the form

p+1

(«F' (2)|F (2))} 2 b1 F% ()
k=2

p-1
= {(7’ _l'l) re{bp} + Z (bp—lnznk'*‘gp—kzk)—'zmxjul ""'zm'l}'

k=1
Since

2 . (k-1 .
g Pty [l ED =g ( ) P

‘Fp(z) = zﬂl"!"
p+1
therefore substituting the function. g,(2) into the equation we obtain

[20n (2) [pp ()P T (2) = 2P0 —2 42041

which, as can be shown by easy caloulation, holds. It follows that the
function ¢, (2) may give the maximum of the module of the coefficient by
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