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Continuous functions considered from the standpoint
of Dini’s conditions *
by
E. Tarnawski (Gdansk)

Introduction

Let w(t) denote a continuous function defined and not equal to 0
for >0, monotone, non-decreasing and tending to zero for t—0. By
W{(r) we understand

1
de
{1) W(z)= w(t)
and suppose that everywhere
2 lim W (z)=

=>-}-0

Moreover, we suppose that the functions f(z) always mean conti-
nuous, defined and bounded functions in the interval (—oo, ca).

The object of this paper is the examination of classes of funections
f(z) with regard to their satisfying the generalized Dini condition, i. e.

@) f’f ‘”““) —1@)| g < 313y,

: Let D, denote a class of functions f(x) satisfying (3) for every =z
with a certain constant M. We shall suppose that the function w(t) sa-
tisfies condition (2).

From the inequality wl(t)<w2(t), for 0<t<a and with a certain
constant «, follows D,,CD,,. This permits a classification of f(x) accord-

ing to w(t). B. g., taking in (3) w(t)=1"""|log |’ we obtain a logarithmiec-

* This paper was presented to the Poznan University as a part of Doctor’s Thesis
of the author in December 1951. The author wishes to thank Professor W. Orlicz for
having suggested the subject to him, and for his advice and criticism made while the
paper was being written.

1) For simplicity we denote the upper limit of integration as 1. It is obvious that
it can be replaced by a constant positive a arbitrarily chosen for f(z) and w(t).
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-power scale and for y=0 a power geale classifying f(2) with regard to
Dini’s condition. .
Tet D denote a class of functions {(®) satisfying

Flfar ) —=1@) g oo
6[ —————,uj—(t») - = )

for every ». We shall suppose that w(t) satisfies (2). It will be observed,
to begin with, that Dy CC—D,, where ¢ denotes the set of all conti-
nuous funetions f(z), and that in the case of the inequality w,(t) <w,(t)
satisfied for 0 <f<a with a certain constant a, we ghall have D3, CDy.

In this paper we shall formulate the necessary and sufficient con-
dition which must be satisfied by w,(?) and wy(t), in order that f(z) be-
long simultaneously to clagses Dy, and Di. These results are given
under additional conditions regarding wi(t) and wy(t), formulated as
follows:

1
. [
(-n») ufmdﬂ‘(OO,
(+4) Jim w2 =y,
—— w (21
(:*) ’lil(-lno"q‘*}(‘t‘))= 8§00

The first two of these conditions concern w,(f), the first and third con-
cern w,yt).

TIn this paper we examine funetions of the type O, which we under-
stand functions f(z) of the following form:

f(@) =D ap(bs,2),

n=1

o0
where @,>0, 0<b,<by1, by—oo, D @a,<oo, the function g(z) being

defined for every ®, non-constant, 1§e11"i0dic with period I and satisfying
Lipschitz’s condition %).

We shall also consider functions of the type W, i.e. functions of
the type O where a,=a?, b,=1}" and 0<a<l, ab>1.

We denote by D(8,y) and D*(d,y) the clagses D, and D5, regpect-
ively in the logarithmic-power scale, . e. in the case of

w(t)=1"°log[".

%) In order that W(l/bs) be defined by formula (1) for every =, we shall assume
for simplicity of notation, b,>1 and, independently of that, =1
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Taking into account suppositions (2) and (+)®) and the necessary and
sufficient conditions of the existence of a funection f(x) belonging simul-
taneously to classes D, and Dy, we can indicate the domain of validity
of the logarithmiec-power scale (domain of the values of the parameters 6,y)
and also the containing-direction of classes D(d,y) with regard to the
values of the parameters § and y, the classes being proper parts of each
other for different values of pairs of those parameters. For this scale, the
sufficient conditions for the coefficients a,,b, in order that the function
fz) of type O belong simultaneously to classes D(4;,y,) and D®(d,,vs),
have been established. These conditions made possible the construction
of various examples, of which worthy of attention is the example of
2 universal funetion f(w; 8,y) of type O. For the whole of the logarithmic-
-power scale, the values of the parameters 4,y uniquely define the nar-
rowest class D(8;,y,) of this scale to which this function still belongs.
Moreover, if D(8,,y,) defines any class, that is a proper part of class
D(d,7.), the function belongs simultaneously to D™(d,,7,)-

A closer examination of the above conditions leads to a comparison
of two classifications in the logarithmic-power scale, one according to
Dini’s conditions, the other according to Holder’s conditions, of which
the latter has been examined in a former paper of mine [6]. It turns oub
that the two classifications are in a certain sense complementary.

Reference to the paper mentioned requires the repetition of defi-
nitions used therein:

H, denotes the class of functions f(z) satisfying, for every » and
for every h, the condition

If (@ h)—f ()] < Mo (|h]),

where M is a constant, dependent only on f(»). Function w(h) is defined
and different from zero for h>0, monotone non-decreasing and tending
to zero for h—0. We suppose additionally that

[4
4 li ——|<<co.
g Jim g, )<
H® denotes a clags of functions f(z) satisfying, for each wx, the con-

dition

- [flath)—f(o)]

lim 'j_(‘”_"_}'_____‘____zoo
o([h]) ’

where w(h) satisfies condition (4).

B0

%) These suppositions are explained in Remark of § 2.
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In the case of the logarithmic-power scale defined by Hoélder’s con-
ditions, 4. . when

o (h)=1"|log h",

the classes H, are denoted H(8,y) and the classes HZ by H™(d,y).
Apart from the above notation

fla)y (@), wit), W), Dy, DT, D(6,), D(6,7),
w(h), H,,,, Hf: H(6?7)7 Hm(éﬂ’)

the following symbols are repeatedly used:
@, b, coefficients used in the definition of functions of type 0,
a,b coefficients used in the definition of functions of type W,
K Lipschitz’ constant of the function ¢(a),
1 period of the funetion ¢(x),
D oscillation of the function ¢(x) in the interval 0 <z <.

8§ 1. Lemmas

Lemma 1. If w(t) satisfies the suppositions (v) and (ss), then the
Tnequality

of (to(t)) dt

(8) e <L

holds for every =, where 0<v<1y<1, and L is a positive constant depen-
dent on 1. _
Proof. If the lemma did not hold, there would exist a sequence
{r;} such that 7;—0 and .
. .
of (t/w (D)) at

©) uwW(n)

—00 ,
Taking inte account (+) we should have | ‘(t/w(t)) dt—0 and thus, by (6)
[] .

also v W(r;)—>0. From (»») we should obtain

of '(t/w(t)) dt

lime —— = i 1
i—>00 TIW(Tx)

lim - =
,_.T‘,W(r)w(r)—r g—1’

iom
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contrary to (6). This result is obtained by replacing the limit of the quo-
tient of the functions for 7==7—0 by the limit of the quotient of their
derivatives 4).

LEMMA 2. If (&) s satisfied, then

8
e L —
@ wien <3

Proof. From (s%) follows

SRRy Y.

w(t) < w{2t

=

true for every >0 and for every ¢ satisfying 0<t<a, where « is a con-
stant suitably chosen for e. .
Integrating, we obtain

af2 af2 a

dt dt
fm«”'s)rf w(@) 2 Jwd’

and hence

Trom the lagt inequality and (2) the truth of the lemma is obvious.
LemMa 3. If Lim (wyt)wy(t)) =0, then lillao(Wl(-r)/Wz(t))=0.
t—=+0 T

Proof. Since

&

f 0<i<T
o o

1
_:(t_)<

4 In fact, if there exists a sequence 7,0 (7,>0) such that g(x)—~>0, plz)—=>0

((r)#0) and g(z), p(¥) have derivatives in a certain right-sided neighbourhood of

=0, and lim (g'(v)}y'(z)) exists, then there exists a limit of the quotient g(z)/w(z)
T-r+0

for 7,-+0 and

L gl )
lim e =l —7s
s () zoto ¥ (z)

The proof immediately follows from the faet that the inequality

g (T() —9 (Tq) gl) 1
1.P (m)—v ('fq) <

plw)| 4’

is true for every i, where 7, is a-term of the sequence {r}, suitably chosen for 7, and
moreover satisfying v,<T;.
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then the integration of both expressions over the interval (z,z,> gives
Wilz) —Wyz) <5(W2('5) ~W2(ro)} ’

which according to (2) proves the truth of the lemma.

§ 2. Sufficient conditions for a function of type O to belong to one of
the classes D, D7’

THEOREM 1. Let w(t) satisfy («), (x+). If the coeffivients a,,b, of a func-
tion f(x) of type O satisfy the condition

(8) . D W
a=1

(Uba) < o0,

then f(xz) belongs to D,.
Proof. The proof results from joining the inequalities

f '(P " w'|“t ( nm)| dtha,lW(bl—),

b,

b,

a,,of Lﬁ‘) P b () & <L, Kla,,W(Z"),

the second inequality resulting directly from Lemma 1. As the constant
Ly we assume the lower bound of numbers L satisfying inequality (5)
for 7,=1/b,<c12).

THEOREM 2. Let w(t) sabisfy («), (), (&%). If the coefficients a,,b,
of a function f(x) of type O satisfy simultancously the conditions

(9\ Hl a'nW(Z/b") =00

n-1
s 2d
10) 1 LA
(10) o 2, W l/b Z ’W“/"‘)<@(D+Lom)sz’
—1 Zm 2d
- 312'};”1=,.+1a'<(1 O)Dsl’

then f(x) belongs to class DT,

The constants s, d, Ly in (10), (11) are defined as follows: the con-
stant s is defined by (&), the constant d by (14), and the constant L,
is the lower bound of numbers L satisfying (5) for 1:0—1/b1 <1 and
0<®<1.

icm
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Proof. We introduce the following notation:

[f{z-+8)—fim)]
I,= f o,

b,

1 a=1
A.,=f Sﬂal\¢(bf(»v+t))—¢(b:~v_)] i,
", = w(t)
SO Jplbdet 0)—p(bim)]
A =J§a,~ —wm dt,
1
lp(bu(+ 1)) — @ (b0)
B, = a,,llb o) dt ,
1 oo
[ (Bl 'v—[—t)— (ba:)\
Ch= @ e

Let us consider the expressions of the right side of the inequality
(12) Iu>Bn’_A_’Gn7

the truth of which can easily be verified.
a. Using the saine estimation of the expression A as in proof of

Theorem 1, we obtain

n—1
(13) A < (D+LKl) 2 aW{lb).
i=1

b. Substituting b,,t:u, we obtain

B __‘fg l’P(bn51'+1‘ —ob)l g,
n— ’Ll//b,,
N T ettt =)
') L ‘1 : @08 1) —p (0, d
‘B”>b,,‘./-J ’ w(u/b,,) Wy
k=1 ki
where m=[b,/l].
Conwsidering
(k1) (e
lpatn) =g buw)] 4, -, = | (b +w) — @ (by2) | du
Kkl W(M/bn) ’I/U((k—-l— l)l/bn) il .
. _ d
> o
w((k+1)Yb,)’
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where

(14) d= nnn f]zp o+ u)— ()| du,
and d>0, we obtain

fi—1 (n-- )16,
da, 1 da,, dt

>

B>=" ) — —
by & w((k-+1)1fb,) " i, W)~

d Il
w (b,,)

In the last inequality #==1-2¢/s, where ¢ is a suitably chosen, suffi-
ciently small positive number and s is defined by (x%).
From Lemma 2 we obtain for sufficiently distant terms b,

(15) B,>2 w(bi>

¢. The following inequality is also true:
O/x‘<\-DW(l/bn) 2 /78
f=pn-+1

From (13), (15) and the last inequality, incquality (12) becomes

. 24 D+ IKL N D %
(16)  L>a, W( )( ’W<E')_ZZ“‘ ,
i=n41

sl a,W{lb,)
from which we directly obtain Theorem 2.

In proving inequality (13) and Theorem 1 we used both (*) and ().
It turns out that (++) can be omitted by taking into account

n=1

dt < GZ a,b; y

f=1

(17) 2 f|¢ (- Fbit)— (b))

where

: 4
18 = L
(18) G Kofw(t) dt

and in view of (+), we have G<tco. In this case, however, (10) should
be replaced by

n—1

19 fim X -
1) s anwa/b,,)g W< g

icm
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Thus, instead of Theorem 2, we should obtain the following

THEOREM 2*, Let a function w(t) satisfy (+) and (&). If the coeffi-
cients @,,b, of the function f{xz) of type O satisfy simultancously (9), (19),
(11), then f(z) belongs to class DY.

The constants @, d, s in (19) and (11) are defined by (18), (L
(#%) respectively. .

Remark. Analyzing the conditions imposed on w(t) we come to
the following conclusions: .

a. If w(t) did not satisfy (x), then for example a function f(z), pe-
riodic with period 2, defined for —1<z<1 by f(@)=|r/, would belong
to DY

b. It w(i) did not satisfy condition (2), then every function f(w) (4. e.
2 continuous and bounded function) would belong to D,, and thus, no
funetion f(x) would belong to DY.

4) and

§ 3. Necessary and suificient conditions for the existence of a function
belonging simultaneously to classes D, and D°°

THEOREM 3. If f(x) belongs to D, , and the condition

wa(t)

(1) >0

510
is satisfied, then f(w) belongs simultaneously to D.,.

To prove this let us observe that if (20) were true, we should have

wy(t)
woll) <M,

where M >0 and 0<{<t,. This would give

a0~ (o)) o -0 stol
of# o dz<zuf

1(t)

which proves the proposition. Théorem 3 gives directly

THEOREM 3*. .The mecessary condition for the existence of f(x) be-
longing simultancously to D,, and D3, is

wy(l)

wy(t) =0

(21) lim

t=>-+0
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THEOREM 4. If
(22) tim 20 o,

0 Wi(t)

where wy(l) satisfics (x), (+x) and wy(t) satisfies (), (&), then, given a func-
tion @(x), we can choose such coefficients a, and b, of the funclion f(z) of
type O that f(m) will belong simultancously to D, end Dy,.

Proof. By Theorems 1 and 2* it is sufficient to show how to choose
the coefficients a, and b, in order to satisfy simultaneously condition (8)
for w(t)=w,(t) and conditions (9), (19), (11) for w(t)=1wy(t). As will be
seen below, we can also choose an integer b, o as to make f(x) periodie.

Instead of the above-mentioned conditions, we shall consider the
following:

28) D a,Wy(lfb)<co,
n=1
(24) lim a,W,(l/b,)=00,
n—1

. 1
25 SO D=
@5) I ey Z,ﬂ aubi=0,

oo
(26)  lim - D a=
o0 Uy
i=pn--1

We shall write
kn"—‘ a’nwz(l/bn)

and assume, for example, k=1 and b,=2. Defining by induction we
shall suppose that k;,b; are already defined for ¢<n. We define %, so
as to satisfy simultaneously the inequalities

1 n—1

1
7{}_” 2 a,,~b1<§; and k,, >n,
i=1
and hence simultaneously (24), (25).
Now we choose ‘b, large enough to satisfy

(27) ku_ 1 kn~1~

P N
Walfb,) 2" )
which gives a(tfb) Wall/by_r)

[s]

ki 76,, ( 1 1 k 1
< el _ I
o Wb~ W(tjb,) \2" gt ) Waljbyy 2"’

and hence condition (26).
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Thus, without the aid of (22), we have constructed a funetion f(x)
of type O whose coefficients satisfy simultaneously (24), (25) and (26).
Thus, in virtue of Theorem 2% f(z) belongs to Dy
Suppose now that (22) is satisfied. From Lemma 3 if follows that
for a fixed %, we can choose b, sufficiently large to satisfy gimultaneously
(27) and the inequality
I wapy<d.
Wa(l[by) Tex

This means, however, that (23) is satisfied, and thus, aceording to Theo-
rem 1, f(#) belongs simunltaneousty to D,, and DY

In this way Theorem 4 is proved.

Joining Theorems 3* and 4 we obtain both the necessary condition
(21) and the sufficient condition (22) for the existence of a function of
type O (periodic in the particular case) belonging simultaneously to Dy,
and Dy, . .

Remark. From the purport of the proof and from the Remark
in § 2 it follows that if w(f) satisfies (%) there exists a function of type 0
in each class DY 5).

§.4. Logarithmic-power scale a

Suppose that the limit g* of the quotient wy(t)/w; (1) exists for t—>-40.
Now, if w(t) <wf) for 0<t<a with a certain «, then D,,CD,,. From
Theorems 3 and 4 it follows that for g*=0 class D, is & proper pars of
clasg D,,, and for g*>0 both classes coincide. It follows hence that, under
the assumption of the existence of limit ¢*, if both w,(t) and wy(t) satisfy
(2), (#), (%) and (%), the condition (22) ean be nsed to establish the
geale of classification of funetions f(z).

Let

w(ty=t"*"|logt]  (8>0; and for 6=0, y<1)
for 0<t<a. In this interval, with 2 suitable «, the function w(t) is in-
creasing. For i >a let w(t) be so defined as to be monotone, non—decreas.-
ing and remain continuous. This leads, on the basis of (22), to_tpc‘z defi-
nition. of a logarithmiec-power geale and, for y=10, to the definition of
a power scale.

Tor this kind of classes D, and D we have used the notation D (d,y)
and D¥(d,y) respectively. D(8s,y.) is & proper part of D(d;,py), if 8y < by

5) The proof of the existence of functions of class DY is.dealt with by 8. Kaczmarz
in the paper [3], where the particular case w ()=t is considered.
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and for d;=4¢; if y,>y,. An examination of the validity of (2) and (%)
for the funetion w () defined above leads to the definition of the limits
of. the Ya@ues of the parameters 4,y for which those suppositions are
still satisfied. The parametérs 8,y can take the following values:

>1 if =1,
0<é<1 and y | arbitrary if 0<dé<1,
<1 if §=0.

For these values of d,y, the conditions (x+) and (#%) are also satisfied.
. Using (8), (9, (10) and (11) and taking into account (16), we obtain
in the case of a logarithmic-power scale, after suitable computations
on the basis of Theorems 1 and 2 the following theorems: ’

- THEORIE}\I 5. A function f(x) of type O belongs to D(d,y) for 0<d<1
if s coefficients a,,b, salisfy the inequality

(28) D abi(log b, < oo.

n=1

THEO.RE.M 6. ’_{’h'e function f{z) of type O Dbelongs to D™(8,y) for
06 <1 4f dts coefficients a,,b, satisfy stmultaneously the conditions

(29) © lim Gabialog b )
00 a‘an(IOg bn)—-y !
1 =]
(30) lim 2 24
n—soo Uy o al<Dsl ’

where the constants d and s are defined by (14) and (&), d depends on the
choice of p(z), s==2° 7

THEOREM 7. The funclion f(z) of of 4
T ; ‘ ype O belongs to D(0
coefficients a,,b, satisfy ! ot DO

(a) for y<<1 the imequality

(31) D alogh,) < oo,

n=1

(b) for y:i the inequality

(32) 2 a,log (log b,) < oo .

n=1
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TamorEM 8. The function f(x) of type O belongs to DT(0,y) if ils
coefficients a,,b, satisfy
() for y<1 the condition

pallog b)) ™" o

1—y

33 lim
( ) moe ay(log by)

and condition (30), where s=1,
{b) for y=1 the condition

. ap_dog (log b))
(34) N - Tog (log b

and condition (30), where s=1.

TamorEM 9. Ij function f{x) is of lype W, then it belongs to class
D(5,y), where y>1 and 8 is defined by ab®=1, where 0 <6<1.

Thus Theorem 9 results direetly from Theorem 5.

THEOREM 10. For any arbitrarily chosen function ¢(x) and numbers
8,,0, satisfying the inequality 0<8,< 8, <1 we can ahways find such coeffi-
cients a,b of a function f(z) of type W that the function f(z) will belong
simultancously to the classes D (8,,0) and D™(8,,0).

Proof. Taking wy(f)=1"" and w,(t)=1""" let us apply Theorem 1
to the first of these functions and Theorem 2 to the second. It will be
observed that .

1y 1 s L
.anW(b—")—ﬁ,(ab) S,
where for 8 we take 8, in the first case, and 4, in the second.

The right sides of inequalities (10), (11), defined by a given fune-
tion ¢(z) and arbitrarily chosen values for 8(0<@<1), will be.denoted
regpectively by 4 and B (4>0, B>0). Under the assumption that
ab¥%>1 the inequalities (10) and (11) become

1 a

4,

— <B.
ab®—1 1—a

We shall write (1-+4)/4=M>1 and B/(1+B)=N<1. If .the eogf'fi-
cients a,b are so chosen thadb they simultaneously satisfy the inequalities

y>1N, Wh>M, and M <a<1/p?,

then conditions (9), (10), (11) and also the inequalit.y ab® <1 <ab® Wi}l
simultaneously be satisfied. This means that function f(z) belongr si-
multaneously to classes D(4,,0) and D”(8,0).
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Taking an integer b, we obtain a periodic f(z)
condition.

. The relation of H, to D, in the cage of a log‘mfhmlo -power seale
is explained by the following Theorem:

THEOREM 11. Class H(8;,y,) ds contained in class D (8y,y,), if 6,8,
and for 8y==28; if y,>v,+1.

Proof. SBuppose that e(t) is continuous and the inequality

satislying the required

@

f @) g <0

(35) o(l)

18 satisfied for certain positive constants ¢ and «. Tt is obvious that in
this cage H, is contained in D,.
It

o(t)=t"logt]", w(t)=t"""

log.t‘?’ﬂ’ v

the inequality (353) is satistied for §,=4§,, and thns the Theorem is valid
for this case. The same is true for d,<§, since

H (8, 7)CD (81,714 2)CD (8, 7).

As follows from Theorem 11 and from the examples in § 5, the loga-
rithmic-power scales according to Holder's conditions, and according to
Dini’s conditions, are complementary. The widest clags for both scales

D(0,1), every other elass of both logarithmic-power scales being its
proper part, the narrowest class for both scales is the Lipschits class
H(1,0), which is a proper part of every other class of both logarithmic-
-power \scales (sce § 5, Bxample 5).

The cases in which, at every point, at least one of the derived num-
bers is infinite or the expression

(36) | Ii@ﬂt) —1@)

is infinite for every =, appear here as particular cases of the function

f(z) belonging to class H™(8,y) for =1, y=0 or to class D™(d,y) for
6=0, y=0,

The relation of the clagses is as follows:
H(1,0)CH(1,7)CD(1,y,) CD(8,p,)

where >0, y,>y41, 18>0, v, arbitrary.

[

L
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H{d,,y)CH (‘525'}’2)CH (825 78) CD (82, 74) CD (8, 75) CD (85, 76) 5

where 16, >8,>8,>0, 93>y, 94 >v5+1,95>>y, and y,,y, are arbitrary
real numbers,

H(O;'J’I)CD(0372)CD(0;0)CD(0’73)7
wheré y;<<—1, y;+1<p, <0, 0<Cyy<1.
H(0,7,)CD(0

where p, <0, y+1<<y,<1.

Each of the classes written down in the above way is a proper part
of that class in which it is contained. For Holder’s classes this results
from the contents of another paper of mine (Theorem 7 in [6]) and for
Dini’s classes the above results from Theorem 4. For Holder’s classes

contained in the respective Dini’s classes examples of functions belonging
to Dini’s classes and not belonging to the respective Holder’s classes
are given in § 5.

y¥2)CD(0,1),

§ 5. Exémples

The problem of the existence of a continuous funection for which
the integral (36) takes only infinite values for every «, has heen the sub-
jeet of investigations for a long time (see Steinhaus [5]). Examples of
continuous functions satisfying that condition are known 9. These in-
vestigations suggest the problem of carrying out an analysis not only
with regard to the singularities which a given function shows but also
with regard to its positive properties of the same type as the examined
singularity. Aeccording to the notation uwsed in this paper the problem
is reduced to the question to which classes D(8;,7,), D™(8e,72), for
example, the function in question can simultaneously belong. Theorems 3
and 4 make both such an analysis and the construetion of suitable exam-
ples actually possible.

The examples given below are considered from this point of view.
In this manner we obtain a more complete picture, sinee it turns out
to be possible to establish both the narrowest class to which the examined
funetion in this seale belongs and the degree of the examined singularity.
The examples concern exclusively the logarithmie-power secale.

The relation of classes H(8,y) and D(6,y) has algo been examined.
This makes the universal example found for Holder's classes (Tarnawski
[6]) possible in the whole domain of the scale. It can also be used in the
case of a classification according to Dini’s conditions. In other examples

%) An example of such a function is given by 8. Kaczmarz im his paper 3], p- 196-
-198. Another example can be found inf#H,.p. 78.
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several known functions have been analyzed regardless of the question
‘whether other authors bave given then as examples with regard to Dini’s
or Hélder's conditions. A closer analysis of these examples (G. Faber,
A. Zygmund, W. Orlicz) has permitfed their generalization and simul-
taneously the fixing of their place in both classifications in question.
An example of a function of type O which, belonging to D*(0,1), for
this reason does not belong to the widest class of both classifications,
D(0,1), has also been constructed.

In the examples congidered functions of type W have not been taken
into account. The proof of Theorem 10, however, shows the method of
such constructions.

The examples particularly concern periodic functions with properties
required in the given example, because in the construction of each of
the examples below, also integer values, can be taken for the coeffi-
cients b,.

Example 1. We give an example of a function of type O belonging
simultaneously to classes D(0,1) and D%(0,y), where y<1. This funec-
tion f(«) is characterized by the coefficients

—a b
@p=A""  b,=B"Y,
where 4 >1, B>1, >0, and « satisfies the inequality

2 l
(37) A >1—|—2%,
d being defined by (14).

Using Theorems 7 and 8 we shall find out whether (32), (33) and (30)
are satisfied. Tt is easy to see that conditions (32) and (33) are satisfied.
Condition (30) is satisfied in view of (37) since

oo

1 1 24
e T
A*—1 DI

—_ =

A i=n-+1

Thus f(x) has the required properties.
We shall take in particular B=2, =1, which gives

f@)= Y A~"p(2").
n=1
For p(z)=cos ® we obtain D=2, I=2x, d=4 and A">1+n/2.
For g(z)=min|e—p| (p—integer) we obtain D=1/2, I=1, d=1/8
and 4°>3. )
Taking in the last case 4=10, a=1, we obtain the example of
a function given by G. Faber ([1] and [2]). Thus for this function con-
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dition (37) is satisfied and it therefore belongs simultaneously to classes
D(0,1) and D™(0,y) for every y<1.

In another paper ([6], § 6, Example 3) I have shown that Faber’s
funetion belongs to class H¥(0,y) for every y<(0, and thus to none of
the classes H(0,y). Considering that H(0,y)CD(0,1) for every »<<0,
classes H(0,y) are consequently proper parts of class D(0,1). Simul-
taneously we have found, in the logarithmic-power seale with regard
to both Dini’s and Holder’s conditions, the narrowest class (class D(0,1))
to which Faber’s function belongs.

Example 2. We shall examine a function f{x) of type O with the
coefficients
1

Op== ~————

PPy 0)*

where 0<p,-»00, Ppy1<2p,, f=a>0, B>1, £>0.
‘We shall show that this funetion belongs simultaneously to classes
D(0,y) and D*(0,y,), where

0<(f—a)/f<y<1, n<(f—a)B

and simultaneously to classes H(0,y) and H°°(0v,;v1), where

b,= B(pws.-.p,.ﬂ)ﬁ,

—aff<y <0, p<—aff.

For this purpose we shall use Theorems 7 and 8 and find out whether
the coefficients a,,b, satisty (31), (30) and (33), replacing in the last
condition » by y,.

Condition (30) is obviously satisfied. Conditions (31) and (33) are
gatistied for y amd y, respectively since

a,(logh,)'™” _ pfl? _ 2

Gua(log b, )7 pr  poFAAT

The function f(x) also has the required properties with regard to
Holder’s clagses in view of

a
an——lbn—l _ Pn

= >
anb, B(Pll’a'""nqu)ﬁ@fi-k‘n

07).

We shall now take p,=n, B=2, k=0, f=2, a=1. We obtain an
example of the function

oo

1 2
Sy,

n=1

7) This results from Theorems 8 and 9 (case a) of the paper [6].
2*
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given by A. Zygmund [7] as a function for which integral (36) is infinite
for every g, ¢. €., according to our notation, ag a function belonging to
D™(0,0). It turns out that this function belongs simultaneously to classes
D(0,y), where y>1/2, and D7(0,y,), where 71<1/2 (and thus, in parti-
cular, to elass D®(0,0)).

We shall now take p,=n,B =2, k=1, a=f=1. We obtain an

example of the function
o0
. 1 )
DL gae),
- n=1 :

given by W. Orliez ([4], p. 37) as a function belonging to H*(3,0) for
every 6>0. It turns out that this function belongs simultaneously to
classes D(0,y), where ¢ >0, and D(0,,), where y,<0, and, in the
cage of Holder's classes, simultanecusly to classes H(0,y) where y >—1,
and H™(0,7;) where y,<<—1 (and thus, in particular, to classes H™(3,0)
for 6>0).

Example 3. An example of a function of type O belonging to classes
D®(0,1), and thus to none of the classes D(8,y) (i. é., tio none of the
classes H(d,y)) of the logarithmic-power scale, is the function f(») with
the coefficients

—
(D1P2- D)’

where B>1, 0<p,—>o0, f>a>0.

Combining conditions (33) and (34) of Theorem 8, we immediately
see that f(2) belongs to D*(0,1) for the same reagon that (considering
B> a) the function in Example 2 belongs to D%(0,0).

Example 4. An example of a function of type O belonging simul-
taneously to eclasses D(0,0) and D(0,y) for every y<0 is the function

o

ppd
log bn=B(mP- P ,

_ 1 (tr=11)"
)= i ¢(B »

)5

n=1

where a>1, B>1.
The coefficients of f(x) obviously satisfy condition (31), in which
we must take y=0, and also satisfy condition (33) for every y <0 and
condition (30). .
The function f(x) belongs also to each of the classes H™(0,y) where
y<<—1 since
allbﬂ

=(n+1y BN, g5

O abpya

) %) This results from the eomparison of conditions (33) and (30) (Theorem 8) of
this paper with conditions (34), (37) and (38) of Theorem 9 (case a) of the paper [6].
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Thus it turns out that each of the elasses H(0,y), where y<—1,
is a proper part of class D(0,0).

Example 5. In & former paper of mine (Examples 5 and 6 in [6])
I give the universal examples of functions f(x) of type O, which, accor-
ding to the values of parameters 8,y, belong to the respective classes
of the logarithmic-power scale according to Holder’s condition. The
coefficients of the funection f(z) were defined as follows:

-8 oaen 1 "
tp= AT 0 2 = a4,

The function f(x), in the case of A(n)=mn, belongs to each of the
classes H(d,y), H™(8,7), where y,<y, and 6540 and ds£1.

For A(n)=n? the function has a univergal character and thus con-
cerng the cases formerly excluded (=0 and §=1).

Taking, in the definition of @,, the expression 1 /(Z(n))" (k>0) in-
stead of 1/n® and everywhere A(n)=n!, we obtain an example of a uni-
versal function concerning all classes, including the case of 6=0, y=0,
i. e., of a function f{z) of type O belonging to H*(0,y,) for every v, <0.

In the case of the classification according to Dini’s conditions, if
the example is to cover the whole domain of the scale, we take k>1
and in particular k=2. Thus

22(0)

(38) = A—dnzl(")‘zvl(n) __1_2 , by=A.
(200)
The function f(z) of type O thus defined will belong:

(a) for h(n)=n simultaneously to each of the classes D(d,y),
D(6,y,) and also to each of the classes H(d,y), H(5,,), where y, <y
and 0<d<1;

(b) for A(n)=n! and 6>0 simultaneously to each of the classes
D(8,7), D*(3,y1), where y<y;

and for A(n)=n! and 6=0 simultaneously to each of the classes

(4>1).

‘D(0,y-+1); D¥(0,y,+1), where y,<y<0.

In case (b) f(x) will also belong to each of the classes H(d,7),
H*(8,7,), where y;<y.

Thus case (b) concerns all values of 8,y in the logarithmic-power
scale for both classifications in question.

From Theorem 11 it follows that H(s, y—e)CD(§, y+1), where & is
an arbitrary positive number. However small ¢ is chosen the first of
these classes is a proper part of the second, since f(x), whose coefficients
have been defined by (38), belongs to D(4, y+1) and simultaneously
to H*(3, v —¢/2). Thus this function does not belong to class H(d,y—&/2),
and therefore neither to class H(d, y—s).
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Taking d=1, y=¢, we obtain class H(1,0) as the narrowest, and
taking 6==0 and y=0 we obtain class D(0,1) as the widest in the whole
of the logarithmic-power scale of both classifications in question.

In order to show that f(x¢), whose coefficients are defined by (38),
has the required properties, it is sufficient to compare the conditions
of Theorems 5, 6, 7 and 8 of this paper with the conditions of the Theo-
rems 8 and 9 of the paper [6] and to consider Examples 5 an 6 therein.
The conditions concerned coincide, with the exception of conditions (29),
(33), and (32). Examining them we find that condition (29) is satisfied
for every y,<y since

a,,_lb:_l(logb,._ﬂ"”:2_(y_y1)(z(n)—z(n_1))( A(w) _)2 0
aby(log by) ™" An—1)

We can identically examine condition (33) for é=0. Condition (32) is
satisfied, since taking in (38) 6=0, y=0, we obtain

D aulog (logb) = D) Z%T) [4(n) log 2+ log (log A)]< co .
n=1 n=1

Thus f(x) possesses the required properties.

This example does not concern. the case of a function of type O be-
longing to class D*(0,1) and thus not belonging to the widest class of
the considered logarithmie-power scale, namely to clags D(0,1). In order
to obtain such an example, it is sufficient to take log b,=A4%®, and
in (38) 6=y=0. Both (30) and (34) are then satisfied.
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A constructivist theory of plane curves
by
R. L. Goodstein (Leicester)

Introduction. This paper develops a theory of p-curves, which
are finite matrices with binary fraction elements. Roughly speaking,
a p-curve is a finite assemblage of points in serial order on a grid, the
jump from one point to the next being of fixed amount in one or other
of two ‘‘directions”. The coneept of a plane curve is then introduced
in terms of sequences of p-curves. The emphasis throughout the paper
is on the gtrietly finitigt character of the proof processes.

The present work on analysis situs is a preliminary to a study of
curvilinear integrals.

Definitions. We denote integers by 4,4, & I, m, n, u, v, , ¢, 7, 8,
t, 0, 0, T with or without suffixes, and binary fractions m/2? by a, b, ¢,
d, z, 9, £, n with or without suffixes or affixes; more specifically, for
a given p we write a7, ete., for m/27. The ordered pair (z,y) is called
a point, and the ordered pair {m:,y.> an inferval; the ordered pair of
intervals (@, %,>{¥1,Y> (Where o <ty, ¥1<<¥,) is called a reclangle with
vertices (%,,¥s)y r=1,2 and s=1,2. If

Qal ,  O<r<p, 2, 0<s<w
are the integers from 2727 to 2°2% and from 2°%{ to 27y%, respectively, then

the points
(af,b5), O<r<p, 0<s<y,

are called the lattice peints of the network
7 (mi’ a':‘é)
"\ 9

in the rectangle <%, 2>y}, y5>; the rectangles (af,al1><b7, b4, 0 <r <pep,

0<s <, are called the p-cells of the rectangle (ah i<yt yt> or of the
network

R (4.

Py, P P
Y1 Y
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