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Dimension of metric spaces
by
C. H. Dowker (London) and W. Hurewicz (Cambridge, Mass.)

1. It is to be shown that a metric space has dimension <# if and
only if there exists a sequence {a;} of locally finite open coverings, each
of order <n, with mesh tending to zero as i—»oo, such that

(a) the closure of each member of 4,4, is contained in some mem-
b,eI' of a;.

For a compaet metric space, every sequence of coverings of order
<n with mesh tending to zero contains a subsequence satisfying con-
dition (a). But eondition (a) can not in general be omitted, as is shown
by K. Sitnikov’s example [8] of a two-dimensional metric separable space
which has a sequence of coverings, each of order one, with mesh tending
to zero.

In the course of proving the above proposition, we incidentally give
a new proof of the theorem of M. Katétov (see [4]; also [5], theorem 3.4
and also K. Morita [7], theorem 8.6) that for an arbitvary metrie space X
the covering dimension (dim X) is equal to the dimension (Ind X) de-
fired inductively in terms of the separation of closed sets.

2. By a covering of a topological space X we mean a collection of
open sets of X whose union is X. A covering 8 is called a refinement of
a covering « if each member of § is contained in some member of a.

The order of a collection of subsets of X is the largest integer » such
that some point of X is contained in n--1 members of the collection,
or is oo if there is no such largest integer. ’

Definition 1. The dimension of a space X (dim X) is the least
integer 7 such that every finite covering of X has a refinement of order’
<%, or the dimension is oo if there is no such integer.

A collection of subsets of X is called locally finite if every point
of X has a neighborhood meeting at most a finite number of members
of the collection. If X is a metric space, it is known ({9], corollary 1,
and [3], theorem 3.5) that dim X<« if and only if every covering of X
has & locally finite refinement of order <.
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The mesh of a collection of subsets of a metric space is the upper
bound of the diameters of the members of the collection.

Definition 2. The sequential dimension of a meiric space X (ds X)
is the least integer n such that there exists a sequence {o;} of locally
finite coverings, each of order <(n, with mesha—0 as ¢-»co, such that

(a) the closure of each member of a;.y is contained in some niember
of «.

If there is no such integer, ds X==o0

LeMMa 1. If X is a metric space, ds X < dim X.

Proof. It is sufficient to show that if dim X <n then ds X <#. Let
dim X <»n and suppose that the locally finite covermgs Gygeery@ioy OF
order <n have been constructed so that mesha, <27 and, for 1<k<i,
the closure of each member of ¢ is contained in some member of ax_;.
We now construct the eovering «.

It follows from [9], corollary 1, that o;—; has a locally finite refin-

ement §; of mesh <2~". By [3], theorem 3.5, since dim X <#, §; has -

4 locally finite refinement y;={U;} of order <. By [6], p. 26, (33.4),

the covering y; can be shrunk to a covering o;={Vy} such fhat each
V.2 CTy;. Then o is locally finite and of order <, and mesh ;<27 -k,
And, since y; is & refinementi of a;_y, each V., is contained in some mem-
ber of «;_;. Thus the required sequence {a;} (see definition 2) can be
constructed, and hence ds X <# as was to be shown.

Definition 3. The inductive dimension of a space X (Ind X) is de-
fined inductively as follows: If X iz empty, Ind X=—1. For n=0,1,...,
Ind X <» means that for each closed set E and open set ¢ with ECG
there exists an open set U with ECUCE and Ind(T—U)<n—1.

Ind X=oc means that there is no integer » for which Ind X <=.

It is known ([1], § 18) that, if X is a normal space, Ind X <» if and
only if, for each pair E,F of disjoint closed sets, X is the union of
three disjoint sets U, 7 and K with U and V open, ECU, FCV and
Ind K <n—1.

LEMMA 2. If X is a metric space, Tnd X< ds X.

Proof. It is sufficient to show that if ds X <» then Ind X <n. The
proof is by induection. It is clear that if ds X=—1 then X is empty and
hence Ind X =—1. We agsume it proved that ds X<n—1 implies
Ind X <n—1.

Let X be a metric space for which ds X <n. That ig, let there exist
a pequence {u;} of locally finite coverings as in definition 2 above. We

are to prove that Ind X <n. Let ¥ and F be an arbitrary pair of disjoint
closed sets of X.
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For each 4=0,1,... we define a decomposition of X into the union
of three disjoint sets M;, N; and K;, of which M; and N, are closed and
hence K; is open. Let M,=N,=0; for 4> 1 the decompositions (M;, N, K))
are defined induetively as follows.

Let the members of a; be put in the following three classes: a; con-
sists of those members of ¢; whose closures do not meet Fo¥N,_1, an
consists of those members of o; whose closures meet FUN;_, but do
not meet BwM;_;, and o; consists of those members of «; whose closures
meet both FUN,_; and BwM; ;. Let &; be the union of the open sets
which are elements of a;, let H; be the union of a; and let J; be the
union of az. Then @, H; and J; are open sets and their union is X.
Let M1=X—H1—J,‘, .N“:X—G,‘-“Ji and Kiz—'X“Mf—Ni:(GiﬁH;)uJ;.
Then M; and N; are closed and K; is open. Since (Gy,H;,J;) covers X,
therefore M;~N;=0 and hence (M;, N, K;) is a decomposition of X
into disjoint sets. Thus the sequence of decompositions is defined.

I U eaq then, for some ¥ eq;, UCY. We will verify that

(1) VGCL,']_:> ﬁnN,-*-O, UﬁF=O,
(2) VECL,‘z:) ﬁﬁ.zlf,=0, U/\EZO,
(3) Vea,-_-,:) ﬁf‘\Mi=O, [_fm_N,-::O.

For, if Veay, then VA(FUN;_1)=0 and hence V~AF=0. Also
VC@;=Uau and hence VA N;=0. Since TCV, therefore T~ N;=0 and
U~F=0. Similarly, if ¥ e s, then VAH=0 and VCH; and hence
VAM;=0, from which (2) follows. And, if V € a3, then VCJ; and hence
VAM;=0 and V~ N;=0, from which (3) follows.

By (1) and (3), if U~ N;5#0 then V e a; and hence, by (2), U~ M;=0
and U~E=0. Similarly, if T~M;5=0 then V ¢ ay and hence U~ N;=0
and U~F=0. Hence, if Ueays, that is if T~ (BoM;)#0 and
U~ (FUN) #0, then U~ N;=0 and U~ M;=0. Thus

U € 0413 = ﬁf\ l\rgz 0,

4 - — .
) U~M;=0, U~E#0, U~F+#0.

Since the closure of the union of a locally finite collection of sets
is the union of the closures of the sets, Ji; is the union of the sets U
with U e aqj415. Henee, by (4), JiaanM;=0 and J~N;=0. Also
Giy1 15 the union of all U with U € o;111; hence Gi11 A N;=0. Similarly
H;., is the union of all U with U e@aq12; hence Hig~M;=0. The-
refore

(5) .Zl[iCX—ﬁg+1—¢7;+1=Int~ .3[1_1_17
(6) N;CX—Grra—Jrpi=Tnt N,
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Let M= 6 M; and N= @Ni. It follows from (5) and (G) that M and ¥
are open iselts. And, since,?(l)r each i, M;~ N;=0, it follows that M~ N=0.
Let K=X-~-M—N=NK;.

If 2¢F then t'htls distance p(x,¥)>0 and hence, for some i,
¢(z,F) >mesh ¢;. For any Ueo; with e U, we have U~E+#0 and
U~FP=0. Thus, since UnB:£0, U ¢ ap. And, since U~F=0, therefore
(see (4)) U ¢ a;z. Hence x ¢ H; and o ¢ J;. Therefore @ e M. Thus ECI
and similarly FCN. .

Thuy X is decomposed into three disjoint sets M, N and K with
M and ¥ open and ECM and FCN. To show that Ind X<n it is suf-
ficient to show that Ind K <n—1.

Let O;=K-—J;; then, since J; is open, C; is closed. If U ey
then UCV with V e g. It follows from (4) that V~ B30 and VA F0,
and hence that V e a;. Therefore J;.,CJ; and hence C;CCy,. Thus {C;}
is an ascending sequence of closed sets.

For each point x ¢ X, either o¢(x,E)>0 or ¢(x,F)>0. Hence, for
sufficiently large 4, if @ ¢ U € o; then either T~ E=0 or U~F=0. Hence,

by (4), U ¢ az and hence x ¢ J;. Thus FSJ,:O and therefore C) Ci=K.

We now show that dsC;<n—1 for 1ea.ch 1=1,2,... Let f,};l be the
family of oper subsets U~C; of O; with U €a;y;2. Since C;CHCHK;y;
=(G1jnH1j) wdin; and CCC;=K—dJ;.,, therefore C,CG1y;~Hiyj.
Thus each point x of C; is eontained in some element of a;y;; and also
in some element of o;;;. and, since £;; is of order <n,  is in at most »
elements of a;;;0. Henee f§;; is a covering of C; and is of order <n—1.
Sinee a;.; is locally finite, so is ;. Also mesh B;; < mesh ¢;+; and hence
mesh 8;;—+0 a8 j—oo.

Let U eairjrre and U~ C;7#0 so that U~ C; is a non-empty mem-
ber of the covering f;;.1. Then UCYV for some V e aryj. Since VA %0,
VnonCdJ; and hence V ¢ ajyz5. Also, if ¥ were an element of ¢;y;; then,
by (1) Un(FwN;y;)=0 and hence U ¢ o;1;413 confrary to assumption.
Therefore V ea;y;2 and hence

UnCT,CU-nC,CVmCi € [31_] .

Thus we have dsC;<n—1. Hence, by the induction hypothesis,
Ind 0;<n—1 and hence, by the sum theorem ([1], § 19) for inductive
dimension, Ind X <<n—1. Therefore ITnd X < as was to be shown. This
completes the proof of Lemma 2.

The inequality dim X <Ind X was proved by B. Oech ([1], § 26)
“for perfectly normal spaces and later by N. Vedenissoff [10] for arbitrary
normal spaces. For completeness we include a proof of this result.
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LEMMA 3. (Vedenissoff) If X is a normal space, dim Y <Ind X.

Proof. Let Tnd X <n; it is to be shown that dim X <n. The proof
is by induction, the case n=—1 being trivial.

Let {U;,..., Ui} be a finite covering of X. Since X is normal there
exists a covering {Vi,...,Vi} of X with V,CU;. Since Ind X <n there
exist open sets W; with boundaries B;=W,—W; such that V.CWLCU;
and Ind B;<n—1. Let Yi=W,-—Uin; then {¥;} is a collection of

i< .

disjoint open sets. Bach point # ¢ X is in some W;, hence in a first W,
k
and hence, unless @ ¢ B, for some j<C¢, we have x ¢ ¥;. Thus, if B=\JB;

k j=1
and Y= ¥;, we have X=BuUY.
=1
By the induction hypothesis, since Ind B;<n—1, dim B <n—1.
The closed set B is normal and hence by the sum theorem ([2], § 23),
since each B; is closed, dim B=dim{JB;<n—1. Hence the covering

J
{B~U;} of B has a refinement {G;} of order < n—1, where the sets &,
are open in B. Let each @; be associated with one of the sets U; con-
taining it, and let H; be the union of the sets G, associated with Uj.
Then {H;} is a covering of B of order <n—1 and H;,CU;.

The covering {H;} of the normal space B can be shrunk ([6], p. 26,
(33.4)) to a covering K; with K,CH;. The family {X;} of closed sets of X
can be extended to a system {L;} of open sets of X similar to {K;} and
hence of order <n—1 ([2], §12). If M;=IL;~U, then If; is open, {M;}
is of order <n—1, M,CU; and, since K,CM;, {M,} covers B.

Adding the eollection {¥;} of disjoint open sets, we get a covering
{M;,Y;} of X which is a refinement of {U;} and which is of order <x.

. Thus dim X <n as was to be shown.

TEEoREM 1. If X is a metric space, dim X=ds X=Ind X.
Proof. This is an immediate consequence of Lemmas 1, 2 and 3.
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Remarques sur un théoréme de F. J. Dyson
relatif a la sphére

par

L Berstein (Bucuresti)

1. F. J. Dyson [2] a démontré le théoréme suivant:

8i f(x) est une fonction & valeurs réelles, définie sur la sphére (& deux
dimensions) 82, on peut toujours trouver un carré inscrit dans wun grand
cercle de 82, de sommets a,b,a* b*, tels que

Ha)=F(0)=F(a*)=F(b%).

Ce théoréme a été généralisé presque simultanément par Zarankie-
wicz [9] et Livesay [5]. Ils ont montré gue le théoréme reste valable,
méme si I’on remplace le carré par un rectangle quelcongue, dont le rap-
port des cbtés peut étre fixé d’avance.

Nous nous proposons de montrer que, en combinant la démonstra-
tion de Zarankiewicz avec celle de Livesay, on aboutit & un théoréme
encore plus général.

Soit F un continu (supposé un espace métrique) localement connexe
et unicohérent ). Soit encore I': E—F une involution topologique (c. ad.
une transformation topologique de E en lui-méme, dont le carré est 'iden~
tité: T(T (x))=2). Nous supposons toujours que 7 n’a pas de point fixe.
Alors inf g(m,T(m))=6>O car F est compact {o(x,y) est la distance des
points x,y dans la métrique de E). Nous convenons de dire que J est
le diaméire de linvolution 7. La généralisation annoncée du théoréme
de Dyson a alors 1’énoncé suivant:

Quel que soit le mombre d, 0<<d<<8, on peut ltoujours trouver deuw
points a,bel, tels que o(a,b)=d, et que f(a)=f(b)=Ff(a*)=1(b*).

Nous avons désigné par a*,b*, les ,antipodes“ des points a et b par
l'involution 7, e. & d.

‘ a*=T(a), b*=T(d).

1) Un espace E connexe s'appelle unicohérent &i, pour chaque décomposition.
E=F,wF,, oi F; et F, sont fermés et connexes, F,~F, est connexe.
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