On the spaces of functions satisfying Dini's condition

by

E. Tarnawski (Gdańsk)

We shall always suppose that functions denoted by f(x) are continuous, periodic with period l=1, finite and defined for every value of the real variable x.

In this paper we shall denote by w(t), $w_1(t)$ functions defined and differing from zero for t>0, monotonic, non-decreasing and tending to zero for $t\to 0$.

We introduce the following notation:

$$W(au) = \int\limits_{ au}^1 rac{dt}{w(t)} \quad ext{ and } ext{ respectively } \quad W_1(au) = \int\limits_{ au}^1 rac{dt}{w_1(t)} \, .$$

As a general supposition we take

$$\lim_{\tau\to+0}W_1(\tau)=\infty.$$

We shall suppose additionally that

$$(*) \quad \int\limits_0^1 \frac{t}{w(t)} \; dt < \infty \quad \text{ and respectively } \quad \int\limits_0^1 \frac{t}{w_1(t)} \; dt < \infty \; ,$$

(**)
$$\lim_{t\to \pm 0} W(t) \cdot \frac{w(t)}{t} = g > 1$$
,

$$(\overset{**}{*}) \quad \overline{\lim}_{t \to +0} \frac{w_1(2t)}{w_1(t)} = s < \infty.$$

We denote by D_w the space of all functions f(x) satisfying Dini's generalized condition, *i. e.* the inequality

$$\int_{1}^{1} \frac{|f(x+t) - f(x)|}{w(t)} dt \le 1$$

for every x. The distance ϱ between two elements of this space we define by

 $\varrho(f_1, f_2) = \max_{0 \le x \le l} |f_1(x) - f_2(x)|$.

Space D_w is a complete space.

Let S denote a set of functions f(x) belonging to space D_w and satisfying, for every x, the condition

(2)
$$\int_{0}^{1} \frac{|f(x+t) - f(x)|}{w_{1}(t)} dt = \infty.$$

Assuming that functions w(t) and $w_1(t)$ satisfy the supposition (1), $(*)^1$, (**), (**), and further, condition (3), we shall prove that S is a residual set in the space D_w .

The Theorem remains valid if space D_w is replaced by the space of all continuous and periodic functions f(x) with period l=1. In this case with regard to $w_i(t)$ we suppose only that it satisfies $\binom{**}{*}$. In this manner we obtain the generalization of Kaczmarz's Theorem²).

LEMMA 1³). If w(t) satisfies (*) and (**), then for every τ , where $0 < \tau < \tau_0 < 1$ and L is a certain positive constant dependent on τ_0 , the inequality

$$\int_{0}^{\tau} \frac{t}{w(t)} dt \leqslant L\tau W(\tau)$$

is ralid.

LEMMA 2. If $w_1(t)$ satisfies (**), then

$$\overline{\lim_{\tau\to+0}}\frac{W_1(\tau)}{W_1(2\tau)}\leqslant \frac{s}{2}.$$

Lemma 3. If
$$\lim_{t\to +0} \frac{w_1(t)}{w(t)} = 0$$
, then $\lim_{\tau\to +0} \frac{\overline{W}(\tau)}{\overline{W}_1(\tau)} = 0$.

Lemma 4. Given a function f(x) belonging to space D_w we can find a sequence $\{f_n(x)\}$ of functions also belonging to space D_w satisfying Lipschitz's condition and tending uniformly to f(x).

Proof. For the proof it suffices to take $f_n(x)$ defined by the formula

$$f_n(x) = n \int_{-\infty}^{x+1/n} f(u) du$$

and show that f(x) belong to D_{w} . The latter results from

$$\int_{0}^{1} \frac{|f_{n}(x+t) - f_{n}(x)|}{w(t)} dt \leq n \int_{0}^{1/n} d\tau \int_{0}^{1} \frac{f(x+\tau+t) - f(x+\tau)}{w(t)} dt \leq 1.$$

We shall consider the functional space D_w previously defined which, as is easy to prove, is a complete space, and the set S of functions f(x) belonging to D_w and satisfying (2) for every x. We have assumed, in general, that $w_1(t)$ satisfies (1) 4). Making the additional suppositions (*), (**), (**) for w(t) and $w_1(t)$ we express the following Theorem for set S:

THEOREM 1. If $w_1(t)$ satisfies the condition

$$\lim_{t \to +0} \frac{w_1(t)}{w(t)} = 0 ,$$

then set S is a set residual in space D,.

Proof. We denote by Z_n a set of functions f(x) of space D_w satisfying

$$\int_{0}^{1} \frac{|f(x+t)-f(x)|}{w_{1}(t)} dt \leqslant n$$

for a certain x. Let

$$Z=\sum_{n=1}^{\infty}Z_n.$$

Then from the definition of set S it follows that

$$S = D_w - Z$$
.

For the proof of the Theorem it suffices to show that each of the sets Z_n is non-dense in space D_n .

Suppose, for the proof, that for a certain value n_0 the set Z_{n_0} is not non-dense in space D_w . Since each of the sets is closed in space D_w , there would exist in space D_w a sphere $K_{\varrho_0}(f_0)$ with centre $f_0(x)$ and radius ϱ_0 , belonging completely to Z_{n_0} .

On the basis of Lemma 4, there exists in D_w a sequence of functions $\{f_n(x)\}$ tending uniformly to $f_0(x)$, whose expressions satisfy Lipschitz's condition. We can therefore find in space D_w a sphere $K_{e_1}(y_1)$ of centre $y_1(x)$ and radius ϱ_1 such that

$$K_{\varrho_0}(y_1)\subset K_{\varrho_0}(f_0)\subset Z_{n_0}$$

with $y_1(x) = \theta f_N(x)$, where $0 < \theta < 1$ and $f_N(x)$ is a sufficiently distant expression of the sequence $\{f_n(x)\}$. Function $y_1(x)$ thus satisfies Lipschitz's condition and belongs to space D_w . Consequently, the inequalities

(5)
$$\int_{0}^{\frac{|y_1(x+t)-y_1(x)|}{w(t)}} dt \leq \theta < 1$$

¹) In the spaces satisfying (12) the supposition (*) can be omitted for both w(t) and $w_i(t)$ (cf. Theorem 1*).

²) Cf. Kaczmarz [1]. In this work the proof concerns the case $w_1(t) = t$.

³⁾ The proof of this and of the next two Lemmas can be found in my paper [2].

⁴⁾ If we did not accept supposition (1), set S would be empty (also in the space C of continuous functions).

On the spaces of functions satisfying Dini's condition

145

and, with regard to (*),

(6)
$$\int_{0}^{1} \frac{|y_{1}(x+t) - y_{1}(x)|}{w_{1}(t)} dt \leq C$$

are valid for every x, where

$$C = k_1 \int_0^1 \frac{t}{w_1(t)} dt$$

and k, is the Lipschitz constant of function $y_1(x)$.

Let us now examine the function $y_2(x) = a\varphi(bx)$, where $\varphi(x)$ is a certain non-constant function, periodic with period l, satisfying Lipschitz's condition. We shall choose the constants a, b later, postulating that bis an integer greater than 21. By D we shall denote the oscillations of $\varphi(x)$ in the interval $0 \le x < l$, by k its Lipschitz constant.

On account of

$$a\int_{lb}^{1} \frac{|\varphi(b(x+t)) - \varphi(bx)|}{w(t)} dt < aD\int_{lb}^{1} \frac{dt}{w(t)} = aDW\left(\frac{l}{b}\right)$$

on the basis of Lemma 1, taking therein $\tau_0 = 1/2$, and by

$$a\int\limits_{0}^{l/b}\frac{|\varphi(b(x+t))-\varphi(bx)|}{bt}\cdot\frac{bt}{w(t)}dt < kalLW\left(\frac{l}{b}\right),$$

we find, for every x, that \cdot

(7)
$$\int_{0}^{1} \frac{|y_{2}(x+t) - y_{2}(x)|}{w(t)} dt < GaW\left(\frac{l}{b}\right),$$

where G is a constant independent of b.

Putting $m = \lfloor b/l \rfloor$ and substituting bt = u we obtain the inequalities

$$\begin{split} \int\limits_{l|b}^{1} \frac{|y_{2}(x+t)-y_{2}(x)|}{w_{1}(t)} \ dt &\geqslant \frac{a}{b} \sum_{i=1}^{m-1} \int\limits_{il}^{(i+1)l} \frac{|\varphi(bx+u)-\varphi(bx)|}{w_{1}(u/b)} \ du \\ &\geqslant \frac{ad}{b} \sum_{i=1}^{m-1} \left(w_{1} \left(\frac{(i+1)l}{b} \right) \right)^{-1} \geqslant \frac{ad}{l} \int\limits_{2l|b}^{(m+1)l/b} \frac{dt}{w_{1}(t)} \geqslant \frac{ad}{l} \ W_{1} \left(\frac{2l}{b} \right) \ , \end{split}$$

where $d = \min_{0 \le x < l} \int_{0}^{l} |\varphi(x+u) - \varphi(x)| du > 0$.

Taking into account Lemma 2, we shall obtain the inequality

(8)
$$\int_{t|b}^{1} \frac{|y_2(x+t) - y_2(x)|}{w_1(t)} dt > BaW_1\left(\frac{l}{b}\right)$$

valid for every x, where B is a certain constant greater than zero and independent of b.

Besides assuming that b is an integer greater than 2l, let us take for b a value so large as to satisfy the inequalities

$$\frac{1}{W_1(l/b)} < \frac{\varrho_1 B}{(C+n_0) \max_{0 \le r \le l} |\varphi(x)|}$$

and

(10)
$$\frac{W(l/b)}{W_1(l/b)} < \frac{B(1-\theta)}{(C+n_0)G} ,$$

which is possible considering (3) and Lemma 3.

Having fixed the value of b, let us take

$$a = \frac{C + n_0}{BW_1(l_l b)}.$$

We have thus finally chosen the coefficients a, b and thus defined the function $y_2(x)$.

We write $f^*(x) = y_1(x) + y_2(x)$.

From (7), (10), (11) it follows that

$$\int_{-\infty}^{1} \frac{|y_2(x+t)-y_2(x)|}{w(t)} dt \le 1-\theta \quad \text{for every} \quad x$$

and, considering (5), that $f^*(x)$ belongs to D_w .

Considering (9) and (11) we should have

$$\varrho(f^*,y_1) = \max_{0 \leq x < l} |a\varphi(bx)| < \varrho_1,$$

whence it would follow that $f^*(x)$ belongs to the set Z_{n_0} .

On the other hand, comparing (8) and (11), we should obtain for every x

$$\int_{-\infty}^{\infty} \frac{|y_2(x+t)-y_2(x)|}{w_1(t)} dt > C+n_0 ,$$

and hence, considering (6), we should have

$$\int_{0}^{1} \frac{|f^{*}(x+t)-f^{*}(x)|}{w_{1}(t)} dt > n_{0} \quad \text{for every} \quad x,$$

contrary to the fact that $f^*(x)$ belongs to Z_{n_0} .

The supposition that Z_{n_0} is non-dense would lead to contradictions and thus Theorem 1 has been completely proved.

We note that the supposition

$$\int_{0}^{1} \frac{t}{w_{1}(t)} dt < \infty$$

can be omitted if we impose on space D_w the condition (12) and also evidently supposition (*) for w(t).

THEOREM 1*. Let $w_1(t)$ satisfy (1) and (**), and w(t) the supposition (**). If with a certain γ_0 , where $\gamma_0 > 1$, we have

(12)
$$\lim_{t \to +0} \frac{t^2 |\log t|^{70}}{w(t)} = 0$$

and if $w_1(t)$ satisfies (3), then set S is residual in space D_w .

Proof. Function $t^2|\log t|^{\gamma_0}$ $(\gamma_0 > 1)$ is increasing for $0 < t < t_0$. Let us define the function $w_1^*(t)$ as follows:

$$w_1^*(t) = \begin{cases} \max \left(w_1(t_0), t_0^2 | \log t_0|^{\gamma_0} \right) & \text{if } t \geq t_0, \\ \max \left(w_1(t), t^2 | \log t|^{\gamma_0} \right) & \text{if } 0 < t < t_0. \end{cases}$$

We note that

$$\int_{0}^{1} \frac{t}{w_{1}^{*}(t)} dt < \infty$$

and, moreover, on the basis of the suppositions concerning $w_1(t)$ and on account of (12), $w_1^*(t)$ satisfies both $(*_*^*)$ and (3). By Lemma 3 it satisfies also (1).

Applying Theorem 1 to $w_1^*(t)$ and noting the inequality

(13)
$$\int_{0}^{1} \frac{|f(x+t) - f(x)|}{w_{1}^{*}(t)} dt \leq \int_{0}^{1} \frac{|f(x+t) - f(x)|}{w_{1}(t)} dt$$

valid for every x, we have proved Theorem 1*.

We note that the suppositions of Theorem 1* are satisfied, for example, by $w(t)=t^{1+\delta}[\log t]^{\gamma}$ for $\delta=1$, with $\gamma>1$ and for $0<\delta<1$ with an arbitrary value of γ .

Theorem 1 remains valid if we replace $D_{\mathbf{w}}$ by the space C of all continuous functions. In that case it has the following form:

THEOREM 2. If $w_1(t)$ satisfies suppositions (1) and $\binom{**}{*}$, then the set S of functions satisfying condition (2) for every x is a residual set in the space C of all continuous and periodic functions f(x).

Proof. The Theorem is proved with suppositions (1), (*) and (**) concerning $w_1(t)$, in the same way as Theorem 1. The proof is simplified since formulas (5), (7), (10) and (3) can be omitted. Also Lemmas 1 and 3 are superfluous, just as suppositions (*) and (**) are superfluous for w(t), since it is easy to see, without the need of referring to those formulas, that $f^*(x) \in C$.

We shall now prove Theorem 2 with suppositions (1), $\binom{**}{*}$ and the supposition contrary to (*) for $w_1(t)$.

We define the function $w_1^*(t)$ as follows:

$$w_1^*(t) = \max(t, w_1(t))$$
 for every t .

Evidently $w_1^*(t)$ satisfies $\binom{**}{*}$ and (*). We shall prove that $w_1^*(t)$ satisfies also (1) and thus that Theorem 2 is valid for $w_1^*(t)$.

If the inequality $w_1^*(t) = t \ge w_1(t)$ is valid with $0 < t < t_0$ for certain t_0 , then $w_1^*(t)$ evidently satisfies (1).

On the contrary, considering $0 < t < e^{-1}$, it suffices to compare the integrals of the functions $t/w_1(t)$ and $1/w_1^*(t)$ in those intervals in which $w_1^*(t) = t > w_1(t)$ everywhere. And either the inequality $t/w_1(t) < 1/w_1^*(t)$ is valid for every t in almost all intervals, and thus $w_1^*(t)$ satisfies (1), or we have $t'_n < t_n^* < t$ for an infinite number of intervals $t'_n < t < t_n$ (n = 1, 2, ...). In the last case $w_1^*(t)$ satisfies also (1).

Thus Theorem 2 is true for $w_1^*(t)$. By inequality (13), valid for $w_1^*(t)$, Theorem 2 is true for $w_1(t)$ also in the case contrary to (*).

Thus Theorem 2 is completely proved.

References

[1] S. Kaczmarz, Integrale vom Dini'schen Typus, Stud. Math. 3 (1931), p. 189-199.
 [2] E. Tarnawski, Continuous functions considered from the standpoint of Dini's conditions, this volume, p. 3-22.

Reçu par la Rédaction le 19.1.1954