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On the spaces of functions satisfying Dini’s condition
. N
E. Tarnawski (Gdansk)

We shall always suppose that functions denoted by f(#) are con-
tinuous, periodic with pericd I=1; finite and defined for every value
of the real variable =, '

In thig paper we shall denote by w(t), w,(t) functions defined and
differing from zero for #>0, monotonic, non-decreasing and tending to
zero for i1 —0.

‘We introduce the following notation:

b | i
Todi " dt
W(x =J —— and respectivel, Wit)= | —-
=) pectively  Wal®)= J %0
Ag a general supposition. we take
(1) C lim Wi(r)=co.
7>+0

‘We shall suppose additionally that

1 1
t . . 11
(%) of w@ dt <oco and ;‘espect1v§1y 5{ ) dt <oo ,

(e) T W (1) ﬂt@ —=g>1,

g wa(28)
% t—»rfo w(t)

We denote by D, the space of all functions f(z) satisfying Dini’s
generalized condition, . e. the inequality

o4t — (o))
of__————w(t) at<i

for every x. The distance g between two elements of this space we de-
fine by

§ oo

e (f1,fa)=max |fy(w) —fo(e)] .
ox<t
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142 E. Tarnawski

Space D, is a complete space.
Let 8 denote a set of functions f(x) belonging to space D, and satis-
fying, for every z, the condition

o) [ eth 1 o
0

Assuming that functions w(t) and w,(f) satisfy the supposition (1),
(%) 1), (+%), (*¥), and further, condition (3), we shall prove that S is
a residual set in the space D,,.

The Theorem remains valid if space D, is replaced by the space
of all continuous and periodic functions f(x) with period {=1. In this
case with regard to w,(t) we suppose only that it satisfies-(*%¥*). In this
manner we obtain the generalization of Kaczmarz’s Theorem 2).

Lemma 13). If w(t) satisfies (*) and (*%), then for every <, where
0 <r<1,<1 and L is a cerlain positive constani dependent on T4, the in-
equality

T

t
6( iy AT ()
is rvalid,
Lemua 2. If wy(t) salisfies (%F), then
e W('!') $
1 L =.
W <3

. 1w0y(t) . W(r)
Levma 3. If 1i LW A =
:—»To w(t) 0, then rl—lﬂln Wi(z)

LevMA 4. Given o function f(z) belonging to space D, we can find
a sequence {f{x)} of functions also belonging to space D, satisfying Lip-
schitz’s condition and lending uniformly to f(x).

Proof. For the proof it suffices to take f(x) defined by the formula

x+41n

fal@)==n f flw)du

and show that f (¢) belong to D,. The latter results from

;f 17.(x+;)(5f.(m)[ dan er“ f(m+r+;)(5f(m+r) f<l.

[]

.

') In the spaces satisfying {12) the supposition () can be omitted for both w{f)
and w,{t) {¢f. Theorem 1%). .

%) Cf. Kaezmarz {11 In thiz work the proof concerns the case w,(f)= .

%) The proof of this and of the next two Lemmas can be found in my paper [2].

On the spaces of functions satisfying Dini’s eondition 143

‘We shall consider the functional space D, previously defined which,
as is easy to prove, is a complete space, and the set 8 of functions f(x)
belonging to D, and satisfying (2) for every «. We have assumed, in
general, that w,(t) satisfies (1)4). Making the additional suppositions (+),
(#%), (*¥) for w(¢) and w,(f) we express the following Theorem for set 8:
TrEOREM 1. If wy(t) satisfies the condition

. . wm(t)
(3) }ffo ,wl(t) =0,

then set S is a sel residual in space D,.
Proof. We denote by Z, a set of functions f(x) of space D, satis-
fying ‘
1
" fe+1) —fx)]
) ;] o di<n
for a certain z. Let

7= EZ,, .

n=1

Then from the definition of set § it follows that

8=D,—Z .

For the proof of the Theorem it suffices to show that each of the sets Z,
is non-dense in space D,,.

Suppose, for the proof, that for a certain value n, the set Z,, is not
non-dense in space D,,. Since each of the sets is closed in space D,, there
would exist in space D, a sphere K, (f,) with centre folx) and radius oo,
belonging completely- to Z,,.

On the basis of Lemma 4, there exists in D, a sequence of func-
tions {f,(x)} tending uniformly to fy=), whose expressions satisfy Lip-
schitz’s eondition. We can therefore find in space D, a sphere Kgx(?h)
of centre #,(z) and radius ¢, such that

Kgl(?h) CK@,,(fo) CZ,,O

with (%)= 0fy(zx), where 0<§<1 and f(z) is a sniﬁeientlsf disf,ant
expression of the sequence {f,(x)}. Function #,(») thus satisfies Lipschitz's
condition and belongs to space D,. Consequently, the inequalities

(3) ' f _________I%(wﬁ)(g W g <1
0

4) If wé did not accept supposition (1), set § would be empty (also in the space O
of eontinnous funetions).
10%
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14 E. Tarnawski
and, with regard to (%),

6) f G t)(';)iﬁ(—mn dt<C
0

Wy

are valid for every », where

1
R
C=klaj171(t—)dt

and k, is the Lipschitz constant of function ().

Let us now examine the function y,{z)=ap(bz), where ¢(z) is a cer-
tain non-constant function, periodic with period I, satisfying Lipschitz’s
condition. We shall choose the constants a, b later, postulating that b
is an integer greater than 2I. By D we shall denote the oscillations of
¢(z) in the interval 0<z <, by % its Lipschitz constant.

On account of
4

bm t bz
flw(T —( )|d<Df
w(t)
i
on the basis of Lemma 1, taking therein z,=1/2, and by

ar b(m+t))—<p(bm bt 1
f "ol dt<kalLW(5),
we find, for every z, that
n I?lz(a"{‘ t)(t) ¥s()] At <GaW (l)
o

where @ is & constant independent of b.
Putting m=[b/I] and substituting bi=u we obtain the inequalities

ot )~ 46 N1 [ ol u)—plba)]
f wy(t) dt}?; uf

wy(u/b)
m—1 ) -1 (m+1)[b
2 S ey T et ),

1
here d= mi -
where &n{!pp(m-yu) ¢(@)|du>0.
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Taking into account Lemma 2, we shall obtain the inequality

1
[yl + 1) — o))
(8) A Wea+ D) —g,(@)| o) 2 dt>BaW1()

valid for every x, where B is a certain constant greater than zero and
independent of b.

Besides assuming that & is an infeger grea.ter than 21, let as take
for b a value so large as to satisfy the inequalities

1 o B
(9 Wby < (CF ns) max g (@)]
o<x<l
and

(10)

W{b) < B(1—06)
Wy(ifp) ~ (C+ng)G '
which is possible considering (3) and Lemma 3.
Having fixed the value of b, let us take

C+n,
BWl(l/b) )
We have thus finally chosen the ecoefficients a, b and thus defined
the function y.(x).
We write f*(2)=1y.()+4:(®).
From (7), (10), (11) it follows that

1)

1
j l:‘/—2(5—)6it~)m—yia-;)—Idt<l—t9 for every =
J (1)
and, considering (5), that f*(z) belongs to D,.
Congidering (9) and (11) we should bave
o(f*,3) = max ]mp(bm)[ <@ A
o<x<l

whence it would follow that f*(x) belongs to the set Z,.
On the other hand, comparing (8) and (11), we should obtain for
every «

[ lntot =90l -,
P wy(t) '

and hence, considering (6), we should have

for every «z,

{ e+t =)l 5 Sy

wy(t)

contrary to the fact that *(z) belon~s tn Z,,.
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The supposition that Z, is non-dense would lead to contradictions
and thus Theorem 1 has been completely proved.
‘We note that the supposition

1

A /
6’ il dt <<co

can be omitted if we impose on space D, the condition (12) and also
evidently supposition (x) for w(f).
TEEOREM 1*. Let wu,(t) satisfy (1) and (%F), and 1w{t) the supposi-
tion (s%). If with a certain y,, where y,>1, we have
. tHlog t}
12 lim —2t-=0
2) o W0(1)
and if wy{t) satisfies (3), then set 8 is residual in space D,.
Proof. Function #logi|" (y,>1) is increasing for 0 <t <#,. Let us
define the function w%(t) as follows:
max (w0 (to), tollog tof"?) it 131,
wi(t)=
max (w,(t),#logt|™) it 0<t<t,.
‘We note that .
1
J‘ _t dt <0
I0)
and, moreover, on the basis of the suppositions eon.cerning wy(t) and
on account of (12), wi() satisfies both (*¥*) and (3). By Lemma 3 it
satisfies also (1).
Applying Theorem 1 to wi(t) and noting the inequality
1 1 .
“ e+t — f(=)] flz+t) —f=)]
{13) —lﬂ«—-#———— dt < f UALSILUENE Aol By
J wi(d) / wi(t)

valid for every x, we have proved Theorem 1*.

We n(itiea that the suppositions of Theorem 1* are satisfied, for exa,mple,
by w(t)=1=""{log {|" for é=1, with y >1 and for ¢ < <1 with an arbitrary
value of y.

.Theorem 1 remains valid if we replace D, by the space C of all
continuous functions. In that case it has the following form:

TIIEOB.E’M 2. If wy(l) satisfies suppositions (1) and (*¥), then the
aet 8 of functions satisfying condition (2) for every x is a residual set in the
space C of all continuous and periodic functions f(z).
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Proof. The Theorem is proved with suppositions (1), (*) and (%¥)
concerning u4(t), in the same way as Theorem 1. The proof is simplified
since formulas (3), (7), (10) and (3) can be omitted. Also Lemmas 1 and 3
are superfluous, just as suppositions (x) and (sx) are superfluous for w(t),
since it is easy to see, without the need of referring to those formulas,
that f*(x) e C.

We shall now prove Theorem 2 with suppositions (1), (%¥) and
the supposition contrary to () for w(t).

We define the function wi(f) as follows:
wity=max (t,u,(t)) for every 1.

Bvidently wi(t) satisfies (%*) and (*). We shall prove that wi(t)

_satisfies also (1) and thus that Theorem 2 is valid for wf(%).

If the inequality wi(t)=1>wy(t) is valid with 0 <t <1, for certain i,,
then wi(t) evidently satisfies (1).

On the contrary, considering 0 <t<Ce~%, it suffices fo compare the
integrals of the functions /() and 1jwi(t) in those intervals in which
wi(t)=1>w,(f) everywhere. And either the inequality #wy () <1/wi(f) is
valid for every t in almost all intervals, and thus «7(f) satisfies (1), or
we have t, <t< t, for an infinite number of intervals &, <t <t, (n=1,2,...).
In the lagt case wi(t) satisfies also (1).

Thus Theorem 2 is true for «X(t). By inequality (13), valid for wi(t),
Theorem 2 is true for w,(t) also in the case contrary to ().

Thus Theorem 2 is completely proved.
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