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On a theorem of Borsuk

by
J. C. Moore (Princeton, N. 1)

Recently Borsuk [1] showed that if & compact space of dimension
at most % has a positive k-dimensional Betti number, then for m>k
the function space of maps of the original space into the m-sphere has
a positive (m—k)th Betti number. The case m=1F is covered by the Hopf
Classification Theorem [9], and the object of this paper is to show that
the case m >k may be viewed as a generalization of this theorem, and
that there is in fact a sort of duality between the homology of the fune-
tion space and the cohomology of the original space.

1. The eritical dimension

Notation and conventions. In this paper space will always
mean Hansdorff space. For any space X, lef HY(X) denote the g-dimen-
- gional Cech cohomology group of X with integer coefficients [3], and
if 4 is a subspace of X let HY(X,4) be the g-dimensional (ech cohomo-
logy group of the pair (X,4). Similarly let H(X) and H X,A) be the
g-dimensional singular homology groups with integer coefficients of the
space X and of the pair (X VA

If X is 4 space and z « X, denote the g-dimensional homotopy group
of X based at the point 2 by #{X,z). I X is a function space containing
a unique constant map, this map will be taken as the base point, and
the preceding notation will be abbreviated to m(X). Finally, if X
has a multiplication with an identity up to homotopy, and an inverse
up to homotopy, let w(X) denote the group of path components of X.

For any non-negative infeger k, let S* denote the k-dimensional
sphere, and let y* be & point of 8. Let I denote the closed interval of
real numbers from —1 to +1.

Definition. If X is a space, define s(X) to be the identification
space of X x I obtained by the following identifications: (z,1) is identi-
fied with («',1), and (z,—1) is identified with (a',—1) for «,o" ¢ X. De-
fine s, (X) to be the image of those pairs {z,1) such that >0, define s_(X)
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to be the image of those pairs (z,t) such that {<0, and identify ¢ X
with (2,0) e ¢(X). The space s(X) is called the suspension of the space X.
Assumption. A positive integer m has been chosen once and for all.
Definition. If (X,4) is a pair, let B(X,A) denote the function
space of maps f: (X, 4)—(87,y") topologized with the compact-open
topology, and let E'(X,A) denote the component of the constant map.
E(X) will denote E(X,0) where & is the empty set.
Definition. Let X be a space with base point x ¢ X. Then the
space of loops in X based at » is the space of maps f: T—X such that

f(=1)=F(1)=1r. Denote this space by Q(X,r) and take as base point'

the map e I—X defined by é{t)=2. Now let OYX,z)=0(X,x) and
proceed to define Q7Y X,x) assuming we have defined Q“_¥,x) with base
point ¢t In this case QX ,2)=0(Q(X,2),¢) and ¢*': 10X ,a)
is the map such that e*7'(tj=¢*. The space Q¥(X,=) is called the k-fold
loop space in X based af the point x.

TaeoreyM 1. If (X,A) is a finite dimensional compact pair, and
HYX,A)=0 for q>k, where k<<m is an inieger, then 2 (E(X,4)=0
for g<m—k, and m,_ i E(X,4))~HY(X,4).

Proof. Proceed by induction on m—k. If m=F, the preceding is
just the Hopt theorem ([9] and [2]). Suppose now that m >%. Define p:
Bls;(X),8.(4))~E(X,4) by p(f)=f|X. Then p is a fibre mapping in
the sense of Serre ([5], p. 443), and the total space is coutractible. There-
fore, since the fibre of p is E(s(X),s(4)), we have nq(E(s(X),s(A)))
~7g1(B(X,4)). Further ) H*Y3(X),s(4)) ~ H(X,A). Consequently,

i) We have an exact sequence for the triad (s(X),s +(X),:S(A)J:
...—»H'(sT(X),sT(X)ns(A))—»H'“(s(X),sJX)us(A))
- H* s(X).5(4)) (s.(X),5.(X) ~s (4)) ...

Sinee s, (X)and s, (1) are contractible we have H*Y(s(X),5,(X) s ()~ B(s(X).8 (d)).

However, H'(s(X),s,(X)us(d))~ ™ (s_(X), Xusv(A)) by execision, and
also H‘(Xus_(A),s_(A)) ~ HYX,4).

Now we have an exact sequence for the triple (s_(X),Xus‘(_i),s_(A)) :
...—>H’(s_(.X),s_(A))»E’(Xus_(A),s_(A))
~H, (s (X).s_(4) 0 (X)) B (s_(X),5_(4)) > ...
and since s_(X), and s_(4) are contraetible, we have
BT s (d)s (D)) B (s_(X), Xus_(4))
which implies the desired result.
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the truth of the theorem for all compact finite dimensional pairs such
that m—k<n implies the theorem for all finite dimensional compact
pairs such that m—k<n-+1, and the result follows.
CorOLLARY. Under the conditions of the preceding theorem, if m>k,
then H{E(X,4))=0 for 0<qg<m—k, and H,_|B(X,4)) ~HYX,A).
Proof. This follows immediately from the Hurewicz theorem, and
the preceding theorem.

COROLLARY. If X is a k-dimensional compact space and k<<m then
H(B(X)) ~ H(E(X,x)) -H(8™) for q<2(m—1)—Fk, where 2 X.

Proof. The space E(X) iz a fibre space over 87 with fibre E(X,x)
and this fibre space has a cross-zection. Since Hy(S™)=0 for 0 <i<m,
H{B(X,z))=0 for 0<i<m—Fk by preceding corollary, we have the

exact sequence ([4]. Proposition 3, p. 463):
Hamioa (E(X,2)) > Ham_t_1 (E(T)) 5 Homops (8™) = Hamies (B(X,2)) > ..

Now, let : 8 —E(X) be the cross-section. Then p,f,: H(S™)>H(8™y
is identity and it follows that H,(E(X))=FfH(S™)+py (0)=FH(8") +
+ i HAE(X,2)} for ¢<2m—k—1, where f, is isomorphism. Thus p,:
Hq(E(X))—a—Hq(S"‘) is onto for ¢<2m—k—1 and the exactness implies
that i, maps H,(FE(X,)) isomorphically for ¢<2m—k—2.

In order to study further the relationship between the homology
of B(X,A) and the cohomology of (X,4) it would be convenient to
have a natural mapping ¢: H,(E(X,4)]—»H""(X,4) for r<m such
that if r=wm—k, ¢ is an isomorphizm. The next two sections will be de-~
voted to setting up such a mapping and studying & few of its properties.
In the process of doing thiz the preceding corollary will be reproved
in another manner.

2. The homomorphism ¢

If X is a space, denote by C(X) the singular chain complex of X
([31, p. 187). Now if X and Y are spaces it has been proved that the
homology of (X x ¥) is naturally isomorphic with the homology of
the tensor product complex C(X)@C(Y) [4], where {C(X)@C(T)}, is

No@mecodr),
and if re C(X), y e (LX), then S(z®y)=x®y-+ (—1yr®3y. Further
the singular cohomology of Y is the cchomology of the chain complex
Hom (C(X),Z) (3], p. 152) where Z denotes the ring of integers, and
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the singular cohomology of the space X XY is npaturally isomorphie
with the eohomology of the chain complex Hom (O’(X)@G’ (Y),Z) [4]).
For this last complex the cochains of dimension n are the elements of
the group

Hom| 3 CX)®0AT),2),

rts=n
and i f is an n-cochain, then §f is an (m-+1)-cochain sueh that
Hle®@y)=1P(z®y).

Definition. If X and ¥ are spaces, and | Hom ((C(X)®C(¥),,2),
define @r: C(X)~Hom (G,,_,(Y),Z) for 0<r<n by (pf(m) (y)=f($®y)-

Lmnes 1. 'If feHom ((0(X)®0(X),,8), 6/=0, and e C(X),

then dp@)=(—1)""p /().
Lmsnaa 2. If £, Hom{(0(X)®0(Y)),, 2), of=0g=0,

ke Hom((0(X) ©C(Y),_,, Z),

J—g=>0h, and z.¢ C(X), then r(z) — g, ()= ps(dz)+ (—1)dps(x).

The proofs of the preceding two lemmas are straight-forward, and
will be omitted.

Definitions. If X is a space, denote by ﬁ"(X) the ¢-dimensional
singular cohomology y group of X. If X and ¥ are spaces, and f ¢ H"(X x X)
define g H{X)—~H"(Y) for 0<r<n as follows: Let g be a cocycle
representing f, and let @, be the homomorphism induced by @,. This
procedure is permissable and independent of the choice of g by Lem-
mas 1 and 2. Simila,riy if Xisaspace, (¥,B)isapair,and f e ﬁ"(Xx (Y,B))
define g H{X)—+H""(Y,B) for 0<r<n by the same procedure.

Definition. Let asﬁ"‘(S’" be a generator, and for any compact
pair (X, 4) let & E(X,A)x (X, 4)—( 8",4™) be the map defined by
E(f,x)=F(z). De}'mecp H(E(X A))— H™"(X , 4) for 0 <r <m by g=@pw,
where & H™(R™ y’")—>H”'( (X,4)x(X,4)) is the homomorphism in-
duced by £

ProposrTioN 1. If (X, A) and (Y,B) are compact pairs, f:
{X,4)>(Y,B) is a map, and f E(XY,B)~>E(X,4) is the induced map,
thmi ¥ =17, where J,: H(B(Y, B))»H(E(X,A)) and f*: H™'(Y,B)~
—H""(X,A) are the homomorphisms induced by T and f respectively.

Definition. Let (X,4) be a compact pair, let {(X;,45),7 ,2} be
an inverse system of finite sunphcm.l complexes whose inverse hmlt is
(X,4). Now HYX,A)=lim A*X,, 4;), the direct Limit group of the
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direct system {H%(X;,4;),77}, and H,(E(X,4))=lim H,(E(X,,4;)
(see [3], Chapters VIII-X). Define ¢: HJ{E(X,A))>H"""(X,4) to be
the homomorphism induced by {p: H,|E(X;,4;)—H""(X;,4,} for
O<r<m.
3. Duality

TasorEM 2. If (X,A,B) is a lriple of finite dimensional compact
spaces, H'(A,B)=0 for r>p, H(X,A)=0 for r>q, m>max{p,q},
8=2m—(p+q+1), and n=min{s,m}, then there is an eract sequence

H(B(X,A)—...~H{B(X,A))~H{E(X,B)) —H,(E(4,B)

S H,(B(X, A)) >~ H (B4, B)

and further there is a diagram

Ha(B(X, 4)) > > B(E(X, 4))> B (B(X,B))> B{B(4,B)) > He1{ B (X, 4) >

e e v e e

H*™X,A) > A" (X, 4)>H"(X,B) > H""(4,B) -~ H™ (X, A) >

such that the horizontal lines are exact, and the squares are commutative
up to sign.

Proof. The natural map of E(X,B) inte E(4,B) is a fibre map
with fibre E(X,4). Further, by Theorem 1, the base space is m—p—1

_ connected, and the fibre is m—g—1 connected. Consequently the first

part of the theorem follows from [5], Proposition 5, p. 468. The proof
may now be completed in the standard manner using the exactness of
the cohomology sequence of the triple (X,A,B). Those squares where
the index r does not change are actually commutative. In the remaining
type of square there is commutativity up to sign, the sign being that
determined by Lemma 1.

LEMMA 3. If k<m, and n=min{2{m —k)—1,m} then

¢ H(B(8y5) —H (854"

is an isomorphism for 0 <r<n, and H,(E(S",y")}:o for n<r<2(m—k).

Proof. The space E(S",y) 1s naturally homeomorphie with the
k-fold loop space in 8", .Ok( . Applying the suspension theorem
([5], Proposition 10, p. 483) we have that H,(2(8",9™) ~HAS™) for
1<g<2m—1, Hy o{QY8™y™) ~H,4(Q(8",y™) for 2<g<Im—2, efe.
or we have for k<m that H, (.Qk(S'",y )~ Hy i 87) for 0 <r <2(m—k).
Thus we see that the only non-zero homology group in the range of di-
mensions being considered is in dimension m— k. Therefore to complete
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the proof, it is necessary only to observe that ¢ is an isomorphism if
r=m—k.

Tewua 4. If (X, 4) and (Y, B) are compact pairs, and f: (X, 4)~(X, B}
is a relative homeomorphism ([3], p. 266), then f induces a homeomorphism
beiween EB{XY,B} and E(X.,4).

THEOREM 3. If k is an integer less than m, (X,4) is a k-dimensional
compact pair, A is non-empty and HX,4)=0, then

(1) E(X,A) is connected,

(2) g Ho(B(X,4))-H" (X, 4) is an isomorphism for 0<gq
<min {2(m—k},m},

(3) H,(B(X,A))=0 for m<q<2(m—k).

Proof. By Lemma 4 it suffices to assume 4 is a point. Further,
since we are using Cech cohomology, it suffices to prove the theorem
in case X is a finite connected complex. Therefore, assume 4 is a point,
and X is a k-dimensional finite connected complex. Let X° be a maximal
tree in X containing 4, and let X be the i-skeleton of X for i >0. Now
Xe¢ is confractible, and consequently E(X0° 4) is contractible. Therefore,
the theorem is true for the pair (X¢94). Suppose now the theorem is
proved for the pairs (X', 4) for {<j. We may apply Theorem 2 to the
triple (X/**, X7, 4). The inductive step in the proof tnen follows from
the inductive hypothesis, and Lemma 3.

Extract from a letter to K. Borsuk

The fact that the map p in proof of Theorem 1 is a fibre map, and
that in proof of Theorem 2 E(X,B)—E(A,B) is a fibre map is a corol-
lary of the following theorem which is I believe essentially only a rewor-
ding of a theorem of yours.

THEOREM. Suppose

(1) Y is an absolute neighborhood retract, y,¢ ¥,

(2) X is a compact space, and A,B are closed subspaces of X,

then the map p: (¥,y)"P~(X,y)“*™® given by p(fy=f|4 is
a fibre map.

Prooi. To show that p is a fibre map, we mast show that for every
finite complex A, and commutative diagram
1 (Tyg)®?

- I'p
E-5 K xIS (T, 40
where I is the unit interval, and r(k)=1(k,0) there exists

F: ExI—(X,y)%?

icm

O a theorem of Borsuk 201

such that ;-F:F, and Fr,=jf. However, having F iz equivalent to hav-
ing@: (KxIXAK¥Ix(A ~ B)) (X, y,) defined by G(k,t,a)=F (k,t)(a).
Further having f eorresponds to having g: (K xX,KxB)—=(Y,y,) de-
fined by gik,x)=f(k){x), and since the diagram is commutative g(k,a)
=@(k,0,a) for ke K, acA. In other words we have a map defined on
(K % {0}xX)U(ExIx4) which sends the subset (KX {0}XB)w
U {EXIx{4~B)) into y,. First extend to a map of (Kx {0} xX)u
w (K % Ix4)w (K xIxB) which sends K xIxB into y,. We then bave
2 map defined on (K X {0} x X)u (K xIx (4 B)) extend this to a map G+
ExIxX—Y and define F by F(k,t)(2}=G(k,.i,r). The proof of the
existence of & parallels the proof of lemma 2.2 in [3], p. 298.

Problems

1. Is Theorem 3 valid for arbitrary paracompact spaces?

2. Can the dimension condition in Theorem 3 be replaced by (X,4)
is a finite dimensional compact pair such that H*X,4)=0 for ¢>k?

3. T X is a compact space, does there exist a spectral sequence which
relates the cohomology of X and the homology of E{z)?

4. If X is a compact space, what can be said about the relationship
between the cohomology of X and the homology of the function space
of maps of X into an m—1 connected space Y?
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