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On antipodal sets on the sphere and on continuous
mvolutions *

by

J. W. Jaworewski (Warszawa)

L Preliminaries

1. The sphere S,. Let S, be the n-sphere in the (n--1)-dimensional
Euclidean space E,y, 1. e., the set of points @ ¢ B,y with |z|=1. We de-
note by a the antipodal mapping of 8,; it is defined by a{z)= —=z, for
every x e S,. The set 4CS, is called antipodal if a(d)=A.

2..True chains. Let 3 be a metric space and > 0. By an s-simp-
lex of M we understand a finite subset of M with diameter <e. In a known
manner we introduce the notions of e-chains and s-cycles modulo 2 of M.
Since in the sequel we shall use the homology theory modulo 2 only
{with the exception of Chapter IV), the words “modulo 2? will be omitted.
The boundary of a chain » we denote by &x». By the boundary of a 0-di-
mengional simplex we understand the number 1 considered as a rest
modulo 2. The rests 0 and 1 modulo 2 may be considered as (—1)-di-
mensional cycles. A p-dimensional e-eycle y? is said to be 5-homologous
to zero in M if there exists in M a (p-+1)-dimensional #-chain »#+! such
that dxpil=yr,

A sequence of chains »={x;} is called a p-dimensional true chain
of M if there exists a compact subset € of M and a sequence {&} of po-
sitive numbers convergent to zero and such that » is a p-dimensional
g-chain of (. A true chain y={y;} is called a true cyele if 9y= {8y;}=0.
Let y={y:} be a p-dimensional trune cycle of M. Then ¢ is said to be
homologous to zero in M if, for every £>0, there exists an i, such that
v; is s-homologous to zero in M, for 1 >1y; it is called convergent in M
if the true cycle {y;~ y:y1} iz homologous to zero in M; if there exists
a number 5 >0 such that no cycle y; is »-homologous to zero in M, then
the true cycle y is called tofally unhomologous fo zero in M.

We shall denote by B?(3) the p-dimensional homology group (mo-
dulo 2) of M based on the convergent cycles.

* The main results of this paper were published without proof in [7] and {8].
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The space M is said to be p-acyelic provided that every (r—1)-di-
mensional true eycle of M with 0 <r<p is homologous to zero in M.
According to the definition of (—1)-dimensional cycles, a space is 0-acyclie
if and only if it is not empty; a compact space is l-acyelic if and only
if it is @ continuum; the sphere S, is n-acyclie, but not (n-1)-acyclic.

The space M is said to be acyelic if it is p-acyclic for every p.

3. {p,p)-system. Let ¢ be a continuous involution of M, i. e., a con-

tinuous mapping of M into itself such that pp(z)=m, for every »e¢ M.

Any sequence of true chains of M of the form
P: = (2% 1% o, #P, 7F)

is called & (p,p)-system of M if the following conditions are satisfied:
1o y—1 is the number 1 considered as a (—1)-dimensional true cycle
of M.
20 For every r=0,1,...,p, » is an r-dimensional true chain of M
such that
(1) Ser=y7,
(2) r=xtol).
Thus y is an r-dimensional true cycle of M.
Let us observe that
() If the space M is p-acyclic, then there evists a (p.p)-system in M.
For, given any true cycle #~! of M, of dimension r—1< p, there
exists an r-dimensional true chain = of M, such that d«"=1y"—2. Hence

the conditions 1° and 2°¢ constitute the definition by induction of a p-sy-
stem in M.

4. Chains in S,. Antipodal system. 1-chains and 1-cycles in S,
are called briefly chains and cycles in S,. The cycle » in 8, which is
1-homologous to zero in 8, is called homologous to zero in 8, and written
y~0 in 8,.

An antipodal p-system in 8, (—1<p<n)is assumed to be a sequence
of chains in 8§,,

D= (2, w0, 9% o 27, 9P)
defined as follows:

Ie p~1=1.

2 For some r (0 <<r<p) let an (r—1)-dimensional cycle y~* in 8§,
f;uch that a(p™1)=7»""1 be already defined. Since r—1 < n, the ecycle y—*
is homologous to zero in §,. Let =~ be a chain in §, such that

ALY, g yr-—l_
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Then we put
Y= T a(x).
Thus 3 is an r-dimensional cycle in 8, and a{y")=»"

5. Intersection number and linking coefficient. By the
geometrical realization of a simpler ¢ in §, we understand the smallest
convex set in 8,1) containing all the vertices of o. The geometrical reali-
zation |%| of @ chain 2 in 8, is assumed to be the sum of the geometrical
realizations of all the simplexes belonging to z. By the geometrical reali-
zation of an antipodal p-system

PP=(y 2%y ... 25 7)

in 8, we understand the set
P

7| = ) (el +la(=)).
s=0

We denote by X(x",A"7) the intersection number (see [2], D. 113)
of any two chains »* and A", which are in a general position 2) in S,
If »* and 6" are two cycles in §, such that [?]-]6"**|=0, then
7(y",6"7") denotes their linking coefficient (see [2], . 416). Since only
chains modulo 2 are used in this paper, the values of X and p are 0 and 1.
Tn the case p=mn, D(3",6 ")=1 if and only if 57*=1 and »" is not homo-
logous to zero in S,.

Let us suppose that A and B are two disjoint subsets of §, and let
7= {y;} be a p-dimensional true eycle in A and &={8;} an (n—p—1)-di-
mensional true eycle in B. Then, for almost all indices ¢ and 7, lyil - 18;]=0.
Tf for almost all indices ¢ and j 9{y1,d;)=1, then the true cycles y and &
are said to be linked. Tf there exists a p-dimensional true cycle y in 4
and an (n—p—1)-dimensional true cycle & in B, such that the cyeles 7
and @& are linked, then we say that the sets A and B are linked in the di-
mensions (p,n—p—1).

II. Antipodal sets

1. Introduction. 5. Eilenberg proved in 1935 the following theo-
rem on antipodal subsets of the sphere: Any antipodal continuum on S,
disconnects S, between every two antipodal points of its complement (see [4),
théoréme 4, p. 269). This theorem may also be expressed by saying that

'} We say that a set B c S« of the diameter <1, is convew if, for every two points
a.b E, the lesser of the great circle arcs passing through o and b lies in E.

%) . e., if 0"= (@q.0,---,0p) I8 2 mimplex of #* and 7 == (by,byseeesba—p) I8 2 sIM-
plex of 4*7?, then either |¢” |-]=*""}=0 or every system composed of n+1 of points
Qs Gy eees@n.Bo bys e, Bns 15 linearly independent.
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any two antipodal continua on S, have common points. Obviously, this
theorem is not true for spheres of higher dimension. For instance, two
great circles on §; are antipodal confinua and they may be taken to be
disjoint. But, as can easily be checked, two disjoint great circles on S,
are linked (in dimensions (1,1)). Therefore, the question arises whether
any two disjoint antipodal continua on 8, are linked. The main theorem
of this paper gives a positive answer to this question. This theorem is
formulated for spheres of an arbitrary dimension. The above-mentioned
theorem of Eilenberg is a special case of it.

2. Fundamental results. MATN THEOREM 1. Let
ri= (rh %% 10, oy %2, 77)
be a (p,a)-system lying in a set ACS, and let
AT N S o N

be an (n—p—1,a)-system lying in a sef BCS,, with 4-B=0. Then the
true cycles y* and 8" are linked.

First we shall prove two lemmas.

Lemwa 1. Let I'={(y=4 %% ...,:% y) be an antipodal n-system in S,.
Then the true cyele y* is not homologous o zero in §,.

Proof. We shall prove this lemma by induction with respect to .
Thus, Lemma 1 is evident if n==0. Let us suppose that Lemma 1 is pro-
ved for n="Fk—1, where k>1. We shall prove it for n=EF.

First we shail reduce the proof to the case in which all the chains
of the system I'"* are composed of simplexes of a certain triansulation of §,.

Let T be an antipodal triangnlation?) of §, and let T be the first
barycentric subdivision of ¥. Let us consider the covering of §, by bary-
centrie stars of T. Let #>0 be the Lebesgue number of this covering.
By applying, if necessary, successive barycentric subdivisions of sim-
plexes belonging to the chains of I'*, we may assume that these sim-
plexes are of diameter <. Let us suppose that

(3) yE~s0

We shall show that this assumption leads to a contradiction.

Let y be the canonical displacement assigning to every point of S,
the centre of a star which contains it. Since triangulations T and T are
antipodal, therefore if a star G contains x, then (@) is a star which con-
tains a(e). Consequently, we may assume that

in 8.

) —

3 Le., if ¢ is a simplex of T, then a(g) is also a simplex of 3.
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The displacement ¢ maps the simplexes of 8, of diameter <7 onto
the simplexes of ¥. By (4), it maps the antipodal k-system I'* onto the
antipodal k-system

) =(p (71 9 (22, 25 ooy 9 (#9), 9 (7%)]

whose simplexes are composed of the simplexes of T. Since y is a cano-
nical displacement, then by (3) :

p(y)~0 in 8,
and since y(y*) is a4 chain of a triangulation of 8, then
(5) p(¥)=0.

By the definition of the antipodal system
P =yl al)) =p () + ap (),

and then, by (5)
P(ok) = apl=F) .

Hence the chains y{»*) and ap(x*) are composed of the same sim-
plexes. Two eases can occur:

(i) The chain p(x*) contains all the k-dimensional simplexes of .

(ii) There exists a k-dimensional simplex o6, of T which does not
belong to p(xF).

In the first case, let U be the interior of an arbifrary k-dimensional
simplex of T; in the second case, let T he the interior of ;. The set
W=8,—T —a(U) is a polytope. Let a T and let §;_, be the (k—1)-di-
mensional great sphere on S; which is the intersection of S, with the
k-dimensional hyperplane in Ei;;, passing through the origin and per-
pendicular to the diameter aa(a). For every point z ¢ W, let f(x} be the
point of S;_, Iying on the great circle arc ara(a). Thus f is a continuous
projection of W onto S;_, and satisfies the condition

(6) fa=af .

Since W iz compaet, there exists a £ >0 such that for every set ECW
with diameter < the set f(F) is of diameter < 1. If we cancel the last
two terms in the antipodal k-system y»(l’"). then we obtain the antipodal
{(k—1)-system

S (7)) () e (1) 9 ()

lying in W. Applying. if necessary, a baryeentric subdivision, we ma?'
assume that the simplexes of W, and hence also the simplexes of r,
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are of diameters <. Thus f maps such simplexes onto the simplexes
of 8;_,. Consequently, by (6), f maps the antipodal (k—1)-system 4**
<onto the antipodal (k—1)-system

HAE Y = (fp(y=0) Fo (20 Jo (7)o Fo () fo (74 )
<ML S;(_l.
In the case {i) the chain yp(x*) is a cycle and then

Fo(y1)=F{@p () =0.

‘Hence the last cycle of the antipodal (k~—1)-system f(4“7") lying in 8}
is hemologous to zero in Sj_;. Therefore in this case we get a contra-
diction of the assumption that Lemma 1 is true for n=%k—1.

In the cage (ii) the chain p(x*) lies in W. It follows that f maps it
<onto a chain in 8;_;. Moreover,

Ay (sek)=FPp (ok)) = Fp (¥*) .

Hence jp(3*1)~0 in S;_:, and we again have a contradiction. Therefore,
Lemma 1 iz proved.

LeMMa 2. Let —1<p<n and let I"=(p~4,x%y%...,xP,yF) be an
antipodal p-system and 477 =(6742%8%..., 77,8 "7") — an antipodal
{n—p—1)-system in 8,, such that [T7|- |47 =0. Then y(yF, 0" P =1

Proof. We shall prove Lemma 2 by finite induction with respect
to p. Let p=n. Thus, by Lemma 1, y* is not homologous to zero in §,
and " *=6""=1. Hence n(y,§ ")=1.

Now, let us assume that Lemma 2 is true for p=r. We ghall prove
it for p=r-—1.

Let

r= (% Y0y = )

‘n—rz (6—-1’ 10’ 60’ e ln——r-——l, 6n—-r—1, Zn—r, 671—-;-)

be two antipodal systems on 8, such that

‘(7) {Pr—ll‘l‘n.‘rl=0 .
Let us suppose that
¥) Dy L8 )=0.

By the definition of antipodal systems I"™" and 4"~
y=xta(») for s=0,1,..,r—1,

1 .
d=i+ad) for t=0,1,..,n~71,
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and by (7}
(9 7 MiE=0, - Mlad)]=0.

1=0 =0

Since r—1<n, then p~1~0 in §,. Hence there exists a chain "
in 8, such that
(10) Iwr= 2.

By (9), - ]A""]=0 and |y"7"}-|a(3""")|=0. Hence we may choose
the chain »* so that
(11) « and A" are in a general position,
(12) o« and «(1*") are in a general position.

Furthermore, by (9)

A—r—1 B—r—1
e Y ]=0 and Iy N ja(d)|=0.
=0 t=0

Therefore, we may choose the r-dimensional chain =" so that

B—r-1 n—r—1

13) bei- N ix=0, ] 3 lawd)i=0.
=0 =0

Since « is an isometric involution, then also by (12) and (13)

(14) a(¥) and "7 are in a general position,

a5 et 3 Wl=0, la()]- Y la@)=0.

Hence, by (11) and (14)

(16) # +a(x) and 2" are in a general position,

and by (11) and (12)

(17} « and & =2""+ (i) ate in a general position.
By (8), (10) and (17)

{18) X(x,8"7)=0.
Let
{19) yr=ux"+a(x")
and let us compute the intersection number X (', A"}, which is defined
by (16). By (19)

(20) X=X ()X (a (), 1)
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Sinee A"+ (" )=4"", it follows that
XS IT) =X (0 X (K a(8T)
Hence by (18) and (20)
| X =X (a0 ) = X (a (), A7)
But, obviously, X(x',a(4""))=X(a(x"),4" 7). It follows that
(21 Xy 2T)=0.
By (21), and since 34" =¢""""", it follows that
(22 9(y,8" ) =0.

The eyele ¢ together with the chain »" and with the system I"'
form an antipodal r-system

= (y=3,20 9% ... VLY,

and the system 4" after the cancelling of 6" and A"~ forms an anti-
podal {n—r—1)-system

An—r—lz (5_1, AD’ 6“, ™ ,ln—r-l’ 6n—r—l) X
By (7), (13) and (15)
=0 .
) Thus the equality (22) contradicts the assumption that Lemma 2
1s true for p==r. Hence the supposition (8) leads to a contradiction, and
therefore Lemma 2 is proved for every p=—1,0,1,..,7%.

Proof of the Main Theorem. Let

T=00, =4, =, A=)
Thus liI;”.—; (¥ 1,::',-’,}12,...,%?,;»?) is an antipodal p-system and 4" 7"
=(4; ,21,6,-,.:.,).;5"“",6;5‘”"1) — an antipodal (n—p—1)-system in &,.
Theini? ?ha:lns of I'§ lie in compact subsets of 4 and the true chaing
of 4,777 lie in compact subsets of B. Since A -B=0, it follows that the
condition [;7?{-|;4"""|=0 will be satisfied for almost all i and j. There-
fore, by Lemma 2, 9(;4,67 " ")=1 for almost all indices i and 7, and
consequently the true eycles +* and & %! are linked.

QOmLMBY 1. Let A and B be two disjo'nt subsets of S, such that A
contains an (p,a)-system and B contains an (n—p—1,a)-system. Then A
and B are linked in the dimensions (p,n—p—1)
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TEROREM 2. Let A and B be two subsets of S,. If A contains a {p.a)-
-system and B contains an (n—p,a)-system, then 4-Bz=0.

Proof. Let M= (y", "¢ u,#%7) be a (p,a)systern in 4 and
7= (a7 0%, &P TP 8" —an (n—p,a)-system in B. I we
suppose that A-B=0, then, by the Main Theorem, the frue cycles *
and & 77! are linked. But & "'=24"7, and consequently the true cycle
&' is homologous to zero in the set B which is disjoint with 4. There- .
fore true cycles ¥* and ¢" 7" are not linked.

3. Conclusions with regard to antipodal sets. By (), any
antipodal p-acyclic subset of §, contains a (p,a)-system. Hence, by
Corollary 1 and by Theorem 2 we obtfain

THEOREM 3. If A and B are two disjeint antipodal subsets of 8, such
that A is p-acyclic and B is (n—p—1)-acyclic, then 4 and B are linked
in the dimensions (p,n—p—1}).

THEOREM 4. If the set ACS, is antipodal and p-acyclic and BCS,
is antipodal and g-ecyclic with p+q>n, then 4 -Bz£0.

Thus, for instance, a p-dimensional great sphere §,CS, is antipodal
and p-acyclic. Two disjoint great spheres 85 and Si_,_, are linked; if §;
and S are great spheres on S, and p-+g¢:>«, then §;-875%0; this can
be checked immediately.

In the case of n=3 and p=1 we deduce from Theorem 3 the fol-
lowing

COROLLARY 2. Any two disjoint antipodal continve lying in 8, are
linked in the dimensions (1,1). A

When n=2 and p=1 we obtain from Theorem 4 the following

COROLLARY 3. Any two antipedal continua lying in S, have common
points (see [6], No 3, Lemme, p. 244, and Remarque, p. 235).

A set ACS, disconnects 8, between the points a,be S,—A, if it is
linked in the dimensions (n~—1,0) with the two-point set (a)+- (). Hence,
in the case p=n—1 we obtain from Theorem 3 the following

COROLLARY 4. 4n (n—1)-acyclic subset of S, disconnects S, belween
every two antipodal points of its complement.

In particular, if »=2, we have the theorem of Eilenberg {see [4],
théoréeme 4, p. 269):

COROLLARY 5. Any aniipodal continwum in 8, disconnects S, between
erery two antipodal points of its complement.

For p=n, Theorem 4 reduces to the following

COROLLARY 6. The only antipodal n-acyclic subset of S, is the
whole S,.
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4. Remarks. Theorems 3 and 4 show that an antipodal p-acyclie
subset of §, is situated in 8, in some sense similarly to the great sphere
of dimension >>p. Theorem 4 can be formulated as follows:

) THEOREM 4'. If a set ACS, is antipodal and p-acyclic and & set BCS, —
is antipodal and g-acyclic, with p-gq>mn, then the intersecticn A-B con-
tains an antipodal 0-acyclic set.

This suggests the following

Problem. Let 4 and B be two antipodal subsets of S, such that A is
p-acyclic and B is g-acyclic. The question is whether the set A-B contains
an antipodal (p--g—n)-acyclic subset.

The word “contains” cannot be replaced by “is”, since in that case
the answer would be negative. For example, let 4 and B; be two great
2-dimensional spheres on S defined by the equations z,=0, and #,=0,
respectively. Let B, be a quarter of the great circle arc on S, defined
by ay=0, £,=0, 23>0, x,>0. Then B,-B, consists of the single point
(0,0,1,0). Let B=B,~B,+a(B,). Then 4 and B are antipodal and
2-acyclie, but 4 -B consists of the cirele 8, o;--#5=1, 2,=0, £,=0, and
of twg points. (0,0,0,1) and (0,0,0,—~1). Hence 4-B is not l-acyelic,
since it iz not connected. However, the set A-B contains an antipodal
l-acyclic subset, namely the circle S.

Ill. Some properties of continuous involutions

1. !nvoluﬂons and mappings in spheres. The Main Theorem,
concerning the antipodal mapping of S,, which is proved in Chapter II,
enables s to investigate some properties of continnous involutions of
more general metric spaces. Thus, a generalization of Borsuk’s theorem
on antipodes (see [3], p. 178) and theorems concerning fixed points of
involutions can be proved.

Now, in the case of 4=8, and p=n, Theorem 1 can be formulated
as follows:

—1 n n
(#%) Let I’an‘(y 15y 1%y 2"y 7") be an (m,a)-system in S,. Then the true
cycle v" is totally unhomclogous to zero in §,.

For, if "= {3}, then 57 is not 1-homologous to zero in S, for al-
most all 7.

Levya 3. Let ¢ be a continuous involution of a wmetric space M and
let us suppose that M comtains an (m,p)-system 5= (67, 1% 8% ..., 1", d").
Let | be a continuous mapping of M into S, such that flzy#fe(z) for every

@ e M. Then f maps the true cycle 8" of M onto a true cycle whick is totally
unhomologous to zero in 8,.
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Proof. Let
N _ @ —felx) 9
(23) 1=z~ fe@]

Sinee f(x)sfp(x), the function g defined by (23) for every ze M.
is a continunous mapping of M into S, and satisfied the condition

gp=cag.

It follows that g maps the (n,p)-system 4 onto a (u,a)-system
g0 =(g(67),9(2"),9("),..,g(#"),g(8") in S,. From (xx) we conclude
that the true cycle g(&") is totally unhomologous to zero in 8. Further-
more, we ohserve that

(24) f(@)s=ag(x) for every xreM.
Indeed, if we suppose that f(z)=ag{x). i €.

o [z —Tele)
f@=— i@ = fe @)

then we obtain
(25) fetey=7(r) {1+ f(x) — fe (i) -

Since |f(z)|=|fp(x)|=1. we conclude from (25) that ilT]f(.r)—fqa(.r)]{
=1-+|f(2) —fe(x)|=1, which is impossible since |f(x)— fe(x)}>0.

We conclude by (24) that f and g are homotopic (see (3}, p. 179, 1))-
Hence the true cycles f(8") and g(8") are homologous in 8,. Congequently,
the true cyele f{&") is totally unhomologous to zero in ¥, and the proof
of Lemma 3 is complete.

Every true cycle {y;} modulo 2 of M contains a subsequence {ry}.
which is a convergent cyele in M (see [1], p. 180). Therefore, under the
hypotheses of Lemma 3, f maps an n-dimensional convergent cyele of M
onto a convergent cycle in 8, which is totally unhomologous to zerc
in 8,. Since the n-dimensional homology group of 8, contains only two
elements, Lemma 3 yields

TarorEM 5. Let ¢ be a continuous involution of M and let us sup-
pose that M coniains a (n,p)-system. Then every continuous mapping |
of M into S, whick satisfies the condition f(z) #folz), for every me M,
maps the n-dimensional homology group B(M) of M onto the n-dimensional
homology group B'(S,) of S..

4 In the sense of operations with points in Ens1.
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2. Generalization of Borsuk’s theorem on antipodes. By (x),
every n-acyclic space M contains an (n,p)-system, for every continuous
involution ¢ of M. Hence Theorem 5 implies

TeEoREM 6. Let M be an n-acyclic space and ¢ — a continuous in-
volution of M. Then every continuous mapping f of M into S, satisfying
the condition f(x)=fplx) for every x « M maps the n-dimensional homology
group BY(M) onto the n-dimensional homology group B'(S,).

Sinee the group B8, is not trivial and since every continuous
mapping of ¥ into ¥, homotopie to a constant maps the group B"(M)
into zero, we deduce

COROLLARY 7. Let M, ¢ and f be as in Theorem 6. Then f is not homo-
topic to a censtant.

TEEOREM 7. Let M and ¢ be as in Theorem 6. Then, for every con-
tinuous mapping | of M into the Euclidean space E, there exists a point
woe M such that f(xy)=/fp(x,).

For, the mapping f of M into E, may be considered as a mapping
of M into a proper subset of 8,, and hence f is homotopie to a constant.
If we suppose that f(x)f¢(x), for every x e M, then we obtain a con-
tradiction of Corollary 7.

ToroREM 8. Let M and ¢ be as in Theorem 6 and let M =M+ M,+
~+ .+ M, be a decomposition of M into the sum of n--1 closed subsets of M.
Then at least one of the sets M contains an involution pair {x,p(z)}.

The proof is based on the following Lemma of Borsuk (see [3], p. 188,
Hilfssatz):

) Por awy decomposition M=M,+ M, +...+ M, of a metric space M
into the sum of n-+1 closed subsets of M, there exists a continuous
function | mapping M into B, such that, for every y e (M), the set
f_l(:l/) is contained in at least one of the sets M;.

Proof of Theorem 8. Applying Theorem 7 to the mapping f pro-
vided by the Lemma of Borsuk, we conclude that there exists an Loe M
such that f(@,)=fp(x,)=y,. Henee, for some i, f (y,)CM;. Therefore,
Ly € Mi and ¢($o) EM,‘.

If M=8,, and g=a, Theorems 6, 7 and 8, reduce to Borsuk’s theo-
rems I, TL and ITI of [3], respectively.

) 3. Fixed points of involutions. TEEOREM 9. Let M be a me-
{m, separable, acyclic space, of finile dimension. Then any continuous
involution ¢ of M has a fived point.

Proof. Theorem of Menger-Nébeling (see [9], p. 235) provides & ho-
meomorphism k of M into E,. Since M is acyclic, and hence also n-acyelic,
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we conclude from Theorem 7 that there exists an x,e M such that
h(xy)=hep(m,). Hence zy=gp(ry}.

Theorem 9 is a special case of a theorem of P. A. Smith concerning
fixed points of periodic transformations (see [107, p. 367, (13.1)-Theorem,
and also [5], p. 428, Theorem I). The assumption of finite dimension
of M is essential (see [5], No 8, p. 435). In particular, any econtinuous
involution of the Euclidean space has & fixed point. However, if M is
compact, the hypothesis of finite dimension of M can be omitted:

THEOREM 10. Any continuous involution of a compact acyclic space
has o fized point.

The proof is given in [8], p. 292.

4. Remarks. C. T. Yang proved in [11] another generalization of
Borsuk’s theorem on antipodes. He introduced 2 notion of index of a pair
{M,p}, where g is a continuous involution withonut fixed points of a com-
pact space M. The notion of index is related to that of an (n,¢)-system
in the semse of the present paper, as follows: The index of {M,p} is the
largest integer n such that M contains an (n,p)-system. In this way
Theorems 7 and 8 follow from Theorem (4.1) of C. T. Yang (see [11],
p. 270).

1IV. Generalization

The main result of this paper may be formulated by the use of a more
general homology theory. Let ® be a commutative ring, containing ele-
ments which are not divisible by 2. We consider the true chains of a me-
tric space M with coefficients belonging to R.

Let ¢ be a continuous invelution of M. The notion of a (p,¢)-system
may be generalized as follows: the (p,p)-system of M is a sequence of
true chains of M

P:: (773, 2% 10 ooy 2P, 7P)
such that:
10 y~'={y;""}, where for almost all 4, y;~ is an element of R which
is not divisible by 2, considered as a (—I1)-dimensional cycle of M.
20 For every r=0,1,2,...,p, »* is an r-dimensional true chain of M
such that

9"':‘7’_1,
g (—1)a() .

Thus y* is an r-dimensional true cycle of M.
Fundamenta Mathematicae, T. XLITI. 17


Artur


254 J. W. Jaworowski

By the use of these notions, the following theorem may be proved:

TeeorEM 11. Let Ii=(y" 1., 7") be a (p,a)-system lying
inaset ACS, and let 87 = (67,55 6% ..., 2" 771877 be an (n—p —1)-
system lying in a set BCS,, with A-B=0. Let "= {y{}, & " = {677 "
Then, for almost all i and j, the linking coefficient y(y%,07"Y) is not di-
vizible by 2.

The proof is not essentially different from the proof of Theorem 1.
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