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Toutes lours solutions qui satisfont & Dinégalité (13) et & Dinégalité
(49) glz) <1 =0
sont les suivantes: o
A. Daprés (I1.1), guand p(0)>0, 1>0, a =V — >0,
a
a cosh aw-:;_s;hﬂg’

pour chaque

A sinh ax
@ coshax — » sinhax ’

q(@) =

a + A sinhaw
o coshaz — x sinhaw

B. D'aprés (1.1.2), quand p(0)>0, 1>0, x+i=0,

P (®)

r(z)=1

L @

(50) 1—na’

(@)=

C. D'aprés (1.3), quand p(0)>0, =0,

(51) plo)=¢% q(@)=0, r(r)=1—¢"
D. D’aprés (11.2), quand p(0)=0,
p(r)=0, q@)=q, r@=1-—g.

Une solution directe du systéme (2), (46)-(48) peut &tre obtenue
d'une maniére analogue & celle du § 1.3 pour le systéme (2)-(9), mais
notons encore que pour obtenir les fonctions p et ¢ dans les cas A, B, O
(quand p(0)=1) Péquation (47) seule est suffisante (moyennant (13)
ot (49)). Nous en dérivons ’équation différentielle

(52) ¢ (@) = Ap* (@)
D'autre part, d’aprés la symétrie de g(x--y) en x et y on obtient ’égalité
analogue & (24) :

(53) 2%q(x) = A[p* (#) — ¢ (@) — 1].

Les fonctions p et ¢ s’obtiennent des équations (52) et (53). Pour
obtenir r il suffit alors d’utiliser (2) ((48) résulte de (2), (46), (47)).

Note ajoutée pendant la correction. Récemmment nous avons
pris connaissence d’un travail de M. R. M. Redheffer, Novel uses of
functional equations, Journal of rational mechanics and analysis 3(1954),
D. 271-279, qui traite un probléme analogue. On y trouve les équa-
tions (46) et (48) de ('. Ryll- Nardzewski,
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Some remarks on the existence and uniqueness
of solutions of the hyperbolic equation

0%z 0z

dwdy = f(m:yyz)"

0z
by
A, ALEXIEWICZ and W. ORLICZ (Poznan)

In this paper we prove some facts concerning the partial differential
equation of the hyperbolic type :
2,

&% ( 9z 6z)
“a”w“a’?;' =f m’y,z’%;a—y .

First, we prove an existence theorem for the case where the initia
data are prescribed on two intersecting characteristics. The classical proof
carried out by the method of successive approximation (Kamke [4]%),
p.402) uses in an essential way the hypothesis that the function
f(xyy, 2, p, q) satisfies a Lipschitz condition with respect to p,q and to 2.
Schauder ([6], p. 56) has proved the same assuming that the function f
satisfies a Holder condition with respect to z,y,2 and a Lipschitz one
with respect to p and g; the proof is based on the fixed-point theorem
in Banach spaces (Schauder [7]). Recently Hartman and Wintner?)
have shown that, for the existence of a solution, it suffices to suppose
that the function f is continuous, bounded, and satisfies a Lipschitz
condition only with respect to p and g. Perhaps the shortest way of prov-
ing this theorem is the use of the fixed-point theorem of Schauder. We
give here a proof of the theorem of Hartman and Winther, using quite
elementary and standard methods; the application in the proof of a Banach
space via the vector-valued functions is made only for the sake of brevity
and may easily be omitted. The ideas of this proof are basic for the rest

-of the present paper.

Next we give a proof of continuous dependence of the solutions
on the initial data and on the function f. Then we prove a category-

1) Numbers in brackets refer to the hibliography at the end of this paper.
3) [3], see also [2]; both papers were unavailable for the authors.
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_theorem concerning the class of those functions f for which the equation
has not a unigue solution. We conclude with some remarks concerning
the applicability of the method of successive approximations.

1. The hyperbolic equation

0%z ( oz (’)z)
B edN, 2 —.
w0y @y, 90 By

with the initial conditions z(x,¢)=0 (%), 2(a,y)=T{y) is equivalent to the
integral equation
v

M el =bo) + [ [F{um.2,0),

4

0z(u,v)
dx Oy

Oa(u, ) ) du do

where % (@,y)=0(%)+7(y)—0c(a). We shall deal only with solutions hav-
ing continuous partial derivatives of the first order. .
The function f(z,y,2,p,q) will be supposed to be defined in

Q,: a<z<bh, c¢<Ly<d, — 00 < 7,P,q] < o0,

and the following sets will be used frequently:

Q a<e<b, o<y<d, RI<k, <k IpI<E,
S e<<w<h, e<y<d, Ipl <k, lg <%,
R: a<e<h, o<<y<d.

Tt will be tacitly assumed that the functions o(») and v(y) are de-

fined in {a,b> and {c,d> respectively, that they have continuous deriv- -

atives of the first order and that o(a)=7(b). .

TuaEOREM 1. Let the function f(x,y,2,p,q) be continwous and bounded
m Qut ) '
fe,y,2,0, )| <M,

and let it satisfy a Lipschitz condition,
1F (@, 9,2y p1s ) — 15,952, D2y @)| < Lie P2 — Dol 4 11— al)s

in every set Q. Then there exists a function z(x,y) in B having a continu-
ous derivative 0°z/0xdy and satisfying the equation

—f(a; 0z 02
—‘amay- = 5?/;%5‘{;75;

2,

with the initial conditions z(w,c)=0(2), 2(a,y)=1(y).
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Proof. Choose A such that
max |o ()| + max|o’(z)| + max|z(y)| + max |z’ (y)] < 4,
a<a<h a<w<h e<y<d e<y<d
and set a=b—a, f=d—e¢, k=A-+M (a+S+af).
‘We shall approximate the function f(z,y,z,p,q) in R by appro-
priately regular functions. There exists a function w(d)3) such that
lim (8)=0

8504
and

(1) W@n,9,2,0,0 _f(1°2ay25z27ﬁ‘1@| -<wv(m&X(\$l—%|,1y1—;l/zly[zl_zzl))

for |2| <k, |p|<k, |¢|<k. Let € stand for the Banach space of continuous
functions ¢p=g¢(u,v,p,q) defined in 8. Then the mapping

i t=f(u,v,t,p,9) =F(1)
defines a vector-valued function from the interval 4: [t|<k to €. The
norm in € being defined as
llpfl = max lo(u,v,p,9)l,
(,%,0,9) ¢ S
the inequality (1) implies that
1 (t) — F (t)] S oo (ty—2l),

whence F () is (strongly) continuous. Let & denote the subset of € com-
posed of those functions ¢(u,v,p,q) which satisfy the conditions

| (21,01, 5 9) — @ (ta,2,P,9)| ng(IPl_?zi + g — !lgl)

for every (u,v)eR, and

f@(%,0,P1,01) — @ (%,9,D2, )| gw(max(lu,—uzl,i'vl—@g))

tor every (uy,91,D,4), (Us,%,P,q)€S;. The set R is obviously convex,
and the function F (t) takes on values from &. Then there exists for every n
a function F,(t) from 4 to & such that |F,() —F@E<1/n.

F,(t) satisfies the Lipschitz condition [|F () — Fp ()| < Ay [t — ]y
its modulus of continuity not exceeding three times that of F(t); more
precigely, [|Fyn(t)— Fulb)<8w(h—1])-

To ghow this choose a >0 such that w(8)<1/n, then divide the
interval |t|<<k into equal subintervals of length less than §. Let f,=

3) The modulus of continuity o () depends, of course, on % too. The constant k
being fixed, it is unnecessary to point out this dependence in the notation.
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= —k<t,<...<t,=k be such a partition. We define F,(f) as equal to
(f) for t=t;, and linear in every interval t; ,<i<t;, 4. e

o= Pl + T

[ for
t,i— t«;_l (% l)

1 SIS

i

The function F,(t) satisties the imposed conditions (in particular
the last one follows from the fact that the linear interpolation does not
increase more than three times the modulus of continuitiy?)).

I F,(t)=fn(u,v,t,p,q), then the above conditions give

(2) max | f,(%,v,t,p,9)— f(%,0,t,p,q)|<1/n,
O

Ifn(“;”:tlap,Q)—fu(“:’v;tz:P,Q')J<mm(An”1“'t2|73W(]tz—‘tli))-
Since F'(f)eR, we easily obtain, setting B,=A4,-L;,
(%2581, D1y @) —Fa (2,0, 12, D2y @a) SB[ty —ta| + 191 —Pal +10x—al)
(Fa w1y 01581, 05 Q) —Fa(Uay 0y 85,0y O S0 (|03 —ta]) 0 (|03 —05]) +-Beo ([8y—1al)
(Fa(23 9,8y D1, @) — Fal%, %5, D2 s )| < L D1~ Dol + |1 — @al)-
Consider now the differential equation
6—%=fn(w,y,z,a—z,a—w);
oxdy oz’ oy

by a well known theorem®) there exists a function #,(z,y) satisfying
this equation with initial conditions z,(xz,¢)=0(2), 2.(a,y)=7(y). Set
for brevity

Du(®,Y) = 024(2,9) 0%, gn(@,y) = 02, (2,y)/0y
then

zy .
2 (2,Y) = 2o (,9) + fffn(“?v’zn(u’v)ypn(“:”)1Qn(“"v))dud'v:
B) 2ul@9) = @)+ [1alo,0,50(0,0),p0(@,0), g0 (w0 dr,

Tu(@yy)=7"(y)+ ffn(“;yvzn(u 7]/)7pn(u’?/)aQn(u’y))du'
Obviously |z, (@,9)|<E, [Pal@ | <Ey (e, )< k.
4} If instead of F,(t) we would introduce the ,,Steklov functions”
1n
Fp(t) =mn [ F(t+u)du,
0

. o
we might obtain even that the modulus of continuity would not increase at all.
) Kamke [2], p.402; we use.the théorem in a slightly altered version.
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We shall prove now that these functions-are equicontinuous. For
this purpose choose an integer, I so that 1>aly, I>pL;, and divide
the interval R into I* congruent intervals A, :

f

. a .a . .
at(i-l) 7 <o<atiz, o+ (-D<y<et+ig.

Nlm

It is sufficient to prove that the functions are equicontinuons with
respect to every variable separately in every interval 4.
We prove this first for the interval 4,,. It is trivial that

on(@1,9) — 2 (22,9 < (A + MB) iy — ],
20 (€, 91) — 20 (2, Y)| < (A+ Ma)ly,— 3o,
[Pa(®91) — Pu (@, ¥2) | < Mly1 — 9ol
1 (@1, ) — (@2, ) < M |01 — @ -
There exists a function @(6) tending to 0 as 6—0- and such that

lo" (@) — o' (@) | + 7' (1) — 7’ (?lz)lgd’(ma'x(ﬂwl“mzl s [y — yzm-

Now
(P (1,9) — Du (2, )]
<10 (03) = o (|1 01,0, 50(00,0),2001,0), Gn1,0)
— Falt0, 2 (@30), Ba@4,), G (3,00 o]
< (a4 | [0l a)+50 a(o:,0) (24,
- Talpaln,0)— 9 (2,0)|+ Tl (,0)— ga(as, )| 1d0
< il )+ L fw (e — 2+ 0 ((4 -+ oy — )

+ Ly maX [Py (%1,0) — P (@, V)| + Ly M o0y — 23] 1,
v

‘when.ce

(1 — ./%Lk) mMAax [Py (%, ) — P (%a,0)]

@ﬂj(iwl"“-’”z|)+"’f“[w(lml';“'2[)+3W((A+Mﬁ)]m1"w2]) + LM jar; — 5] ],
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and similarly

(1—- -aT Lk)ma,x G (% Y1) — G (%, Y2 )|

<t:)(|?/1—?/zf)+’t;‘ Lo {51 — 1a]) = 3 (A + M)y, — ¥sl)+ LM 9 —Ya|].
Equicontinuity in 4,, results from the fact that

1——%Lk> 0, 1—1;1L,c>0.

By the same argument we can now prove equicontinuity in the
intervals Ais, Ay4,... Continuing this process we prove, after I steps,

equicontinuity in the strip a<e<a+afl, e<y<d, and so on.
By a theorem of Arzeld there exists a sequence m, such that

m, (8,9) S 2(2,Y),
0z(w
-pm,l(m,:l/)jp(m’y)= (7.’.(::'/),
0z (2,1
o (@,9) 2 4(@,9) = (‘a'i_)"

uniformly in R; moreover [z(x,y)|<<k, |p(z,y)|<k, |g(z,y)|<<k Now

f(m,y,zm,.(m,y),pm(m,y),qm,,(m,y))j f(my?/yz(m7?/)9p(xyy)’q(may))ﬁ

whenece by (2)
fmn(my?/7zm,.(mﬂ/)ypm,.(myy)vqmn(wyy)) :)»f(w,y,z(wa?/)m(%y)7¢Z(m,?l))-

‘Pagsing to the limit in (3) with n replaced by m,, we get

U

£(o,)= (@ 0)+ [ 1u,0,30,0),

ac

0z(u,w) 0z(u,w)
o ,———07———) dudn,

which completes the proof.

The same method enables us to prove the existence of a solution
when ¢(z) and ©(y) are given on two lines parallel to the axes of coordi-
nates and lying in the interior of R.

A similar procedure may be used to solve Cauchy’s problem under
the same hypotheses.
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2. We shall now prove the existence of a solution of a special hyper-
bolic equation, namely

0% _
dwdy (#,9,2),

under weaker hypotheses.

THEOREM 2. Let the function f(x,y,2) defined for a<e<b, e<Ly<d,
—oo<g<loo be: 1° bounded, |f(z,y,2)|<M; 2° measurable in (z,y) for
fized z in a set dense im (—oo,00); 3° continuous in z for fized x,y. Then
there ewists a continuwous function z(x,y) satisfying the equation

almost everywhere, and such that z(x,c)=c(x), z(a,y)=1(y).

Proof. It is sufficient to prove that there exists a continuous fun-
ction satisfying the integral equation

“z(@y)=o(@)+ 7(y)—o(a) + }fyf(u,a),z(u,v))dudv.

By a theorem proved by the authors ) there exists a sequence of
continuous functions f,(u«,v,z) such that

(8) |fn(u)q)?z)|<My lim max lff;(u5"’yz)—f(llta'b7z)l=0

n—0 |z|<k
for almost any (u,v)e B, where k=A 4 M (a4 + «f) has the same meaning
a8 above. By Theorem 1 the equation

Y
(6) zn(m’?/)=zo(m7?/)+J,{fn(u:”:zn(u5'”))dud’v

has a solution z,(z,¥), |2.(®,y)| <M, and the functions z,(x,y) are ob-
viously equicontinuous. By Arzeld’s theorem there exists a subsequence
o, (@,7) uniformly convergent in E to a continuous function z(r,y).
Then, by (5), fm, (%Y 1%m, ®,4)) — F{%,9,2m,(2,9)) converges to 0 almost
everywhere in R. By Lebesgue’s theorem on integration of sequences

Yy

lim ff [fm,‘(u’vyzm,,(ui/v))"f(”i'ﬁ@n,.(“‘:@)ldﬂd@:07

N-->00 e

6} [1], p. 415.
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Ovliez
whence
Ty xy
lim ff]‘mn(u,v,z.mn('u,v))dudv=fff(u,fu,z(u,v))dud'v,
n—roo @ ¢ ac
and by (6)

z ¥
2(,y) =2 (2,Y) + Iéff(“,”yz(uiv))d“d”'

3, Tt is obvious that under the conditions of Theorem 1 the solution
of the differential equation is not necessarily unique. As an example may
serve the equation

0%

— 2/3
0x0y OFl

(=0, y>=0)

with the initial conditions z(z,0)=2(0,y)=0, which has at least two
solutions, z,(z,y)=0, z(z,y)=2*y>. It is known that if f(®,y,2,p,q)
is supposed to satisty the Lipschitz condition with respect to the varia-
bles z,u,v, then the uniqueness of the solution is guaranteed.

Let us denote by z(z,y,&,7n,0,7,f) the solution of the equation

9%z 0z oe
e = m’y’z’aw’éy
with the initial conditions '

sl@m=o@), 2(&y)=1(), {o(&)=2(n));

then z(z,¥,&,7,0,7,f) is an operation (in general multi-valued) defined
in the space of points (£,7,0,7). We shall prove that this operation is
continuous. To be precise we introduce some functional spaces. By U
we shall denote the space of quadruples (&,7,0,7)=3§ where (&,9)eR,
o=a(x) and v=t(y) are two functions with continuous derivatives of
first order, defined respectively for a<Ca<bh, c<y<d and such that
o(&)=1=(n). If we define the distance of two elements 3,3, a8

0(3128) =1&1— &l + |m— 7ol + max |y (2) — 0, (2)]
aseh
-+ max o, (x) — o5(@)| + max - ) — s
m@l 1{@)— 0 )lfcgmm(y) rz(y)l%ﬁgin(y) w2 (¥,
2l becomes a complete metric space. B will stand for the space of conti-
nuous and bounded functions f(z,y,2,p,q) in Q.. With the norm

Ifl=sup

W20.9) 6 Qog

If(®,5,2,p,9)|,

B becomes a Banach space: Finally, € will denote the gpace of functions

e _®©
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2=z2(x,y) continuous together with the partial derivatives of the first
order; the norm being defined as

Bz(m,;ﬁ|
gy U

l 0z(2,y)
l|l2]|l= max |2(x,y)}+ max ‘—I 4 max
(@ W)eR (z.y)eR 0z @ v)eR
¢ is also a Banach space.

We shall prove that z(z,y,£,n,0,7,f) is a continuous operation
from AxB to € at every point where z(x,y) is uniquely determined.
THEOREM 3. Let 1(%,y,2,0,q) satisfy the hypotheses of theorem 1 and

lat |fu—fll—0. Let 2,(%,y) be a solution in R of the equation

% 0z 0z
W =fn(m,y,z7%,5§)
with initial values 2(x,7n,) = 0n(2), 2(£n,Y) =Tn(y) 7). Let the solution
2(x,y) of the equation
% 0z 0=
M =f(wsy7375570-y‘)
with indtial condition z(®,n)=0(®), 2(&,y)="1(y) be unique.
If 0= En1Mn s Ons Tn) = (€47, 0,7); then |en—2||—0.
Proof. Since |f(%,y,2,p,0)|<M, we have Ifn(m7yyz:piq)l<2M for
almost all »’s.
Let A>0(3n,3) Where 3,=(a,¢,0,0), and set E=(A+2M)(a+p+apf).
Then

z,9)

92 Oz (2,
k@ <b  Ipawn) =| 22| <, lqn(m,y>|=|—z%—y—)l<k-

'We shall prove again that the functions 2,(%,Y), Pul,Y)y Gn(®>Y)
are equicontinuous. We prove this first for the interval A,. The equi-
continuity of 2,(®,y) and of p,(z,y) with respect to y and of ¢,(z,¥y)
with respect to @ is obvious. Now let >0 be chosen arbitrarily. Then
Ilf,—fll<<e for n=N. Approximating the function f, by f and using a si-
milar argument to that used in the proof of Theorem 1, we obtain in Ay

MAX [Py (@1,0) = Pn (@,
<10i(er) — (@)l 4L o llm ) + o4+ MB) o)
Ty Iples,0) — ol o) + M —al] + 530

7) Note that existence of zp(®,y) in B must be assumed explicitely, for fe®B alone

does not imply the existence of a solution.

Studia Mathematica XV 14
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for n>>N, whence the equicontinuity of the functions p,(z,y) with re-
spect to  follows from the equicontinuity of the functions o (x). Simi-
larly, gq,(z,y) are equicontinuous with respect to y in 4;;. Following
the device of the proof of theorem 1 we can successively prove the
equicontinuity in the intervals 4, 4;3,... and so on.

By Arzeld’s theorem every sequence of indices m,; containg a partial
one, n;, such that

o (2,9) 3E(@,9), P (@,9) 3F(®,9), (@,9) 37 (@)
uniformly in R and
- _0zwy) _ 0z(z,y)
. Plz,y) = oz g(wﬂ/)'—_é’y“ .

Passing to the limit in the equation

zﬂ‘(m’y) = dm(ﬁ) + T’m(y) - U'n,;(ém)
z Yy
+4’f ffn{(uyvazm('th)7pm(u7”)an(u;v))d“d'U
ng Ty
and taking into account the fact that z(x,y) is uniquely determined,
we get Z(z,y)=2(z,y). It follows easily that

02, (

z,Y) 3 Oz(2,y) 2y (2,y)
) ox

0y

0z(w,y)

2 (w7y)3z(w7y); o

3

!
i e. |&,—2||—0.

Now we shall prove that non-uniqueness of the solution is in some
sense a rare case.

Let @D denote the space of continuous and bounded functions

H{®,9,2,0,¢) in Q, satisfying the conditions
lf(ﬁ;?/l;zlypaq)‘* w(ma'x(|wl"‘w2]7l?ll““

f(wz,yz;zayp,Q)l < yzlylzl"*zzl))7

where (6)—>0 as 604,

If{@,9,2,01,0) — 1@, 2, Doy )| ng(‘pl—pﬂiH‘ l—
for (2,9 ,2,01,¢1) € Qgy (“":f’/’zaP;’%)ka'

‘With i .
=lfi—fall, Where ith the distance ¢(f;,fo)=

Ifl= " sup

(*,%,2,9,0) 6Qoo

[f{®,9,2,0,9),

D becomes a complete metric space.

icm°®

On solutions of a hyperbolic equation 211

THEOREM 4. The set S of those (£,9,0,7,f)eUAxD for which the equa-
tion (I) has at least two different solutions in R is of Baire’s first category
in the space AXDB).

Proof. Let us denote by A(z,y,&,7,0,7,f) the supremum of the
numbers 2, (z,y)— 2, (x,y) where 2, and z, are solutions of the equation (I).
Let (&,,7,) denote a sequence of points of R, dense in R. Then let Q3rnp,
denote the set of those (&,7,0,7,/)eUXD for which '

1° |f(z,y,2,0,0|I<H,

)|+ max|¢’ (z
asa<sh

2° max|e( |+ma,x|ry)[—}—ma,x|r <N,

asz<h

3% A&y, £ym,0,7,1)21/g.

The sets £2ynp, are closed. Indeed, let the elements (&,,7m0n%ns7n)
€ Qunpg cOLVerge to (£,7,6,7,f). Then &,—& nm,~>n and o,(2)3o(w),
op(@)3 0’ (@) uniformly in (a,bd, ©,(»)37(y), 74(%)37'(y) uniformly in
{¢,d>. By 3° there exist functions 2 (x,y), 2&)(z,y) satisfying the equa-
tion

(1) & (,Y) = oa(®) + 10 (y) — 0ul(én)

029 (u, ) 929 (u,v)
J—E;fﬂ{fn(u 0,29 (u, v),—L————,———éy—’—) dudo
and such that
A 1 1
(8) n (€ps i) '_z (Em"h:) g’“%

An identical argument to that used in the proof of theorem 1 shows that
the funections 2 (x,y) and 2 (x,y) are egquicontinuous together with
the partial derivatives of the first order. By Arzeld’s theorem there
exists a sequence of indices such that

20 (x,y) . 09 (x,y) 92 (z, ) . 020 (x,y)

(1) ,,(1) nE \V Y - ’ nE A\ ¢ 3

2 (2,Y) =5 (Z,9), oz - . ’ ay ay )
920 (x,y) 029 (z,¥) 928 (z,y) . 029 (x,y)

2) (, (2) g\ - ! g\ b A

zn;,(‘”yy):{z (%,9), o -5 9 ’ ay dy

Passing to the limit in (7) we see that «®(x,y) and 2 (»,y) satisfy
the equation

%) For ordinary equations this was proved in [5].
14*
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A (@,y) = o(@) + v(y) —o(f)

z Yy az(i)(u 1)) azm(u 7))
+ f f'f(uw,z(t)(u,’u),‘_‘a‘wr,_y *—0-17—’—) dudo,

n

"

and by (8)
(&, mp) — 2 (&p,mp) 2 1/4,

whence (&,7,0,7,/)€ Qunp- The sets Qayy, are non-dense. For, suppose
that Qaxp, is dense in a sphere 8§ with centre (&, 00,70, fo) and radius 7,
Then we can approximate the function f, with arbitrary accuracy by a
function f satisfying the Lipsehitz condition with respect to # and belong-
ing to ©°). Hence we may suppose thab 75 8. However, for f, the differ-
ential equation has a unique solution, and therefore f 6 Qprnpg- The theo-
rem follows from the identity

00 o® 00 o0

6=U U U U 'QMNpq'

M=1 N=1p=1q=1
4. The process of successive approximation is in general not success-
ful if the function f(z,y;%,p,q) satisfies the hypotheses of Theorem 1.
Although the functions
2o(2,y) = o (@) + 7 (y) — o(a),

) oy 0z, (u,v) 02,_1(%,0
ealog) = sae, )+ [ 1{w0,50 2,0, P20, Pl
. ae

are all well-defined, the sequence is not necessarily convergent.

THEOREM 5. Let the function f(w,y,2,p,q) salisfy the hypotheses of
Theorem 1 and let the equation (I) have a unique solution. Then the following
statements are equivalent:

(a) the sequence z,(2,y) converges in R;

(b) the functions 2,(x,y) and their partial derivatives of the first order
converge uniformly in R;

(€) 1on(@3Y)—2nsa (2,9)| 30 uniformly in R);

(d) the functions z,(x,y) converge in R to a solution of ().

?) See the footnote 4).

#) This condition seems to play a role in investigation of uniqueness condi-
tions.
B
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Proof. 1° (a)=>(b). Let A4,M,l,0(8) and ©(8) have the same
meaning as in the proof of theorem 1 and write

02, (z,y)

pn(w,?)= ax ] q —T.

We shall prove first that the functions z,(2,y), Pn(Z,¥), @.(Z,¥)
are equicontinuous. For this purpose we divide the interval E into inter-
vals 4; as in the proof of theorem 1 and first prove equicontinuity in
4y,. Again, we prove equicontinuity in every variable separately.

The formulae (4) are valid in the case which we are considering now.
Further

[P (#13Y) — P (T2, 9)] 0" (1) — o' ()]
: y .
+![f(w1;'052n—1 (#159) )y Pz (®1,7) 7%—1(-’”177’))
~f (wz;"’ sZn—1 (%, ) 1 Pri1 (259)s Gt ("1’27’0))] dv.

We shall prove that in Ay

(9). DX [P (20,0) — Pals,9)] < (1 - %Lk)”lx

x {o‘auwl— ) + & (ool {04 + MB) ity — ) + L wzn}.

For n=0 this is obvious. Suppose the inequality to be valid for
n—1. If

MAaX [Py, (%1 ,9) — P (2, 0)] <MAX [Py_y (B1,0) — DPu (2,9)]
v v
then (9) is obviously satisfied. If
IAX [Py (1,0) — P (@, 9)] > 0BT |Py_1 (#1,0) — Puos (@250
v v
then
[P (®1,Y) — Pu(2,9)]
e+t
L O(loy—xp)) + f [ (2 — 23]) + @ (121 (1,0) — Zn_1(22,9)])
c

+ Ll Dy (®140) — Pyt (B 0)| + Ll gra(@1,2) — Q1 (T2 ,)| ] A0

< o (|21 — @) +% [0 (12— @]) + (4 + MB)| @y~ )

+ Lkmax lpn(xliv) - ‘Pu(% "D)i + Lkﬂ[!ml_ mz”
v
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for every y, whence (9) follows immediately. Similarly we can prove
the equicontinuity of g¢,(z,y) with respect to y. Global equicontinuity
in B may now be proved by following the procedure described in the
proof of theorem 1.

By Arzeld’s theorem every sequence 7 of indices contains a sub-
sequence n; for which the funetions 2, (2,9), D (@) n,(%,Y) cODVErge
uniformly in R. By (a) zm(w,y);*z(w,y), whence also pm(m,y)'_’; 0z(2,y) /0w,
q,h.(w,y):laz(w,y)/ay. The sequence m; being arbitrary, we get z,(x,y)
Iz(2,y) pn(wyy)jaz(myy)/am7 Qn(wﬂ/)jaz(m;y)/ay'

20 (b)=>(e). Trivial.

3° (d)=>(a). Trivial.

4° (b)=>(d). Since we have 2, (x,y)3=(z,y), Bz, (,y) [0 0= (w,y) [ D,
02, (2,)/ 0y 02(z,y)/0y uniformly in R, (d) is obtained by passing
to the limit in the formula defining the function z,.,(z,¥).

5° (e)=(a). As shown in 1°, the functions z,(z,¥), Pn(®,¥); ¢u(®,¥)
are equicontinuous. Hence every sequence of indices m,; contains a sub-
gequence 7; such that

Oz(x 0z (@
SR ECR PR E S < N REE S
uniformly in B. By (€) 241 (2,9)32(%,9).
We shall prove that also
0z(x 0
Pm+1(w’y)3p(w"‘./)="‘%m,l): Qm+1(wy?/):;(,7(m7?/)=%'

Indeed, suppose the confrary. Then there exists, for example, a sub-
sequence 7; (?f Mgy €0, and (2;,y;) e R such that |p,, i (4;,9:)— 2 (2, 4:)| = e
By equicontinuity »; contains a subsequence s; for which

07 (x,y)

0%z (,Yy) G (@,9) 3 2220) '

pa¢+1(m1y)3 A

za.+1(f1hy)35(w,y), Y

Since the sequence s; is extracted from n;, we get

0z (w,y)

,y) =—->
p(@,y) Fray
Whel;:e Psy11(@,9)3p (®,y), which is impossible.

assing to the limit in the equation defining 2, ., ( f
g . 1@,y), we see that

z(x,y) satisfies 'the equation (I), whence it is uniq:;‘;ly &etérmined. The
sequence m; being arbifrary, this implies in turn that 2 (@, y)>2(2,y).
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