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On a question of additive number theory
by

P. ErDos (Saskatoon) and P. ScErrx (Saskatoon)

1. Let A = {a}, B ={b},... denote sets of non-negative integers
containing the number zero;

P

k

13
DA ={Du} (med;, A=1,2,.., k).
1

1

Thus >4, consists of all the numbers a;+ay+...+a; where each a,
lies in the corresponding 4,. For a given integer n let [A] denote the num-
ber of positive elements of A up to and including n. 4 denotes the set
of the integers <{n which do not belong to 4.

It is well known and easy to see that ne¢Ad 4B implies [4]+[B]
< n—1. The eorresponding problem for three or more sets does not lead
to anything new. For then

]
(1) "¢ 2 A,
1

implies ne¢d;+4, and thus [4,]4[4,]<2—1; 1L <1< p < k. Adding
these }k(k—1) inequalities we readily obtain
k

@) D 4,1 < Fe(n—1).

1

That (2) cannot be improved can be seen by taking 4, =A4;...= 4=
== get of integers between [{n]+1 and n—1 together with 0.

This question becomes more interesting if we require n to be the
smallest number not in }'4,. For ¥ = 3 and » < 15 one can show(*) that

[A4,)+[4.]+[4s] <n—1.

() Written communication from Professor H. B. Mann.
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However this estimate becomes false if » = 15.
Surprisingly enough, (2) is asymptotically correct. Put

3)
where A, ..., Ay range through those sets which satisfy (1) and

3
filn) = max D'[4,]
1

e
) {1,2,..,n-11C N4,

Thus fo(n) = n—1. In the present paper we shall prove the oxistence
of two positive constants a == o) and Y ==k guch that

(6)
for every k > 2. The first half of (5) will be proved in § 2, the second
in §3.

It would be of interest to obtain an explicit formula for f,(n) if & = 2.
In particular it may be true that
(6) . fie(n) = §on+ (840 (1)) n®-DE
for some positive constant § = ;. But we are unable to prove (6), still
less to determine f. .

2, Let B, = {b;} denote the set of all integers requiring only the
digits 0°'and 2* in the number system with the basis 2554 = 0,1,...,k—1.
Thus every integer @ permits a unique representation.

w=2bl.
0

Suppose that n has the representation

Pon— an®=9F < fi(n) < fn—yn®=

®)

k-1
(@) n= D8, bleB,
. []

Obviously one of the b}’s must be greater than jn. Renumbering the

Bs if necessary, we may assume
(8) b > .

We obtain the set ¢, by omitting the number 3 from B,. Thus

b1

n¢0+ D' B,
1
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k-1
and every number lies in C,+ 3 B, except the numbers
1

-1
B+ D',
1
We now define
(4)  On = BpoAg+- 01+ 04+ by}, ba 5= BY;

Let @ £ n; of. (1) and (2). I b, == b},
P b1 k-1

meOD—}—ZBAC 0@201 =201'
1 1 0

h=1,2,...

If b, = b}, there is an & > 1 such that

B—1 k-1
@ = D0+ by, by £ B
[] h
Henee
k—1 k-1 k-1
@elnt D B, C O+ D0, C N,
Al s} 0
k-1
Thus every number 7 n lies in }'C,.
0
We next show
k-1
(5) n¢ ' 0,
[]
Suppose
k—1
(6) " = 2 ¢y, ¢ eC.
[1]

Then for each h > 0 either ¢y = bye B, or
-1
(7) Cp = Z b‘)’."l‘ bln by, 7~ bg.-
0

Since the representation (2) of » was unique and since b ¢0,, the first
alternative cannot occur for all » > 0. On the other hand (3) shows that
(7) cannot occur more than once. Thus (7) will hold for exactly one index
h > 0. This leads to

k-1 h~1 k-1
®) no= Dbt (X 3 ba)+ D) by ba B
[ [ ht1
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Comparing (8) with (2) we obtain

I

Zbl = Y bt bt Zbu

he-1

(9) b/,, ,l‘ b}f .

The representation of the number (9) being unique, we obtain in particular
b) = by, a contradiction. This proves (5).

Define
lf::l
D) Oay

0
Asth

(10) Dy == ho=0,1,.., k-1

and let 4, be the union of C; with the set of all the numbers

.n.‘_(]l s -,_{:‘n,, ;Zzsijk

Then

fe—1

nd Z‘ AA.

b
Thus » remaing the only number not in A
0

k-1
It remains to estimate Y [4,]. Let 25" < m < 25™+Y. Then
0

[B,] < 2™ = 29" < 2pM 2 = 0,1, ..., b—1.
Therefore
(O] < 20 [0] < 4n¥® i 0 < A= k—1.
Thus
k-1
Y‘ 0, = n[m < Aty
and
k—1
Z 0N <” [0,] < 3% Tp=Dk gk
;eh Ax;éh
Hence
[4p] > dn— 451D g0 e B 0O g L
and
k-1

D 431> Hlon— (Te--1) 228 =8,
[]

This proves the first part of our result with o == (k- l.)‘f’“””.
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3. Let #> 0 and %> 2 be fixed. Let

k
'MZA“
1
k
=1} C D 4,.
1

In this section we construct an absolute positive constant ¥x such that
k

Z[Au
Without loss of generality we may assume
(4) (4] > [4:] > ... = [4,].

Let y > 0 be given. From now on we assume
k

D421 > Fhon— yn®-00k,
1

ey

(@) {1,2,

3) Fhon— ppn®-Wk

(6)
LEmmA 1.

k—1)k
s

RTINS
(6) il <5 + 55"

(o] > 140> 3 —w_—’g(;f—jm & 4 g
-Proof. Since n¢Ad,+4,;, we have [4,] < n—[4,]. Thus (5) implies
$on—yn® I <[4, 14 (B—1)(n—[4,)).
This yields (6). Also by (4), (5) and (6)
Fhn—yn® I < (A—1)[ 4]+ (b—A+1) [4,]

(7) oy B

n
< (A—1) (

2+70{_2%(k—1)/k)+(k-1+1)[rh]-

This implies (7).
We now define

k
(8) Bi———;A“ i=1,2,..., k.
A
Thus
R k
(9) D4y =4i+B;, i=1,2,..,k.

Acta Arithmetica V. 4
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LEMMA 2.
(10) o
" -i- ,n(k 1)k if 4= 1,
2
K A TP ;B I 3
5 k-2 - Z”_Jr__Jﬁii;» At LI W
\ 2 (b—2)(l—i-t1)

Proof. B; contains either 4, or 4,. Thus the first estimate follows

immediately from (7) with 4 = 2. o
By (9), n¢d;+B;. Hence [Bi] <n-— -[4,] and (7) also yields the

second inequality.

LEMMA 3.
[B1 ~ Zu] 1 ( k+ m— 3) (e=1)/k, == 2 k.
1 n M e
(11) (B, ] 2 + k—p41 4 j yres

Proof. If A # u, 4,C B,. Thus [B;~4,] = [B;]—[4,] and (11)
is a corollary of Lemmas 1 and 2.

LEMMA 4. .
(12) [B,w Byv ...w Byl < -+ 8lyn®-D0%,
Proof. If o lies in By Byu...w By, n—uw Yes in Ayv ... 4. Hence
(13) [B1 W B2 LY Bkj [Al w _Az LV Zk]
= r-AIcJ 4-[Agn (Zl g A.2 e -A_Ic—-l)]
k-1

< [Ap] 1A~ A A S’ Ay~ A,

In~1

< [+ [Byn Ay FI% ~A,]
Now by (7) and (11)

—3 =0

n -
~ + = j -i-aynI,

[l = n—[4de] <,

2 o
By~ 4] < 5 =D < o1k

and
26 —4

B~ 4] <= - (1+-""") =D < gynt=

it 2 < p < k—1 Thus (13) yields (12).
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]
Let ¢ denote the set of those elements of 3’4, which lie in none of
1
the B;. Lemma 4 implies
Lmmma 5.

(14) [C]> }n—8kyn®—DE,

For each c<0 we choose a canonical representation

&
o= o
1

in the following way: First &; is chosen maximally among all the repre-
sentations of ¢. If ay, ..., a, have been fixed, @, will be maximal among
all the representa.mons of 4 Whlch use @+ ayt-...+a.

Lemma 6. Let

(15) aed,,

(16) ¢ = Dae0, aed,
be the camomical represemtation of ¢’. Let
1Kh<bh<...<ih<k

and suppose

[ »
(17) 21]% =Z%.
Then
(18) alﬂza;“, u=1,2, ..., h.

Proof. Substituting (17) in (15) we obtain another representation
of c. Since @, was maximal, we have Gy > aq] Similarly, (17) and (16)
imply a; > a,. Thus a;, = a;, and (18) follows by induction.

Lzmma 7. Let 1 <1< %k The number of elements b; occuring in the
representation of elements ¢ = a;+b; of C is less than

9 yn(k Wk /43/71(1" ke

awaa

—1
)

This remark is obvious. If b; occurs in the representation of numbers
of 0, b; cannot occur in any A, with u 7 4. Hence the number of these

by is [BinA 1. Choosing u =1 if 4> 1 and u arbitrarily if ¢ = 1,
we obtaln our estimate from (11).
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We now construct a sequence of subgets
0=D,02D, 02Dy, D... DDy,
of ¢ in the following fashion: Let 6=~ 0 be given. Dy congisty of those ele-
ments .
(19) c‘=2a;=b;+a; (Gfedy, A=1,...,k)
1

of D,_, such that for every 4= h there are not legs than §2*"npte
elements of Dy, of the form bi- J g (h == 1, .00, k)

LEMMA 8.
. (20) (D, ~ Dy] < 4(k—1)ydn.
Proof. Let 0; denote the set of those numbers (19) of D, such that
there are fewer than én' elements of Dy of th form by +a; (i =2, ..., k).
Thus

k
-DD’-\EI == UC’t.

Tet 1 < i <k be fixed. By Lemma 7 there are less than dyn®~/
numbers b; occuring in the representation of elements ¢ = a;--b; of C.
In particular there are fewer than dyn®—" numbers b;. Bach of them
oceurs 1n fower than on'/* elements of C; and cach ¢* e 0; has o reprosen-
tation ¢" = b;+a;. Hence

[0;] < 4yn®=D%. sl — 4ydn
and

k
D, ~ D11 < D [0i] < 4(k—1)yén.
2
LEMMA 9.
(21) [‘thDh-(—l] < (b—h—1)[Dy—y ”-57&]1 ho=1,2,...,k—2.

Proof. Let O; denote the set of those elements (19) of Dy~ Dy
such that there are fewer than 02 *n'* clements of D, of the form
b +a; (i = h+2,..., k). Thus

k
.D'y,_f\.zjh_l_l = U (7,5
Tt
Let ¢ be fixed; h-+1 <i <<k If b; occurs in the representation

of some ¢*e(;, there are not less than §2'~%n** elements of Dy, of
the form b; + a; while fewer than 62n'” of them belong to .Dj. Hence

more than 62~ "n** of them will lie in D;,_, ~ D,. The number of these b}

ig therefore less than
[Dny ~ Dy1J(827 0 ),
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Tach of these bi’s gives rise to less than 62 %#** elements of ¢;. Con-
versely .each element of (; has a representation ¢* = bj-a;. Hence
[0:] < 627" ™{[Dy_y ~ Dy]/(827F ) = [ Dy ~ Dyl.

This yields (21). -
LeMmMA 10. Let 0 < h < k—1 be given,
(22) @ = Doy = bi+ai<Dy.
Let 4y, ...,% be any h-tuple of distinct indices satisfying @, > A;
A =1,2,...,h. Then there are at least
5’*2*(2)7,/%
numbers

h
(23) (= D'ai) + Za,leO’

Proof. For h = 1 our assertion follows from the definition of D,.
Suppose it is proved for h—1 and assume (22). From the definition of D,
there are at least 42'~*n* numbers @, such that b} +a;eDy,. By
induetion assumption there are to each of them not less than

1 o= (") =D/

numbers
h—1

h 13
* * L]
(bih+“fh 2 a’a) +2 Ay = ( —-{_?Ja‘l) +Za’iz€0‘
Altogether we have at least
(521—Pp1l¥) (-1 2‘(";1) A-Drky 6h2—(§) otk

numbers (23). By Lemma 6 they are mutually distinet.

LemumA 11. Let
(24) — L '1/4_ r)k/z l
Then Dy_, is empty.

Proof. The case b = k—1 of Lemma 10 yields: If there is a number
¢" = YaieDy_,, then there are at least

k-1
5k-12 "z ),n(k—l)/k

elements ay b, of ¢. By Lemma 7 fewer than 4yn® % numbers b, can
oceur. Thus

Jo—1 ( 2 ) k—1)k k—1) [k
This contradicts (24>'
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LmmmA 12. Let
1 1
(25) O A s T

Define & through (24). Then

(1—8e(k—1)po)n'l* - 6y
for every n.

Kol —
Proof. Since /4y < 1, woe have
8o(I6—1)! yd-+ 6y < 86(k—1)1 21 y| §(4 ) (h—1)12FA-1,

= QMR (L —1)ly = 1.
Hence
(1—8e(k—1)lpd)n** = 1—8e(l—1)y6 == by,

We are now ready to show that the constant (25) satisfies (3).
Lemmas 8 and 9 imply by induction
(b—1)!

[y~ Dyl < 47— yom,

(ki—*::-z—')—‘ h=0,1,...,7{1~—2.

Thus by Lemmas 5 and 11
1 -2
— 7
§n~370yn('° WE < 0] = ‘_\_J [Dw s Dagal
0
-2
1

< 4(k—].)!y6n2-m:m
4 i

< de(b—1) ydn.
Hence

(1~ 8e(k—1)! p6) n'/* < 6ly.

Thus Lemma 12 shows that our assumption (8) leads to a contradiction

if y is chosen according to (2h).

. 4. If n is a given integer and if § and 0 = {0} are sobs of non-negative
integers, the set §—0C consists of all the integers o = 0 guch that a-} cef

for every ¢ with o-¢ < n.

Let b > 1,
ng8, 0ed, (A==1,2,...,h)
and let-

h

(thus >'4,C 8).
1

icm
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Then there are two positive constants y, = y,(h) and y, = y,(k) which -

are independent of n, S, 4, ..., 4, such that always
3
D 4,] < [814§(h—1)n—yyn"®*D
1

and that for a suitable (h--1)-tuple 4,,..., 45,8
h

3 14,) > 81+ H(h—L)n— yun,

1

These results follow at once from the preceding sections if we put
% = k—1 and choose for A; the set of all the numbers of the form n—3§

where 0 <35 < »n, 5¢8.
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