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1. Introduction
Let
(1.1) : f@,y) = av®+bay+-oy?

be an indefinite binary quadratic form with real coefficients and diseri-

minant, D = b%2—4ac > 0; and write 4 = «H/E; and let m(f) denote
the homogeneous minimum of the form f,

m(f) = inf[|f(=, y)|; @,y inbegral, (=, y) # (0,0)].
If P = (@, 7,) is any real point, we define

M(f; P) = M(f; 0, §o) = IE[|f{m+ @, y+50); #,y integrall;
the inhomogeneous minimum, M (f), of f is now defined by

(1.2) M(f) = sgpM (/3 ),

where the supremum is taken over all real points P. (In fact, in (1.2) it
is sufficient to consider any complete set of incongruent points (mod 1)
because P =P’ (mod 1) clearly implies M(f; P) = M(f; P’).)
If we define .
My(f) = S;}p[M(f;P); Pe (],
where _
C =[P; M(f; P) #+ M(f)],
then
Mo(f) < M(P);

if strict inequality holds, we call M,(f) the second minimum of f.
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Tn this paper I examine the inhomogeneous minima of the forms g,
defined as follows:

(1.3)

where 4, r = 0,1, ..., denote the Fibonacei numbers (4, = 0, u, =1,
lhpyy = Ut Upy for 7 >1), and v, 7 =0,1,.., denote the Lucas
numbers (v, = 2, ¥ =1, Upp1 = Vp~FVr1 for # > 1). It iy casily shown
that the forms {g,) form a subsequence of the Markov forms F,, Iy, ...
(see Dickson [9], Ch. VII). In fact, we have

Inl®, ) = “2n+swz+"32n+amy"““2n+3yz {(n = 1),

(@, y) = But+llwy— byt = Fal@,¥),
gal®, y) = 1802 +290y —13y® = Fy(0, ¥),
ga(®, y) = 34a?+-T6xy —34y* = Fy(, ¥).

The first two Markov forms, F,, Iy, do not belong to the sequence {g,}
for n > 1,and will not be ineluded in the general discussion of the forms g,
because the continued fraction expansions, both simple and “semi-regular”,
of their “roots” are rather special; however the coefficients of Iy, Fy
are of the same shape as those of the g,, and so we may write

gal@,y) = s*+ay—y* = Fo(@,9),
9o(®, y) = 20+ day — 29* = F1 (2, 9).
It is well kuown (see Davenport [4], [3], Varnavides [11]) that
M(ga) = = dm(g);
Mge) =1, Ma(g) = % = 3m(go);
and Davenport [5] has shown that

(1.4)
(1.5)

1

(1.6) M(gy) = 5 = 7m(gy)-

The main result of this paper is

THEOREM 1. For m = 11 the following statements hold:
(i) ¢f m==0(mod 3), then

M (gn) = fUanis = $m(gn);
(i) 4f » =0 (mod 3), then
M(gn) = }(BUgnrg—3Vmys) > 190 (gn)
My(gn) = Yhanys = Im(gn).
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For the proof of this theorem, I uge the divided cell method for
evaluating the inhomogeneous minimum which was devised by Barnes
and Swinnerton-Dyer [1], and then extended and applied by Barnes [2];
for convenience of reference, I give an outline of this method in section 2.
In section 3, I give a theorem on “I-reduced’” forms which makes it
possible to apply the method of section 2 to the forms g,, and which
is therefore the essential tool in the proof of Theorem 1. In section 4,
I give the theoretical part of the proof of Theorem 1, but only a sample
of the numerical part of the proof, as this is all of the same kind.

It is clear from (1.4), (1L.5), and (1.6) that Theorem 1 holds for
n = —1, 0, 1. These results can also be proved by the divided cell method;
the proofs when n = —1, 0 take only a few lines, but the proof when
7 = 1 involves more numerical work. In section 5, I show that Theorem 1
also holds for » = 2, 3. This strongly suggests that the theorem may
hold for all o > —1, but the numerical details of the proof for 4 <<n <10
would be very tedious.

Davenport [6] has shown that there exists a constant %k such that,
if fis any indefinite binary quadratic form with discriminant D>0
and 4 = +1/D, then M(f) > kA. We may therefore define an absolute
constant K by

K =sup[k; M(f) > k4],

where the supremum is taken over all forms. Cassels [3] has shown that
K >1/45,2, and, as shown in my thesis [10], this may be improved (1) to
about K >>1/39. As a consequence of Theorem 1, we obtain an upper
bound for K:

K <1/12.

For, if » ig arbitrarily large and n==0 (mod 3), we have M (g,) = tm(gn),
and, gince m(g,) tends down to 4/3 as n — oo, this means that there are
forms g, with M(g,) arbitrarily close to A/12.

The details of proofs and the numerical work which have been omitted
from this paper are given in full in may thesis [10].

T wish to thank Dr. E. 8. Barnes, who was my supervisor in Sydney,
very much for all his help; in particular, I am grateful to him for sug-
gesting the application of the divided cell method to the forms g,. I am
also grateful to Professor 1. J. Mordell for his advice on the preparation
of this paper. The computations for sections 4 and 5 were done on a
Brunsviga provided by the University of Sydney. ‘

() LAdded in November, 1958] V. Ennola has recently proved that
K > 1/30,69...; see Annales Universitatis Turkuensis, Ser. AI, 28 (1958), p.9-58.
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2, The divided cell method

We suppose that the form f iz given by (1.1) and that it does not
represent zero; then we may write

flo,y) = (am—py) (yo-+0y),
where af, 8/y are irrational, and |ad—fy| = 4 = VD. We write

& = azy+ B,
& = aw+py+ &,

£ the set of points (&, n), where » and y take all integral values, has no
point on either of the axes & =0, 7 =0, then thig set is called in this
paper an inhomogencous lattice corresponding to f and (m,, ¥,), and is
denoted by L = L(&, n); clearly

M (f; @0, yo) = ink[|Enl; (&, m) e L]

A parallelogram whose vertices are lattice points of L is called a cell
of the lattice if it contains no lattice points other than its vertices; that
is, if and only if its area is A. A cell is said to be divided if one of its
vertices is in each of the four quadrants. Delauney [7] proved that every
inhomogeneous lattice has at least one divided cell; also, gince a/f, oy
are irrational, none of the lattice lines of I can be parallel to either of
the axes & =0, = 0. The method of Barnes and Swinnerton-Dyer
depends on Delauney’s algorithm, which is based on thege two
facts, for constructing a doubly infinite chain of divided cells

Mo == Y@yt Yo,
n = y0+0y -+ -

Suppose Aqg, By, 0y, Dy are the vertices of the divided cell 8, and

are either in the firgt, fourth, third, and second quadrants respectively,
or in the third, second, first, and fourth quadrants respectively, so that
AyD,, B,C, intersect the -axis. Then §,, with vertices .4, By, Cy, Dy,
i§ the cell defined by taking A4,B, as the uniquo lattice step in the line
AyD, which cuts the &-axis, and C,.D, as the unique lattice step in the
line B,0, which cuts the £-axis. Similarly, §_, is the cell defined by taking
the unique lattice steps in the lines .44B,, oD, Which cut the g-axis.
It ig clear that 8, S_; are again divided cells, and therefore the same
constructions may be applied to obtain divided cells 8;, 8., and so on
indefinitely. In this way, starting from §,, we get a doubly infinite chain
of divided celly {S,} (—oo <m < oo) of the lattice L, and if we then
apply this process to any particular cell 8, of the chain, we shall obtain
exactly the same chain. It is shown in my thesis that, if {S,} is such
a chain of divided cells of an inhomogeneous lattice I, then {8§,} includes
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all the divided cells of L; that is, the chain of divided cells of an in-
homogeneous lattice is unique. ‘

Barnes and Swinnerton-Dyer [1] showed that, if L is an inhomoge-
neous lattice corresponding to 7 and to the point (¢, %'), and if {8,}
(—o0 < @ < oo) is the chain of divided cells of L, where, for each n, 8y
has vertices Ay, Bpy On, Dn, and

(2.1) % — min[|énl; (£, 1) = 4u, B, Oa Dal,
then
(2.2) M(f; o, y') = mt[]nl; (& m)eL] = inf 22

Thus, in order to evaluate M(f;«’,y’), it is sufficient to consider the
values of |&y| corresponding to points (&, #) which are vertices of divided
cells of L.

Barnes [2] showed further that there is a one-to-one correspondence
between chains of divided cells {S,} and pairs of chaing of integers,
{@n}, {ea}, With certain properties. In order to state this correspondence
explicitly, we must introduce some further definitions.

Let {a,} (n>>1) be a sequence of integers such that |a,| > 2 for
all # and a, is not constantly equal to 2 or to —2 for large =, and let

Ppo=1, =05 pi=ay, g, = 1;
Pni1 = Ong1Pn— Pn—1 (n=1),
Gnp1 = Ony10n—u1 (B Z=1).

Tt is easily shown that the sequence {p,/¢,} converges to a limit a such
that |a| > 1, and we define a = [ay, @y, a3, ...] by

T 2
o = [y, Gy, @5, ...] = hm';ﬁ-
n-»00 Gn
Clearly
1 1
o= a;— —veny
Wy—  O3—

so that a = [ay, a4, a5, ...] can be transformed into & ‘classical semi-
regular continued fraction

_ _Ha M3
= Ot i el

whose convergents have the same values (though the signs of p, and ¢,
may be different). We shall not use classical gemi-regular continued

(ps = £1),
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fractions of this type here, and so without confugion. we may call
a = [ay, Gy O3, -..] @ Semi-reqular continued fraction expansion of g,
to distinguish it from the simple continned fraction expansion of a. Any
irrational ¢ with |o| > 1 has infinitely mauy semi-regular continued
fraction expansions. We note that, if

2 <k < a< k-,

then there exist expansions o = [&y, Ga, d5, ...] both with a, = & and
with a, = k-1, bub if

1< w2,
then every expangion of o must have g, = 2.
An indefinite binary quadratic form I with discriminant D > 0
is called inhomogeneously reduced, or T-reduced, il it ean he written in
the shape .

4
(2.3) F(w,y) = ﬂ:»@:ﬂ(@w-ky)(w+¢y),

where 4 = +I/ﬁ and

o] 1, gl 1.

It is well known (see Dickson [8], Ch.V) that, vorresponding to any
indefinite binary quadratic form f(z,y) which does not represent zero,
there is an equivalent Gouss-reduced form, that is, a form (2.3) which
satisfies the more stringent conditions

< —1, @p>1.

Hence there certainly exists an I-reduced form equivalent to any in-
definite binary quadratic form f which does not rvepresent zoro.
Let

, A
folmyy) = & 0T (O +-9) (@+ o)

be any I-reduced form oquivalent (under an integral unimodular linear
transformation) to the given form f. Let {a,} (~—o0 << % < 0o) be a chain
of integers such that

by =y, 6oy, 0y, oy g = [y tay 05
then {a,} is called an a-chain of the form f. The chain of equivalent

I-reduced forms {f,} (—oco < # < o) corresponding to {«,} is defined by

fn(®,y) = £—

‘0:(;;:_——]1 (O 9) (@ ),
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where
On = [@ny Gnyy On_zy--]y * Pn = [@ni1s Onpar Onyss SN H

{fa) i8 called the form-chain of f corresponding to {a,}. By our definition
of semi-regular continued fractions, any a-chain {a,} of f must satisfy
the condition:

w |

Let {e,} (—oo < n < o0) be a chain of integers which satisfies the
following conditions:

|an| =2 for all n, and ay, is not constantly equal to 2 or to —2 for
large n of either sign.

() lenl < 1@nss]—2 ond e, has the same parity as Gnpy;
(i) nmeither Gy, 1-+en MOT Gpyy—&n 08 constantly equal to —2 for
large n of etther sign;’

(B) for amy m, the relation

(iit)
Oppargrt Enpor = Onyorpa— Enprryl = 2

does not hold either for all r>=0 or for all r < 0.

Then {s,} is called an e-chain corresponding to {a,} (or, equivalently, to
{fa}), and {ay}, {e.} ave called 2 chain-pair of the form f.
For a given chain-pair, {a.}, {s}, we define

(2.4) O = a3 (=1
= en—-l n—2 e an-—r
00
(2.5) = ot (=1
= Pni1Pnp2e«Pnir

Tt ig easily shown that the series (2.4), (2.5) are absolutely convergent
and that |ou| < [Bn]—1, |7al < [pal—1.

Barnes [2] showed that, if {S,} is the chain of divided cells of any
inhomogeneous lattice corresponding to f and a given point P, and it s,
is defined by (2.1), then there is & unique chain-pair, {an}, {ea}, of f such
that, for each =, :

(2.6) m, =
— A___mm[1(l+ O+ Un)(l‘{'q’n“‘fn)ly (—1+ 0+ U'n)(l-‘q’n"l"'tn)l’ ]
1ngn—1 I —1—0,40on)(—1 —@nt+Tall, ‘(1""0713"{"01;)( _"1+97n+71t)|

and, conversely, that, corresponding to any chain-pair {a,}, {e} of f,
there is a point P (unique mod 1) such that, if {8,} is the chain of divided
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cells of any inhomogeneous lattice corresponding to f and P, and if a,
is defined by (2.6), then (2.1) holds for each .
We define (@, ¥n) (—oo < n < 00) by

On@n Y = $(—1—0p-1- o),
(2.7)
Tnt @uln = $(—1—@u-Ta).

Using (2.7), we can combine our results in the following theorem.
THEOREM 2. If {ay}, {en} is a chain-pair of f, and m, is defined by (2.6),
and if we put

(2.8) M ({0n}, {ea)) = int ™,

4

then there ewists a point P such that (for each r)
M(P) = M(f; P) = M(fr; @, 4p) = ZW({“%}: {sn});

and if M(f) is the inhomogeneous minimum of f, then
)

M(f) = sup M ({an), {ea}),

where the supremwm is taken over all possible ehain-pairs of f.

Thus we can evaluate M(f) by examining the chain-pairs of f,
without explicitly considering the divided cells at all. The success of thig
approach to the problem of the inhomogeneous minimum depends on
the rapid convergence of the series (2.4), (2.5). Hstimates of the ervor
made in replacing these series by partial sums will be needed for comput-
ations and are given below.

‘We here introduce the permanent notation. |l for a quantity whose
moduluy does not exceed |a,

Lemwa 2.1. If {a,} is an a-chain of f, and {s,} (—o0 << n << 00) 48
a chain of integers which satisfies (B) (i), then

Sy et ]
Op == Epq = e ey o (e L) e 0
n -1 Ony Ao (1) O O |
: 1 1 ;
low o\ ool
Ty = Ep— Eny1 Foverb (=1)7 Erpr
Pri1 Pl « o« Py

|
F

Ea
Pregers o » Prger h |?7n+r+1| i‘
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The proof of this lemma. is given in [2], §3.

LeMMA 2.2. Let {an}, {e.} be given as in Lemma 2.1. Then

(i) 4f further Op_p_y, On_p_q differ in sign (i.e. if Gnpys Gn_p_y differ
in sign), then
En—r—1

o (21 e

Opyee Bny

En_g

On = En_1—
O

+ | ;

1 (1“ 1 2 )l
On_z. On_yp |On—pil [0n—¢—1 Onp_sl/ |
(i) @f further nppi1s Papese differ in sign (i.e. i Gnyryar Onirss differ
in sign), then
Enpr

&t
Ty = Ep— —— Fou

=1
P Prgree Prgr

This lemma is given in my thesis; it is easily proved there in the same

way as Lemma 2.1, by using the fact that, if @r, @ri differ in sign, then
I+
[ [(1,,.+1 el .

When we wish to evaluate M (f), we try first to find and reject those
a-chaing (with the corresponding form-chains) for which M ({a.},{en})
ig small for any corresponding e-chain, and then to examine the other
chains more closely. At this preliminary stage, striet inequalities are nc!t
needed, and it is unnecessary to decide whether {en} satisfies the condi-
tions (E) (ii) and (E) (iii); therefore it is convenient in Lemmas 2.1 and 2.2
to assume only that {e,} satisties (E) (i). It is possible to eliminate a la.?ge
number of form-chains {f,} Wwith all corresponding e-chains by using
Lemmas 2.3 and 2.4 below.

First we introduce the following definition: for any indefinite binary
quadratic form f given by

f(@, y) = aw* by + oy,

1 (1 1 2 )
PnyreePryr lonseal [‘Pn+r+1%+r+n|

we define o
A = A(f) = min|e4b+¢| = min|f(1, £1)|.
LmMuma 2.3. If {fx) is o form-chain of f, and {as} is the corresponding
a-chain, then, for every corresponding e-chain and for every r, we have

. A
M5 P) = M((an fen)) = Ml a0, ) < < 20
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This lemma is proved in [2] (Lemmas 3.2, 3.3).
LeMMA 2.4. In Lemma 2.3, we can have

(s 7y A0

(2.9) .

if and only if conditions (i) and (i) are both satisfied:
@) Alfe) = il’l‘“(fnh

(ii) (e, ¥p) = (%, §) (mod 1),
The condition (ii) tmplies that:
(iii) the chain {an} is evem, (i.6. an is even for all n);
(iv)  &n =0 for all n;
() P =(3},0) or (0, ) or (}, $) (mod 1).
Proof. For each 7,

4 .
M) = = min[[(6,—1) (e =D, [(Gr+-1) (e +-1)]].
[Opop—1| ’
?Iex.lnce it is clear from (2.8) that (2.9) holds if and only if (i) and (ii) hold)
if (ii) halds, then, a8 |o) < |0,]—1, |z < |@| —1, it follows from (2.7)
ty&t oy = T, = 0, which implies (iii) and (iv); (v) also follows from (iir
since P must be the image of (»,, y,) under an integral unimodular linea;
transformation.

Finally, to avoid unnecessary enumeration of cases, we need another
lemma,

Leuma 2.5. If {an}, {en) is any chain-pair, the value of

M (P) = M ({on}, {en})

18 unaltered by dny of the following operations:

(1) reversing the chains {an,,}, {ea} about the same point;

(11) changing the signs of all en;

(iii) changing the signs of all a, and of allernate e,.

This lemma is proved in [2] (Lemma 3.1).

3. Equivalent I-reduced forms

In order to use the method of section 2 for evaluating the inhomo-
geneous minimum of an indefinite binary quadratic form g which does
not represent zero, we must be able to determine all the a-chains of ¢.
I now turn to the problem of determining all possible chains of I-reduced
forms {f,} of g (and hence all a-chains of g).
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Barnes [2] showed that there is only a finite number of I-reduced
forms equivalent to a form with integral coefficients; hence, if g is pro-
portional to & form with integral coefficients, we can obtain all the
I-reduced forms equivalent to g by a finite number of trials. However
this method becomes laborious if the discriminant of g is large, and
breaks down altogether if the number of I-reduced forms equivalent to g
is unbounded or infinite. Thus another method is needed.

The natural thing to do is to start from a particular I-reduced form
equivalent to g, say f, where

@, y) = :l:~—A——(0w+y)(w+¢y)
[6p—1]|
and, by expanding 0,¢ in all possible ways as semi-regular continued
fractions, to obtain all the chains {f,} to which f belongs. The questions
then arise, whether all the form-chains of g are included among these
chains, and whether every I-reduced form equivalent to g belongs to
at least one of them.
Before discussing the answers to these questions, we need some
definitions and notations.
If the form F is equivalent to the form f under an integral unimodular
linear transformation
t ]
|2
v W

where t, u, v, w are integral, and tw—up = +1, that is, if

o=

flo,y) = F(X, Y),

(160 >1, || > 1),

gives

we shall write

t u]

F = fT = f[ .
v ]

With this notation, (fT,)T, = f(T1T5). If tw—uw = -1, the forms will
be called properly equivalent; and if neither of the statements ¢ = 1w = 0,
u = v = 0 holds, the transformation T will be called non-trivial.

‘We denote by f = (a, b, ¢) an I-reduced form which does not repre-
sent zero:

f(z,y) = ax?®+boy+ cy?,

where D = b2—4ae > 0 is the discriminant of the form and —H/ﬁ = A.
Cleaxly, f(z, y) is I-reduced if and only if f(z, —¥), f(y, 2), fly, —m) are
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I-reduced; also, by Lemma 2.5, any chain containing one of thege formg

can be converted into a chain containing f(#, y) by reversing the chain
{a.} ({a_n} is the reverse of the chain {a,}), or by replacing {a,) by {—a,}
(its megative), or by both. It would therefore be sufficient to consider
only those I-reduced forms (a, b, ¢) with b > 0, |a| < [¢|. Here we adopt
the convention of considering only I-reduced forms with b > 0; with
this convention, the I-reduced form f = (a, b, 0) can be factorized ag

(8.1) flm,y) = ag?-bay+oy? = koo (1101 ) (w4 1yY),
[Pyry—1|
where
L R
VT e 0 YT e
(3.2) >0, |rl>1, |1,

and r,, 7y are irrational. We shall call , and », the first and second roots
of f respectively.
An g-chain {a,} (—oo0 < n < oo) of f such that
Ty = [ty Goyy Gy o]y Ty == [y, Gy, 4y, 0]
will be called an a-chain from f, and the corresponding form-chain {f,}
will be described as from f.
If f = (a, b, c), we shall call

(c, b a)——f[o L

the reverse of f, and (—a, b, —c) the negative of f.

We now return to the problem of determining all the I-reduced
forms equivalent to a given I-reduced form f.

We note that it is not always possible to obtain all the I-reduced
forms equivalent to f by taking all the forms in all the chains from f.
For example, the Gauss-reduced form

(3.3) g=(1,V8, ~1)
has roots
Ty = —¥y,
3+V5. 1
=g =8 =Binl =2, -2, -nl,
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while the equivalent form

11 o
G = glo 1J= (1, 2+V5, V5)
has roots
1+V5
R1 = 9 9
5+V5  9—V5
R, = 2 > 5 = [3,r].

Clearly @ cannot belong to any form-chain from g.

Algo, even for integral Gauss-reduced forms, it is not always possible
to obtain all the chains by taking all the chains from just one form. For
example (as we shall show), the first and second roots of the form g,
defined by (1.3) satisfy

B, = "Ra;
5R,+2
" R, +1

R, = [3n727 _2’R2]=[3 ] =[3n+172’R2+1]

(where 3, means n successive 3’s), while the equivalent form
11
9n 01
R, R,

R, -1 R,—1°
R,+1;

has first and second roots

the a-chain determined by the expansion
R,+1 = [4, 3ny 2; R,+1]

cannot be an a-chain from g,, as g, has roots of opposite signs.

We ghall prove the following theorem.

THEEOREM 3. Let f = (a,b,¢) (b > 0) be a Gauss-reduced form given
by (3.1) (so that v, < —1, 1, > 1), and let F =(4,B,C) (B> 0) be an
I-reduced form which is equivalent to f under the non-trivial linear trans-
formation

tou
34) T = { J, where t,u, v, w are integral, w > 0, and tw—uv = 1.
v w ‘
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Then any form-chain from I musi contain at least one of the three forms

f=(a,b,0),
(3.5) f[] ll = (a, 2a+4-b, a-+-b+0),
0 1]
(3.6) f[ ! OI = (@-~b-40,b—2¢, 0).
—1 1]

It is easily shown that the forms (3.5), (3.6) arc always I-reduced
when f is Gauss-reduced. Since f(—7) = fT', there is no logs of generality
in assuming in (3.4) that w = 0.

If F ig equivalent to f under a non-trivial transformation

)

for which tw—uv = —1, then # is properly equivalent to the reverse
of f under the non-trivial transformation

0 1] [t u

10f[v w|

Hence we can include the case of improper equivalence by replacing
“ by ‘“the reverse of f’ in Theorem 3.

Thus Theorem 3 means that we can obtain all the form-chaing of
a given Gauss-reduced form f by taking all the form-chaing from f and
from the two forms (3.5), (3.6). Since there is at least one Gauss-reduced
form equivalent to any indefinite binary quadratic form ¢ which does
not represent zero, it follows that we can obtain all the form-chains of g
by taking all the chains from at most three forms equivalent to g. This
makes it possible to apply the methods of section 2 to sets of forms whose
coefficients depend on a parameter in such a way that tho number of
equivalent I-reduced forms is unbounded, and in particular to the forms
0n, 88 well as to forms which have an infinite number of equivalent T-re-
duced forms (e. g. the form g given by (3.3)).

Further, it can be ghown that, if ¢ is proportional to a form with
integral coefficients, then we cap obtain all the I-reduced forms equiv-
alent to g (though not usually all form-chaing of g) by starting from just
one Gauss-reduced form equivalent to g. This result, which is proved
in my thesis, will not be needed in the discussion of the forms g, and will
therefore not be proved here.

Now we turn to the proof of Theorem 3.
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First we note that if f = (a, b, ¢) is any form given by (3.1) and if
F = (4, B, 0) is any form equivalent to f under T, where T is given by
(3.4), then
- A = at*+ btv+ cv?,
B = 2atu+ b (tw -+ uv)+ 2c0w,
C = au?+ buw-+ cw?,

(3.7)

If, further, the first and second roots of # = (4, B, 0) are denoted by

B+4 B+-4

(5:8) Bi= e B=—g
then it is easily deduced from (3.7) that

' v
3.9 : R, o= .
.9) YT uritw
(3.10) Ry = W

) vryt+1

We assume from now on that f = (a,b,¢) (b > 0) is I-reduced
(but not necessarily Gauss-reduced) so that (3.1), (3.2) hold, and that
F =(4,B,0) (B > 0) is an I-reduced form equivalent to f under a non-
trivial transformation T given by (3.4), so that relations (3.7) to (3.10)
hold and

Bl >1, |R>1.

We wish to know the types of matrix T for which this could be true;
for this we require a number of lemmas.
The following result is easily proved by trivial case splitting.
LemvA 3.1. If t,u,v,w are integers such that tw—uv =1, w >0,
and if it is not true that t = w = 0 or that u = v = 0, then evacily one of
the following four sets of relations holds:

(3.11) {w = =1, [u]>[; ‘
(3.12) w > |o], [u] = [t
(3.13) w=lo| =1, |u|l<]i];
(3.14) lw <ol lul < fi].
’ LeMmA 3.2. If F = fT, then
(1) lul >l implies  w = |ul, |v] =5
(i) |o >w implies [t =v], |u|=w.

Proof. This lemma depends on the fact that f and F are both
I-reduced. :
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From (3.9) we have

315 VR— —-w_R1~{—’IJ — —w — 1 = ._,U - Rl‘

(8.18) 7y = wRi—1t  u w(uR,—1) ¢ t(uRy—1)

If t = 0, then |u| = |[v| = 1, and, gince T'.is non-trivial, w > 1, so that
(i) holds. If |u| > [f| > 1, then, since |&| > 1,

(B~ 1] 2 ([t L) By| ~[¥ = Byl
thus |ry] <1 by (3.15) unless w 2 |u|, |v| 2= [t{. This proves (i) for all
cages, and (i) is proved similarly.

LeMMA 3.3. If B = fT, and if (3.11) or (3.12) holds, then T must be
one of the following matrices (where b i3 o positive integer):

[t "
(3.16) e (3.17) 0 F1 ,
. (Ju| > [t >0, w> v, 41 1)
w > jul, el > i),
[ 1 +1 ' 0 F1]
3.18 k= 3), 3.19 =
(8.18) Lk—1) R J ( ) (3.19) 41 lc‘ (k =2),
1 +(k=1) o (1 -1
(8.20) 11 § J (k =2), (3.21) o 1J.

This lemma follows from (i) of Lemma 3.2 by considering the special
cages [¢| = |u| = 1 ete.. which are not included in (3.16).

We now give some results on the chaing from F = fT' when 7T il
a matrix of one of the types (8.16) to (3.21); from these results we shals
deduce Theorem 3.

The following lemma ig an immediate consequence of the relation (3.9).

LumMA 3.4. If F = fT, and if

Wy Py~ thy

Q);ﬂ'g'l"‘t‘_
where
:i:[tl ul'J _ [a,lt——u tj’
Uy Wy [ )
then
o Ly vy
— = [y, R,].
o = [ Ra]
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We shall say that the a-chain {a,} (or, equivalently, the corresponding
orm-chain {f,}) from F leads forwards to f, if, for some n,

By = [y, Gay ...y Ony 73],
) 71 = [lny Gy - -y ag5 Bi];
and we shall say that an a-chain from ¥ leads backwards to f, if it leads
forwards from f to F.

LumuA 3.5. If ¥ = fT, where T is the mairie (3.16), then every a-chain
from F leads forwards to a form fU, where U is one of the matrices (3.18),
(3.19), (3.20).

Proof. By (3.10),

R _wrﬁ—u___ﬁ_’_ 7q =E __*-_1____
2T Tom bt & t(orgtt) v v{wreti)
go that
w h  w R
(8.22) R2=T+7:—/g+7}

where, by (3.16), |h| <1, |¥'] <1, and w/o is not integral.

"By the definition of semi-regular continued fractions, for any
expangion R, = [ay, @s, 0g; ...], 6; 18 an integer such that |a,| = Zva.nd
|R,—a,| < 1. For any such a;, we have, by (3.10),

Wy ¥g-+ 2y
Ry = [a‘u — H

V179t .

[P at—u 1
4 =
By 10y {@yv— 1 7’_

Algo it follows from (3.22) that

where

U

ale < 1

~ ’

- — | <%
| 2

layt—u] < |, |eyo—w| << |of;

and without loss of generality w, > 0. Hence, by Lemma 3.4, every
a-chain from ¥ leads forwards to an I-reduced form fT,, where
ty Uy .
T, = (b0 —uy vy = 1),
vy Wy
[y =ty o> o]y, > |, w #E 0, 0 # 0,

Acta Arithmetica V.
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and

<1, wl <lul, ol < l, w0, < .

Clearly T, satisfies the same conditions as the matrix 7' in Lemma 3.3,
and sinee wy > [vy), vy 7% 0, T; cannob be either of the matrices (3.17),
(8.21). Thus either T is one of the matrices (3.18), (3.19), (3.20) or 7',
satisfies the conditions (3.16), when we can apply fthe same argument
again.

Thus every a-chain from F musgt either lead forwards to a form fU/,
where U is one of the matrices (3.18), (3.19), (3.20) or determine a sequence
of matrices
7 — by iy
e Wy 0,

such that the chain leads forwards from f7,_; to f7, and

[up] 22 (b, w0 > (0], 0y = ], e 0y w50,

and
el < [teal s

Since in such a chain {7} we must eventually reach an # for which
[%e| = [t] OF |0, = |4y OF #, = 0, g0 that T, is one of the matrices (8.18),
(8.19), (3.20), this completes the proof of the lemma.

We note that if % is any positive integer, and || = 1, |y| = 1, then
§ == [2, #] if and only if

thy] < [thg ], [0p] << [0paly Wy Ty

By using this result, the equation (3.10) corresponding to the different
cages, and Lemma 3.4, we can easily prove the following lemma.
Lemma 3.6. Let B = fT. Then
() ¢f T is the matrim (3.17), every a-chain from T leads forwards to the
form fU, where 1T s the matriz
1 OI
H

+1 1

() of T is the matrin (3.18), every a-chain from B leads forwards to the
form fU, where U is the matria :

(3.23)

Lo4-1
+1 2
(i e. where T is given by (3.20) with k = 2);
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(ifi) 4f T is the mairiz (3.19), every a-chain from F leads forwards to f
or to fU, where U is the matriz (3.23);

(iv) of T s the matriz (3.20), every a-chain from F leads forwards to fU,
where U 1s either (3.21) or (3.17).

It follows that if B = fT and T is any of-the matrices (3.17) to (3.20),
then every a-chain from F leads forwards either to f or to fU, where U is one
of the matrices (3.21), (3.23).

Proof of Theorem 3. Let the I-reduced forms f, F satisfy the con-
ditions of Theorem 3, so that 7, < —1, 7, > 1, [By| > 1, Ry > 1. We
first note that it follows from (3.9), (3.10) that none of the following forms
is I-reduced:

; 10 ; 1 —1 ; 1 —1 1 —(k—1)
1 1}’ 0 1J’ —(k—1) & J’ f[~—1 k J

(where k& > 1 ig integral).

We first suppose that either (3.11) or (3.12) holds. If we exclude
possibilities which would give non-I-reduced forms, and use Lemmas 3.3,
3.5, and 3.6, then we see that either every a-chain from F must lead
forwards to f or to one of the forms (3.5), (3.6) or F ig itself one of the
forms (3.5), (3.6).

By Lemma 3.1, if (3.11), (3.12) do not hold, then (3.13) or (3.14)
holds. In this case we consider the reverse of F, which is given by

g B R | R R |
)

is the reverse of f. Without loss of generality we may take ¢ > 0 instead
of w >0, so that (by (3.13) and (3.14)) either ¢ = |u| =1, [v| > |w],
or t > |uf, |[»| > |w|. Then, by an argument exactly similar to that given

above, it follows that either every a-chain from the reverse of F must
lead forwards to the reverse of f or to one of the forms

IR i B
ol s = a1l o

or the reverse of I is itself one of the forms (3.24), which are the reverses

b

where
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of the forms (3.5), (3.6). This is equivalent to saying that, if (3.11), (3.12)
do net hold, then either every a-chain from F leads backwards to f or
to one of the forms (3.5), (3.6) or F is itself one of these forms.

Thus the theorem holds in all cases.

4. The forms ¢y

We now suppose that the forms ¢, are given by (1.3) for » = 1 and
derive some regults which will be needed for the proof of ’l‘hom’um 1 and
for the discugsion of the forms g¢,, gs.

The form g, is Gauss-reduced; therefore, by Theorem 3, every form-
chain of g, must contain at least one of the forms

In = (Usnp3; Vangsr = Usnps))

1 1]
(4.1) On [0 1 = (g 139 2y, i3 + Vg a s P a)s
10
(4.2) In 11 == (“’”mw, 2ty g0 Pan s "““’llg»,,,m).

If f is either of the forms (4.1), (4.2), thon A(f) = Uy4; it now follows
from Lemmas 2.3 and 2.4 that, if {a,} is an a-chain from one of these
forms and is not even (i. e. not all a, are even), then for every corresponding
e-chain

ML) = Mgu; P) == M({agh, {e}) <2 fatgn,y.

We ghall next congider the simple and semi-regular continuod fraction
expansmns of the roots of g, for n > 1, and obtain the values of M (4, 4),
M(0 M (%, 0) (corresponding to 1h0 even  a-chains of g,). Finally
we shall show that, for » > 11, if {a,} is an a-chain from ¢, which ig not
even, then

M(P)
Hence we ghall derive Theorem 1.

We denote the first and second roots of g, by Ry
Since the transformation

< Jihgngy -
xRy = AL

o Uon g1 Uany

Ugpe gy Ugnys
is a proper automorph of ¢,, it follows from (3.10) that

(4.3) g = Manps St Uy
Ty s S+ Ugnpg
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We sghall use }
a = (“17 gy @, --.)

to denote the simple continued fraction expension of any number a,
and

o = [ar, @, ag, ...]

to denote a semi-regular continued fraction expansion of a.
Since
Uonys Uonyis
. (2, 1,),

= (Za 12n+2) = (25 1yp, 2)
Ugn i1

Uan 43
it follows from (4.3) that the simple continued fraction expansion of § is
(4.4) 8 =(2,15,2,8),

g0 that g, is in fact a Markov form.
Levma 4.1. For all n > 1, we have

@) M(Fn) = Uznyss
(i) M{ga; %, 3) = Mga; 3, 0) = M{ga; 0, §) = anys;
(i) if n =0 (mod 3), b
M (ga; 5 %) = $(BtUgnys—
Proof. We have
(2,8)+

then

31727;4.3) M

(0,190, 2, 8) = Aftgnr3,
and

2, 8)4+ (0, 1ag_sy 2, 8) = A/(Btsny5— 3Vanys)-

Hence, by using Lagrange’s Theorem (see Dickson [8], Ch. VII, p. 111),
we can show that, for integral (x, y) # (0,0), we have

(1, 1,2

|00 (@, W) 2 Yanyss
and that, if in addition |g,(c, ¥)| 5 Ugys, then

(4.5)

Yn (@ ¥)| = 8tgnps— 30sm3-

Sinee g,(1,0) = Uan,s,. (i) follows immediately, and hence (ii) follows

also.
We now suppose that n =0 (mod 3). It is then easily shown that
41 Ugnys-

4|Vynp3 2|tUans s
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Since
Jal®, y) = 7(27L+!l(”"'2 - :‘/2)"' Vg 5
and 2|(«*—y®) when &, y are both odd, it follows that in this case 4|g, (v, 3),
and so
) gn(‘“} ]/) 7 :f:'u2n+8'

Hence (4.5) holds when #,y are both odd, and (iii) now follows, since
In(3)1) = BtUny 3 —BVanyg-

It follows form the first paregraph of this section that if {a,), (g,
is a chain-pair of g,, then

M(P) = M({a,}, {&}) < T].‘“zn.w;

except possibly when {a,} is an a-chain from g, which does not lead
backwards or forwards to either of the forms (4.1), (4.2) and which we shall
call a permissible a-chain. By (3.9) and (3.10), the first and second roots
of the forms (4.1) and (4.2) are, respectively,

(4.6) —8/(—8-+1), 841,
and
(4.7 —=(8+1),  S8)(—8-+1);

since g, bas integral coefficients, any form whieh has any of the numbers
(4.6), (4.7) as a root must be one of the forms (4.1), (4.2). Hence permi-
ssible a-chains are determined by semi-regular continued fraction expan-
gions of R, = —8, R, = & which are not, for any r, of the form

Lty gy ooy gy 7],

where Z is any of the numbers (4.6), (4.7); we shall eall such expansions
of +8 permissible expansions.

Since
Uprgs . Yoy
s 3 9T = [3 9] B 8, ,
’um“ [ N1 3] [5n, 27 ‘&.]1 U y - Ldn’ ‘)’]7
we have, by (4.3),
(4.8) 8 =[3,,2, ~2,8].

We note the following results:

[Zr "2)8] == [3: 2, S"I“J-L

{4.9) [—2, 8] =[—38, 8/(-81)],
(410) 3,2, —2,8] = (2, -2, —3, 8] = [2, —2, —4, 8/(—A-+1)],
(411) [8,8,2, ~2, 81 =[2, 2, —3, —8,8] = [2, —2, -2,2,2, §-+1].
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Also, “for any 2z such that |2} > 1, we have

[3,3,2] =

and from this we deduce that, for k¥ >0,

(4-12) [3k+37 27 _2; S] = [2~ "‘27 —3k+37 S]?
(4-13) [*‘3k+3as] = [_27273“27 "‘27817
(4.14) Brysr 2, —2,8]1 =[2, —2, —2,2, 3,2, —2, 8].

‘We can now prove

TeMMA 4.2. If n==0 (mod 3) and n =1, then

= fUsny3-

=1 (mod 3),

M(gn; %5 %)

Proof. By (4.14) and (4.10), if n
from g, is determined by the expansion

the even a-chain

8 = (12, —2, —2, 2, 2, —2, —4, §/(—8-+1)],

and so is not permissible. Similarly, by (4.14) and (4.11), if » =2 (mod 3),
the even chain from g, is not permissible. The lemma now follows from
Lemma 4.1. (We note that, by (4.14), if » =0 (mod 3), the even a-chain
from g, is permissible, which explaing why M (g,; %, ) is large in this
case.)

As there are infinitely many semi-regular continued fraction expan-
sions of any given number, we need a notation to indicate which partic-
ular expansion we are using; therefore we write

a = [, tyy.nny thyy 2]

when we mean that a = [ay, ¢y, ..., 4y, 2] and that we are choosing
expansions of « whose first r-+1 partial quotients are ay, aj, ..., a,. In
order to examine the permissible a-chains from ¢, we need the following
lemma.

Lemma 4.3. Lot {a,} be a permissible a-chain from g, which is not
even. Then {a,) (or its negative or its reverse or ils megative reversed) contains

a subchain determined by pairs of expansions of the roots By = —8, By = §
of g, which begin in one of the following ways:
i) —8 arbitrary, 8 =[3;,2, -2, 4],
where Y = [—3u_g, 81, 3 <k s

8 =={3,3,2, —2,9],
where

(i) —8 ardbitrary,
y =[—3n-z, 8];
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(ili) -8 =[-8, ~2,2, —yl, &==03,2, -2y,

where -y = [—3, |, 8
(iv) =8 =[-2,2,x], §=:[3,2,—2,y],
where @ = [8,, —81, ¥ = [—3,_, 8];

(v) —8=[-2,20], §&=|2,-2,-2,2],2, -2, -3,y
where @ == [8,, ~81, y == [—~3;, 87, 8k+14+1 =n, &k = 0;
(vi) —8 ==[~2,2,2], 8 ==[2, =2, [~2,2, 9, ~2], ~2,3, 3,9,
where @ = [3,, —8], ¥ = [3, 2, —2, 87, 3(k+1)-Fl|-1=m, & 22 0.
Proof. By (4.9), [—2,8] and [2,--2,8] have no permissible
alternative expansions; it now follows from (4.8) and equations (4.12)
to (4.14) that any permissible expansion of § must begin in one of the
following ways:
8 =[3;,2, ~2,y] where
8 :“':[[27 —2,—-2,2],3, ?/‘Ii
where  y =[8;,2, —2,87, 3k-+1-]-1 =n, k>0,
N == “27 -2, —2,2], 2, ~2, -3, :’/la
where gy == [03, 87, 3k 11
By ST,

Y o= [=Bneny 81y O <k =T mg

Sy ka0

N =e{2, -2,y], where y .|

(We note that the lagt expansion includes the two provious ones as special
cages, and that of course many expansions which are not p(smﬁssible
may begin in one of these ways algo.) Lemmy 4.3 now follows from the
symmetry of g, and the fact that the a-chains are assumed not to be
even.

It is clear from the previous discussion that Theorem 1 will follow
from Lemmas 4.1 and 4.2 and the following lemma.

) Limuwa 4.4 If n = 11 and {a,} is a permissible a-chain from In, Which
18 1ot even, them, for every corresponding s-ohain,

M(P) = M ({ap}, {er}) < 10y
In fact we show that in each case, for somse 7,
(4.15)
80 that

e < A3,

M(P) <y < g Af3 = 2V (uhary ) <2 Lty

In Lemmas 4.5 to 4.13 we give a number of chain-pairs for which
(4.15) holds for some » when = > 11. Wo then prove Lemma 4.4 by using
Lemma 4.3 to show that the chain-pairs of Lemmas 4.5 to 4.13 include
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all chain-pairs {a,}, {¢,} of g, for which {a,} is a permissible a-chain from g,,
which is not even. .
In Lemmas 4.5 to 4.13 we assume that » > 11 and use the following
notation: by
ey p’Q?Z"g’t)u? e
ey @y by, dye, f, L
we denote a chain-pair {a}, {s,} such that

Uy =75 Oy =8, vy B =, Q1 =Py .0,

g =€, & =d, ..., e_1 =0, e_y = a, ...

If the values of one 6 and one ¢ are given, then 6,, ¢, are determined and
{a,} is an a-chain from f, which contains the subchain determined by the
pair of expansions .

0y =[¢,p,02], @ =[r s, tu,¢l,

and hence also 6_;, 0_,, @, @5, ... are determined. Sometimes, for the
sake of clarity, the values of two 6’s or two ¢’s are given, though only
one of each is needed to determine the subchain.

Lemmas 4.5 to 4.13 can all be proved by the methods of section 2,
and full numerical details of the proofs are given in my thesis [10]. The
proofs are all fairly similar, and therefore I give here only the proof of
Lemma 4.5. (This one is chosen because it is a good illustration of the use
of the methods of section 2, and, in particular, of Lemma 2.2; as it in-
volves cage-splitting, it is a little more complicated than the other proofs.)

It is easily derived from (4.8) that, for n >4 (and therefore cer-
tainly for » > 11), )

2,61803 < § < 2,61804;

and that, if further » > 5, then

2,6180 < [3,, 2, —2, 8] < 2,6181,
(4.16)

2,6180 < [3,,1, —8] < 2,618L.
The reason for the assumption # > 11 is that, by using it with the
inequalities (4.16) for » =5, we can avoid a large amount of tedious
cage-splitting in the computations in the proofs of some of the lemmas
(e. g. Lemma 4.8).

Lemwma 4.5. For the chain-pairs
sy 3,3, 2 .., 3, 3,3,2,-2, ..

and s
1,1, 0 oy 1, —1,1,0, 0, ...

ey

:ivl-)'v'
1,0, 0, ..
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where

Oy = [Bm,—8] (m=0), pg=[-3;,8] (kz0),
we have

3myA < 0,997,
my < A[3.

1 )
‘/’ ‘/’a ( sl

7y = 140,414 x 0,420 x 0,619]].

Proof. By Lemma 2.1,

Ty ==

For & = 0,

For k = 2,
7o = 14/0,3827 x 0,6181 x 0,6303].

For k=1, we must have @, ==[-—3, 8], as no other expangion of g,
is permigsible, so that g, p, ave opposlte in sign, and, by Lemma 2.2,

(4.17)

Ty = 1+

i
P1Pa lpal  |pagal
= 1--[/0,387 x 0,587 x (1—-0,205 — 0,295 x 0,762)] .
Hence for all %

Ty = 1-]]0,1491) =~ 0,8509.
Also
2,686 < ¢, < 2,6181.
Hence
(4.18) [1— o+ 7| < 0,7672.

Ife ;=1 0<0, and if ¢, =e_, = 1, then

- ( )
Henﬂe, mn eibhar Gfl'SB,

A ST

Ulu' 'Ll

For m = 0,
oy < 10,205 - 0,296 x 0,618 1,
2,704 <2 6, < 2,705.
Therefore
(4.19) [—1-+0p+ 09| < 2,593,

8/10hpo—1] < 3/(2,704 x 2,586—1) < 0,501,
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For m = 2,
7y < 1-0,380+ 0,382 x 0,631,
2,618 < §, < 2,620.
Therefore
(4.20) | —1+6,+ 00| < 2,482,

3 /16,0 —1| < 3/(2,618 x 2,586 —1) < 0,520.
TFor m = 1, by the same type of argument as that used to get (4.17),
we have
1 2
16=al  10-26]
2,630 < 6, < 2,631.

0 < 1— 0 —l—‘lbl—(l— )i<1 0,369 40,370 x 0,481,
1

Therefore
| =146+ 0o} < 2,440,

(4-21) 3/18,00—1| < 0,520.
From (4.18), (4.19), (4.20), and (4.21), it now follows that, for all &, m,
34 < 0,7672 x1,2991 < 0,997 < 1.
LuMMA 4.6, For the chain-pair
., 3,3,3,2,—2, ...
, —1,1,1,0, 0, ...

where

6_g = [8m, —8] (m > 0), oy = [—34, 8] (& = 0),
we have

3m_;/4 < 0,815,
w_ < 4[3.
LEMMA 4.7. For the chain-pairs
(i) .y 3, 8,2,-2,-2,2, ...
1 *
.y F1,1,0, 0, 0,0,...

where

0y = —8, ooy =8, 7’5=[3k127“2:‘g] (k = 6),
and
ss ty 39_3_72,"’25—37-'3!-"
(if)

oy £1,1,0, 0, —1,41,...)]
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where v Y L \ where
O04=—8, ¢,=~8, Vs == [=3u, N] (m == 7), —0 =g, =8,
we have
3y /A < 0,998, 0y =[3m, —8] (m>=11), @5 =1[3,2,-2,8] (*=7);
my << A[3. and
. . . s 327—2;3=29“21_37_37
LumMuMA 4.8. For the chain-pair (i) h )
‘ ‘ L0, 0,1,0, 0,—1,+1,...
vy By 2, =2 =8, 2,2, where
ey 1,0, 0, 1, 0,0,..)] —b =@ =8,
her .
where o 0_y=[3, =81 (m>11), g5=[—3,8] (k>8),
0_g == N or[3, —N], Py s 8 or |3, 2, -2y N we have
g = [3,2, =2, 81 (k=5) (using (4.13) and n 3> 11), S/ 4 < 0,9983,
we have
7wy < A/3.
Smo/ 4 << 0,817, v <4l
my < Af3. LEMMA 4.12. For the chain-pairs
Lemma 4.9. For the chain-pair " 2, —2,[2, =2, —2, 2%, 2, —2, —3, —2,2, ... >0
>
) ey 3,2, =2, =3, =8, <oy 0, 0,10, 0, 0,0},0, 0, 1, 0,0,... ’
1,0, 0, 1 le ' where
where e s —0 g3 = Qg5 =8,
Oy = =8 or [3, =81, g_s=8or [8,.,2, =2, 8], 0 pos = [30, =81, @2 =1[3m 2, —2,8] (m=0);
‘ ST, 8] (k2 8) and
gy == [ =3, N k2= ; ’
we have ! k2 ’ i) e 2, —2,[2, -2, —2,2],,2, -2, 3, —3, —2,2, i o,
37‘(,’0/[] <(),992, 50, 0,0, 0, 070]lc7“’ 0, 17_21':_1) 0,0,...
a < 4/3) where
Lumuma 4.10. For the chain-pair Tloss = 0ots = 8,
O R S S S SR 0 s = [3., =91, @3 = [3m, 2, —2, 8] (m z=0),
R R ] ’ RER-E RS Ay ren we have
0, 0, 41,1,0, 0,..)] 3my /4 < 0,945,
where :
O =gy =08, 0y =gy =[-8, 8] (k> 10), m < 4[3.
we have LeMMA 4.13. For the chain-pairs
3oty /4 o ¢
mold < 0,811, g D TR TR I02,0, 20k, —2,2,8,2, =2,
m < A3, 0y 0,0, 0,0 0,0,0, 0L, 0,0,1,0, 0,.. =
LuMmA 4.11. For the chain-pairs where
2, —2,8,2, -2, =2,2,.., =0 g5 = @5 = 8§,

.y 0, 07:_‘-_107 0, 0,0,...’ ' 9»—4}:—7:[3@: —81, #a = [—3m, S] (m = 3);
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and
2, -2,2,-2,[-2,2,2, =2, —2,2,3, 3,2, =2,...
(u)...,o, 0,0, 0,[ 0,0,0, 0], 0,0,1,41,0, 0,..

where ,
0 s = Poags = N,

@5 = [~3m, 81 (m = 3)

0~4k—~'l = [3n1 ”"S]y
we have

3o/ A << 0,993,
my << A[3.

Proof of Lemma 4.4. By Lemma 2.5 and the discugsion following
the statement of Lemma 4.4, it iz sufficient to ghow that if {a}, {a}
is a chain-pair of g, and if {a,} is permissible and contains one of tho
subchains (i) to (vi) of Lemma 4.3, then {a.} or its negative or ity reverse
or its negative reversed is one of the a-chains considered in Lemmas f..l-.ﬁ
to 4.13 and {s) or its negative is one of the corresponding e-chaing
considered in these lemmas.

Lemmas 4.5 and 4.6 cover all chain-pairs for which {a,} iy given
by (@i).

If y = [—8,, 87, then, by (4.13), any semi-regular continued fraction
expansion of y must begin in one of the following ways:

(4.22) y =0-2,2,%), =8,4,2, —2,87 (k>=3);
(428) g =83 2,22, &=[3,2, -2, 8 (k>1)
(4.24) y =[-8, 3,21, g == By g,y N (o *=2).

Hence Lemmas 4.7, 4.8, and 4.9 cover all chain-pairy for which {ap} iy
given by (ii).

Lemma 4.10 covers all chain-pairs for which {a.} is given Dby (iii).

For the subchain (iv), ¥ must be given by one of (4.22), (4.28), and
(4.24). Hence Lemmas 4.8, 4.9, and 4.11 cover all chain-pairs for which
{a,} is given by (iv).

For the gubchain (v), y must be given by one of (4.22), (4.28), and
(4.24). Lemma 4.12 covers all chain-pairs for which {a,} is given by (v)
and y satisfies (4.22) or (4.23). Lemmas 4.5 and 4.6 cover all chain-pairs
for, which the reverse of the negative of {,} is given by (v) and y satisfies
(4.24).
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For the subchain (vi), the semi-regular continued fraction expansion
of y must begin in one of the following ways (see (4.12)):

(4.25) y =[2, —2,2], 2 =[=3u, 8] (m=0),
(4.26) y =[3,2, —2,2], 2=[—3n,8] (m=0),
(4.27) Yy =1[3p,2, —2,2], 2=[—3n,81 (p=2, m=0).

Lemma 4.13 covers all chain-pairs for which {a,} is given by (vi) and »
satisfies (4.25) or (4.26) with m > 8. It follows from (4.9), (4.10), and
(4.11) that if {a,} is a permissible a-chain given by (vi) and y satisfies
(4.25) or (4.26) with m =0, 1, 2, then {a,}] must be the reverse of the
negative of an a-chain containing one of the subchains (i) to (v).
Lemmas 4.5 and 4.6 cover all chain-pairs for which {a,} is given by (vi)
and (4.27) holds.

This eompletes the proof of Lemma 4.4 and therefore of Theorem 1.

5. The forms g, and g3

* We now show that Theorem 1 holds for » = 2, 3, that is, that the
following theorems hold.

THEOREM 4. For the form g, = (13,29, —13) = Fy, we have
M(gs) =5 =5 m(gs).
THEOREM 5. For the form gy = (34,76, —34) = F,, we have

Mgy) =11,
Mylgy) = 5 = 7 m(gs).
All the results of section 4 up to and including Lemma 4.2 hold
for # > 1. Hence, in order to prove Theorems 4 and 5, it is sufficient

to show that, if » =2,3 and {a,} is a permissible a-chain from g,
which is not even, then, for every corresponding e-chain,

ﬂ[(P) = M({(h}, {sr}) < _11 LEYE

We continue to use the notation of section 4.
For the form g, we have, by (4.8),

8 =[3,3,2, -2, §].
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Hence, by (4.10) and (4.11), the only permissible expansions of § are

8 ==[3,3,2, 2,81,

8 =[2, -2, -3, -3, 87,

It now follows from the symmetry of the form ¢z, ‘whose roots are
By = —8, By =8, that any permissible a-chain from g, must be an
arrangement of gome or all of the three blocks of numbers

A =3,8,9, -9,
B .=3,2, -2, —3,
0 =2, -2, -3, -8,

In Lemmas 5.1 to 5.5 we show that, for every chain-pair such that {a,}
containg A4, BB, AC, BAB, or BOAB, we have

M) <,
Since C is the negative of 4 reversed and B iy its own negative reversed,
this result holds also for every chain-pair such that {a,} containg CC
or BOB. Any arrangement of some or all of 4, B, and ¢/ which does not
contain BB must contain 4 or 0; any arrangement which containg .4 but
none of A4, BB, A0, 0C must contain BARB or BCAB, and similarly
any arrangement which contains ¢ but none of 44, BB, 40, 0C must
contain BOB or BOAB. Thus the a-chaing of Lemmas 5.1 to 5.5 include
all permissible a-chains from g, or their negatives reversed.

The numerical details of the proofs of Lemmas 5.1 to 5.5 are given
in my thesis [10] and are similar to those of Temmas 4.5 to 4.13; here
I merely give the statements of the lemmas.

Lemma 5.1, For the chatn-pair

By 83,2, -2, 3,8,9, 9.
ey L 1,0, 0, LT, 1,0, 0.
where —0_; = py = &, we have
e << 12,37 w13,
Lemma B8.2. For the chain-pasr

0 3,2,-2,-8,8,9, -2, -3,

e 10,0, 41, 1,0, 0, 41,...]
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where —06_, = ¢, = 8, we have
m < 10,8 < 13.
LEMMA B.3. For the chain-pair
.y 3,3,2,—2,2,—2, =3, —=3,...
vy +1,1,0, 0,0, 0,41, -1,...
where —0_, = @ = 8, p; = [—3, —3, 81, we have
M < 12,4 < 13.
LrMMA 5.4. For the chain-pairs (i):
.y 3,2,-2,-3, 3, 8,2,—-2, 3,2, -2,-3,..
e £1,0, 0, 1,41,41,0, 0,£1,0, 0,41,...]
and (ii): )
.y 38,2,—2,-3,2,-2,-3,-3,3,3,2, -2,8,2, -2, -3, ...
oy 1,0, 0, £1,0,0, =1,1, £1, £1,0, 0, £1,0,0, +1,...]
where, in both cases, —0_; =q@p_; = 8, @, = [3,2, —2, 8], we have
my << 12,9 < 13.
LeMMA 5.5. For the chain-pasr
,3,2, -2, —3,2, —2, -3, -3, 3, 3,2,—2, 3,2, —2,-3,
;£1,0, 0, 41,0, 0, 1, 1,41,41,0, 0,£1,0, 0,1,
where —-6_1>= =8, g =1[3,2, -2, 8], we have
Mg < T < 13.

By the remarks preceding the lemmas, this completes the proof
of Theorem 4.

For the form g¢s, we have, by (4.8),
8§ =103,3,3,2, -2, 8].
Using the relations (4.9) to (4.14) we deduce that the only permissible
expansions of § are
8 =[s,8,38,2, -2, 8],
8 =[2, -2, -8, =3, —3,8],
S =[3,38,2, -2, -3, 8],
8 =[8,2, ~2, -8, —8, 8],
8 =[2, -2, —2,2,2, —2,08].

a
Ac¢ta Arithmetica V.
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It now follows from the symmetry of the form g,, whose roots are
R, = —8, R, =8, that any permissible a-chain from g must be an
arrangement of some or all of the five blocks of numbers:

4 =3,3,3,2, -2,

B =2, -2, —3, —3, —3,
0 =3,3,2, —2, =3,
D=38,2,—2, -3, -3,
B =2,-2,—2,2,2, —2.

In Lemmas 5.6 and 5.7 we ghall show that, for every chain-pair
such that {a,] contains A4,

M(P) < 5

since B is the negative of A reversed, this is true also for chain-pairs such
that {a,} containg B. In Lemna 5.8 we shall show that the same result

holds when {a,} contains EC or DO; and we shall deduce from Lemmas 5.8

to 5.10 that it holds also for chains from g4 containing (€. Any permissible
a-chain from g, which is not even and does not contain 4 or B must con-
tain ¢ or D (which is the negative of ¢ reversed) and must therefore con-
tain one of EC, DO, 0C or their negatives reversed. Thus, by the remarks
following the statement of Theorem 5, the theorerm will follow from
Lemmas 5.6 to 5.10.

LeMMA 5.6. For the chain-pairs
3,3,3,2,—-2,... o, 3, 03,3,2,—2,...
and )
e 1,1,1,0, 0, sk, —1,1,0,  0,...
where —0_y == p_y == N, we have
Bame/d << 0,903,
my << A/[3.
LeMMA 5.7. For the chain-pair
cy 3,8,8,2,-2,...
sy =1,1,1,0, 0,...
where —0_; = g@_, = 8, we have
3m_i/4 < 0,8,
mwy < A4[3,
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LemmMA 5.8. For the following chain-pairs

0 sy 8,8,2,—2, -3, ...
vy —1,1,0, 0, +1,...°
(ﬁ) ) ey 2,y —2, _272’2: ‘_273’§’2; -2, -3,
0, 0, 0,0,0, 0,1,1,0, 0,+1,...7
(i) -y 3,2,-—2,-3,-3,3,3,2, —2, —3,
ey 21,0, 0, 1, -1,1,1,0, 0,441, !

Il

where, in edch case, —8_ =9_; =8, g, = [3,2, —2, —3, 8], we have

3/ 4 < 0,95,

my < 4/3;
and for the chair-pair
) oy 3,2,-2,-8,-3,8,3,2, -2, -3, ...
cy 1,0, 0, -1, 1,1,1,0, 0,41,...°

where. —0_y, =¢_; = 8, ¢y =[3,2, —2, —8, 87, we have
3n_y/4 < 0,95,
w_y << A3,

Since 3. (P)/4 < 1 for the chain-pair (i), it follows from Lemma 2.5
that 3M (P)/4 < 1 also for the negative of its reverse:

) ciey 3,2, —-2,-8, =3,...
vy 1,0, 0, 1, 1,..0
where —f) =gy = §. Thus in Lemma 5.8 we have considered every
possible e-chain (or its negative) corresponding to the a-chains of the
pairs (i) and (iii).
LemMA 5.9. For the chain-pair
. 3,3,2, -2, =3, ...
1,10, 0,-—1,...
where —0_y =q@_, = §, p, = [3,2, —2, —3, 8], we have
3my/A4 < 0,95,
me < A4/3.
LemMA 5.10. For the chain-pair
..y 8,8,2,—-2,-8,3,3,2, —2, -3, ...
veey1,1,0, 0, 1,1,1,0, o0, 1,...

?
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where —0_y == qg_ = 8, ¢ = [3,2, —2, —3, 87, we have
Bmy/A << 0,993,
my < A3,

The s-chains of the chain-pairs (i) and (v) of Lemma 5.8 and of the
chain-pairs of Lemmas 5.9 and 5.10 include every possible e-chain (or
its megative) corresponding to an a-chain from g, which contains (€,
where (' is the block of numbers

0 ==3,3,2, —2, —3.
' By the argument preceding Lemma 5.6, this eompletes the proof
of Theorem &.
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