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Remarks on number theory II

Some problems on the ¢ function
by

P. ErnOs (Budapest)

H. J. Kanold and I (see [1] and [4]) observed that if & and b, where
@ b, are squarefree integers then o(a)/a 5 o(b)/b. The proof is very
simple. Assume ¢(a)/a = o(b)/b; we can clearly assume (a, ) = 1. Let
p be the greatest prime factor of ab, say pja, p~b. But then ao(b)=bao(a)
is clearly impossible, since the left side is a multiple of p and the right
side is not. )

On the other hand the equation

o{a)

a(b)
1 =
@ @ b
clearly has infinitely many solutions, e.g. if (n,42) =1,

a{6n)
6n

_ a(ZS'n,)_ a(m)

28n = n

A solution of (1) is called primitive if

o(a)
a

20}

but for every dla, d|b,

o3) o) ()

in other words « and b are called primitive solutions of (1) if no prime p
divides @ and b to the same exponent. Clearly every solution a,, b, of (1)
can be written in the form a, = au,, b, = bu where a and b are primitive
solutions and (u, ab) = 1.

It is very probable that if {a;, b}, {@s, by} are primitive solutions
then a, = ka,, by, = kb, is impossible.

(2)
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Tt seems very likely that (1) has infinitely many primitive solutions,
but I cannot prove this. Perhaps even the equation
(3) — = Wh=1
hag infinitely many solutions. (3) clearly implies that o(a) == 0(moda),
o(b) = 0(modb), i. e. that a and b are multiply perfect. In fact, no solu-
tion of (3) is known, since no odd multiply perfect number is known.
" In the present paper I shall prove that the number of distinet numbers

of the form
o(n)
n

, l<n<ga,

equals ¢,z o0 () where 6[m? < ¢ < 1.

Further T shall outline the proof of the following result:

The number of solutions of (1) satisfying a < b <o equals e+ o(n)
for some constant 0 < ¢; < co.

The analogous questions for ¢(n) are all trivial, since it is cagy to see
that (a)/a = @(b)/b holds if and only if ¢ and b have the same prime
factors. To see this observe that if ¢ and b are both composed of the
primes pi, Py, ...y Pr then

I

pla) _pb) _ b
P (1 m)'

=1

b = bydd, where (ay,b;) = 1 and not both a; =1, b; = 1 and all prime
factors of d, and d, divide d. Then g(a)/a = @(b)/b would clearly imply
(@) /oy = @(b,)/b;, and this is clearly impossible.
I would finally like to call attention to three simple problems which
ag far as I know are still unsolved (see [6], p. 193 and 198).
" Ts it true that the equation o(n) = @(m) has infinitely many solu-
tions? The answer certainly must be yes.
Let 1 <o < oo, Doey there exist an infinite sequence of intogers
Ny My, where ny = my, for which o(n) = o(my) and mg/ng ->0? Th
is not difficult to see that for ¢ = 1 the answer is positive, but X cannot
decide the general question, in particular ¢ = co is open. The analogous
question for the function ¢ can easily be answered affirmatively.
Is it true that the number g(#) of solutions of

(4) ol =o), (ab)=1

satisfies g(@)/z — oot
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TurOREM 1. The number of distinet numbers of the form

a(n)
7

y 1<eaz

equals o #+o(x) (compare [5]).
Write n = A, B, where 4, is the squarefree part and B, the quadratic

part of n, i. e.
n
H P, Bp= —-A:_’

Dln0%4n

A = (4n; By) = 1.

Now we prove the following

. LEMMA. Let v, and v, be two integers whose all prime factors occur
with an exponent greater than 1, (s. 6. whose squarefree part is 1). Then there
exsts at most one pair of squarefree integers U, and u, satisfying

() o(uyv,) — 0'(“2"72)’

Uy ¥y Uy Dy

(1, 1) = (Ug, v) = (g, %) = 1.

Suppose that there is a second pair 1, uy satisfying (5). Then we
should have

o(u;) Uy o(u) u ;o
O ot = = () = ) =0 =1.

Now we show that (6) has no solutions (exeept if u; = uj, u, = uj or
Uy = Uy, Uy = 1), and this contradiction will complete the proof of the
Lemma. Assume that u,, uy, u;, up is & solution of (6) for which the pro-
duct u,uyu; uy is minimal (it clearly must be greater than 1 since not all
the u’s can be 1). Let p >1 be the greatest prime factor of uyuyu,u;
assume 8ay pluy, phup. Clearly pls (since o(u,) == O(modp) as wu, is
squarefree). But then by (6) u;o(u;) = 0(modp) or = 0(modp), uy
7= 0(modp). But then u,/p, uy, u; [p, u, also satisfy (6), which contradicts
the minimality of the product w,wu,u;us.

In the same way we can prove that for squarefree integers w;, u;

the equation
r 8 ’
n olug) ” o (%)
Uy 14 g

i=1

r 8
is impossible except if [Tu; = [] ;.
7=1

=1
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Now let 1 ==v, < v, < ... be the sequence of the integers whose
all prime factors ocour with an exponent greater than 1. Clearly

1 1,1
@ ZE=”(1'*?+?+“‘)<°°’
i=]1 P

and it is easy to see by a simple sieve process that the density of integers n
whose quadratic part is v; equals

S

It clearly follows from (7) and (8) that
o
1 1 1 )
— -= l l 1—=) =1.
®) Zm n(l p) ( »*
=1 DYy [ AN

Now denote by af) < af? < ... the integers whose quadratic part
is o;. COlearly

olaf))  o(m) o(w)
a}? - Vi Uy !

where u; is squarefree and (ug, v;) = 1.

Thus the numbers o(af?)/af) are all different. Next we show that
the number of numbers o(a{)/al?, v; < af) < », which differ from all
the numbers of the form o(a®)jaf, 1 <j <4, af < o (i e. which differ
from all the numbers of the form o(n)/n whose gquadratic part is less
than o;) equals

Nkl 1 1 <1.
o1 (S R

plvg LAY

(10)

To prove (10) observe that
o(aff) (e = o(a))/af),

holds if and only if there is a primitive solution #, m; of (1) so that

(11) 1<j <,

(12) o) =y, o) =imy, (t,mmy) =1

Clearly the quadratic part of n; and m; must be less than or equal to v;
thus by our Lemma there is only a finite number of possible choices
for n; and my (in fact the number of choices is at most ¢—1). Thus (11)
does not hold if af) is not of the form (12). (10) now follows by a simple
gieve process.
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Theorem 1 clearly follows from (7) and (10).
THEOREM 2. The number of solutions of the equation

(13) o(@)ja =od)fb, a<b<a

equals ¢,z o(x).

We will only sketich the proof of Theorem 2. Denote by {a;, b;}, a; < b;,
the set of all the primitive solutions of (1). Since every solution of (13)
is a multiple of & primitive solution, Theorem 2 will follow by a simple
sieve process if we succeed in proving that

(14)

Let v, and » (vx <v) be any two integers whose squarefree part
ig 1. From our Lemma it follows that there is at most one primitive
solution of (1) {a,, b;} for which By, = v, By, = 1y

Thus clearly
2wy
i=1 =1

Unfortunately })jfv; = oo, since it is well known that (see [2]) o
=1

(15)

= ¢j*+0(j). Thus to prove (14) we need somewhat more complicated
arguments, and from now on we will omit most of the details since they
are somewhat cumbersome, but not really difficult and similar to argu-
ments used in previous papers of mine [2].

To prove the convergence of (14) we first split the pairs (v, v;)
‘which give rige to primitive solutions {a;, b;} into two classes. In-the first
clags are the pairs satisfying v, < v;/(log#;)*. For these pairs we have

ag in (15)
Da< Xt

where the accent in the summation indicates that the summation ig
extended only over those pairs {a;, b;} which correspond to pairs (v, v)
of the first class, and f(v;) denotes the number of the v’s not exceeding
vy/(logvy),. From v; = ¢f*+0(j) we evidently have

(16)

(17) () < e/ (logly*.

(16) and (17) clearly implies that 3"1/b; < oo.
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Henceforth we can restrict ourselves to the pairs (vg, v;) satisfying

(18) w/(logvy)* < o, < .
Now put
(19)

where (v, ") is a pair satisfying (18). We split the pairg sa.tisfying (18)
again into two clagses. In the first clags are the pairs for which

a=uwv, by=u'v, (u,u)=1

> (log)’.
0) that

(20) max (4, u') >

Tt eagily follows from (15), (18) and (2

]l < 8-01 :’ < oo
2 ~ v} (logvj)
where )" denotes that the summation is extended over the pairs (v, v")

satisfying (20). .
Thus finally we can assume that (20) does not hold. But then if
(v, v;) give rise to the primitive pair (a;, b;) we must have

(21)

(22) ofve) __w o(w) o(v) ’

(@5 = wr, by = wvg).
D olug) W o

Since (20) does not hold, there are at most (logwy)*® choices for

wy o (W)

olug)

H
or there are at most (logw;)'® possible choices for o(v)vg. I can prove
tke following

TuEOREM 3. Let 1 << a < co. Then the number of solutions of o(n)/n
=a, 1< n < u is less than c,@*~%, where o, and o5 are independent of a.

We do not give the proof of Theorem 3 since it is similar to one used
in a previous paper [1] and also uses the remark that for squarvefree n
the numbers o(n)/n are all different. It is very likely that Theorem 3
is very far from being best possible and I would guess that the num-
ber of yolutions of ¢(n)/n = e, 1 < n < « is o(*). Posgibly one can prove
this by using the method of HornJ‘:eck and Wirsing [3].

From Theorem 3 it follows that the number of solutions of (22) is
less than 3

(23)
for sufficiently large 1.

0,0} % (logmy)™® < w}F—% < g1t 2%
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From (23) it follows that (as in (15))

< Z” B N
71+2c6 ’

g=1
where in """ the summation is extended over those {4;, b;} which glve
rise to the pair (v, ), which does not satisfy (20). (16), (17), (21),
and (24) prove (14) and thus the proof of Theorem 2 is complete.

13¢5

(24)
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