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in the same way

nB(m,n) = 0 (mod k).
Hence if k& = mm,+ nn,, We geb

kB (m,n) = 0 (mod k),

and therefore B(m,n) is integral.
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1. Introduction. In a recent paper [5] Lehmer remarks that for
relatively few matrices M can one give explicit formulas for the determi-
nant, characteristic roots and inverse of A as well as the general element
of M'. He then considers two classes of matrices whose elements involve
the Legendre symbol for which these problems are solved explicitly.

Let y(r) denote the Legendre symbol (r/p), where p is an odd, prime.
The first class of matrices is of the type

(1.1) (a+b2(‘f)+ﬂx(3)+dx('fs)) (rys=1,...,p—1),
where a,b, ¢, d are constants. The second is of the type
(1.2) let+xlat+r+s) (ry8=1,...,p—1),

where ¢ is arbitrary but o is an integer.

In the present paper we consider some additional classes of matrices
for which at least the characteristic Toots can be computed. We discuss
first the matrix

(1.3) () (r,s=0,1,...,n—1),

where & = ¢™, This matrix is familiar in connection with Sehur’s de-
rivation of the value of Gauss’s sum ([4], vol. 1, p. 162). By means of his
method it is easy to determine the characteristic roots of (1.3) for arbi-
trary n.

Next if »(r) is an arbitrary character (modn) we consider the matrix
of order ¢(n)

(1.4) A = {a+by(r)+ e5(8)+dg(Mz(s),
where 7, 8 run through the numbers of a reduced residue system (modn)

in some prescribed order. This evidently generalizes (1.1). Similarly the
matrix

(1.5) (e+x(atr+e) (rys=1,...,p—1)
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generalizes (1.2); however note that in (1.5) we confine ourselves to maitri-
ces of order p—1, where p is a prime. In each case the characteristic roots
are determined, although for (1.5) the results (see Theorem B5) are not
entirely explicit. The simpler matrix

(1.6) e+ z0r—s) (ry8=1,...,p-1)

is covered by Theorem 4.

The remainder of the paper is concerned with circulant and related
matrices. Part of the difficulty encountered in dealing with, (1.2) and (1.5)
is due to the fact that the range of 7, s is restricted. Thus, by contrast,
we find for example that if y(n) is a non-principle character (modn) then
the characteristic roots of the matrix

(xs=m) (rys =0,1,...,n—1)
are the numbers
gd(y) (r=0,1,..,0—1)

while the characteristic polynomial of the matrix

(e+xlat+r+s) (r,s=0,1,...,2-1)
* -1/
(@—em) [ {#—z(—r")w(0)} (v 0dd),
r=1
(=22
@ (% — cn) n {o?—z(—r)72(y)} (n even >2),
Wwhere -
n—-1

() =) xls)e™m,
8=0

All matrices occurring in the paper are square and will be denoted
by capital italic letters. The elements of the matrices are complex number.
For any matrix M, we denote by M’ the transpose, by M the complen
conjugate, and put M* = M'. We recall that I is normal provided M M*
= M*M and that a normal matrix is unitarily similar to a diagonal
matrix.

2. The matrix
(2.1) B=(") (rs=0,...,0—1),

;vhere &= "™ and n is an arbitrary positive integer, satisfies the re-
ation

(22) B =n1.
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Hence the characteristic values of B are of the form
in'?  (r=0,1,2,3).
Let m, denote the multiplicity of the characteristic value i"»*/*. Then we

have

My~ Mg+ Mat My =0,

Myt 1My — My — Mg = 8

(2'3) 0+ 1 2 3 Y
My— My +My— Mg =0,
My — iy — Mgy = 8,

where v = 1 or 2 according 28 % is odd or even, and
n—1
S = 2 &2,
. k=0
To find the m, most rapidly, we make use of the well-known formula
([4], vol. 1, p. 153)

(1+i)n**  for n =0 (mod4),

g n'? for n =1 (mod4),
0 for » =2 (mod4),

inll? for n =3 (mod4)

Solving the system (2.3) we obtain the following results:

Mo = n+1, My =3in =1y my=3in—1 (n=0 (mods)),

my = 2(n+3), My = my =ms = L(n—1) (n =1 (mod4)),
My = My = L(n+2), my =my=3(n—2) (n =2 (mod4)),
My = My = My = L(n+1), my=2(n—3) {n =3 (mod4)).

We may accordingly state
THREOREM 1. The characteristic polynomial of the matriz (2.1) is given

b
! f@) = (@—n'®)* (m—in'?) (m+a'?) (@ —n?)"* 1 (0 =0 (mod4)),
Flz) = (w—ntl?) (of —n) =4 (n =1 (mod4)),
@) = (@ —n) (@ — 7" [n =2 (mod4)),
F@) = (15— in?) (o —n) (a* — n?) D4 =3 (mod4)).

Since ¥ ig normal (indeed »~'/2F is unitary), it follows that ¥ is uni-
tarily similar to a diagonal matrix D; in each case the elements of D have
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heen explicitly determined. It would be of interest to construct a partic-
plar unitary matrix U such that :

(2.4) U'BU =D,

however it is not clear how to do this.

3. Let » be an arbitrary positive integer and put » = ¢(n), the Euler
g-function; also let x(r) denofe any non-principal character (modn),
Corresponding to Lehmer’s matrix of the first kind we consider

A = (a+by(r)+ eg(s)+ dx(r)z(s),

where r, s run through the numbers of a reduced residue system (modn)
say in ascending order. Thus A is of order i. The numbers a, b, ¢, d a,ré
arbitrary complex, quantities.

Now if

(8.1)

Ay = (a4 bz (1) + ez (8)+dy2(r) 7 ()
is a second matrix of the form (3.1) and we put 44, = (a,,), then
Ay =; (a+bx(r)+og )+ dg (N () (ar+ by (k) + 6 7 (8)+ dy g (R) 7 (5)).

Since

Dy =0, D xeyz(k) =h,
k k
it follows readily that

(3.2) tye = B{@o~+ by (r)+ 00 7 () + daz(7) 7 (5))

‘where
(a,b ay by} fay by
o d) \ey dy)  \ey dyf”
As a corollary the coefficients of A™, where m > 1, are determined by
o b\™
¢ df
Note in particular that the special matrix
. J = (1+%(r)z(s)
satisfies )
AJ =J4 = hA.

: ©
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We may sum up the above by saying that we have established a ring
isomorphism between the set of matrices h7'4 and the corresponding

second order matrices

a b

¢ df°
Thus it is clear that

A —h(a+d)A+h(ad—be)] = 0,

which implies
(3.8) A —h(a+d) A2+ h2(ad—bo) A = 0.
Tt follows that the minimum polynomial of A is a divisor of

(3.4) 2 — h(a-+d)z2 -+ h?(ad—be) .

As for the characteristic polynomial we bave
THEOREM 2. The characieristic polynomial of the matriz (3.1) s de-
termined by

(3.5) @) = o2 h(a+ d)o-- ki (ad—Dbo)} .

This theorem can be proved by the method used in proving Theorem 1
of Lehmer’s paper. However the following method leads to somewhat
more precise results.

Let the & characters (modx) be denoted by 28 (r=0,1,...,h-1),
where g, is the principal character and y; = y. Define the matrix of order h

X = (xs(en)
where ¢, runs through a reduced residue syster (modn). Then

XX = (Zr(cs)) (Zs(cr)) = (2 Zr(Ce) Xs(ak)) .
k

(3.6) (r,s =0,1,..., h—1),

Since

(3.7) D el00 xo(0) = s,
k

it follows that

(3.8) X*X = hl;

in other words h~Y*X is unitary. Now consider the product
B = (.brs) =AX ’

where

b= 3 (at brle)+ oz (e Hax(en(e) za(00).
13
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TUsing (3.7) this becomes
h(a+dy(c)) for
bs={ h(oe+dy(ce)) for s=1,

0 for s #0,1.
To find X*B we examine
PR ACNIS
For s = 0 this becomes ’
hia for 1 =0,
h;ir(%) (a4+by(o) = | 2% for r=1,
for s — 1 wo get 0 for rs£0,1;
hi¢c for 7 =0,
h ;z,(ok) (c+dyle) = ned  for r=1,
0 for » #0,1;

for ¢ = 0,1 the sum = 0. Gonséquently we have

(3.9) X*AX = pa| 4o O ac
o of A= d]'

Clearly (3.9) implies Theorem 2 and indeed the following
TErOREM 3. The mairiz (3.1) satisfies

(3.10) UAAT — 3|40 0 @ ¢
U b 0o ol AO:[Z) d]’

where X is defined by (3.6) and U= h™'*X is unitary. Moreover A is

normal if and only if A, i8 normal.

, folfilsslag’iim(‘; gi E};Ztt}:le:‘em is a direct consequence of (3.2); indeed
ponds to 4", . corresponds to Aqd,, while A*4 corres-

4. . .
Ag Lehmer points out, matrices of the second kind are more diffi-

cult to deal with. We i . .
and define shall now limit our discussion to the case n prime

(1) 4 =(otglatrts) (r,s=1,2,..,p-1),

where o is an i i i i
0 integer while ¢ is an arbitrary complex number; also g is

an 3 3 .
arbitrary nou-principal character (modp). We shall not attempt to

e ©
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compute A™, which is presumably quite complicated. However it is not
difficult to verify that

(4.2) AB = p(1+epz(a)l

where (compare [5], formula (18))

B = (z(0) —p(at 1) —gla-ts)—opz(at glats)H{1 +epa@)z(atr ).

Indeed if AB = (b,), then we have

-

»

by = ) (e a(atr+k) {z(@—Z(atk)—z(at8)—
=0

— opz(atk)zlats)Hi+epz(a)zlath+s)}—
—-(c+x(a+¢)){—z(a+s)—cpi(a)z(a+8)+(1+0M(a))76(a+3)}

b

— ip(z(a)—gla+s) —(L+epzlats) X zlatr+izleth+
k=0
p—1
+{topgla) Y xlatr+hzlatkts).
k=9,
Buf .
fa Pl -1
3 patrrRzlatt) = X gtk Bz = 3 glh+) = L,
k=0 k1 k=1
21 p—1
3 glatrrBglatits) = X ptr—s+iz) =pd,—1,
k=0 k=0
go that -
b, — oplz (@) — 7(a-+8))+ (L ep glat8) —(L+op 7(a) (p3ra—T)

=p (1+ cpg (a)) 6,',3-
Tt is clear from (4.2) that 4 is non-singular if and only if 1+ cp gla) #~ 0.
Note in particular that the inverse of the matrix -
(4.3) (x(r+s) (rys =1,2,...,p—1)
ig furnished by
P (zlr+8)—2 () —2(s),

ag can be checked very rapidly.
We remark that for complex y, the matrix (4.1) is not normal. Indeed

even the special case (4.3) is not normal, since if 4 stands for (4.3), then
AA* = (pé,'s———l——x(a—\—'r)z(‘a-l—s)),
A*A = (pa,,s—l—z(a+r)x(a+s)).
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Before finding the characteristic roots of the matrix (4.1) we con-
sider the matrix

(4.4) O=(etz(s—r) (rys=1,...,p—1).

Tt will be convenient to enlarge ¢ to a matrix of order p

C=(¢s) (rys=0,1,...,p—1),
‘where
0 for r=20,
Cyg

= ct+yg(s—r) for r=1,...,p—1.

(Clearly the characteristic roots of Oy are those of C together with the
value 0. Now if

(4.5) B=( (r,s=0,1,...,p—1, 6 =",
and we pub
-D:p—lE*GlE:((lra) (rys=10,1,...,p-1),
then
-1 n—1 i )
Pllys = Z P (0+ X(k”'7)) & = D260y Og0+ 7 (8) TOpe—7(8) T — Pedsgo,
j=1 k=0
where
’ p-1
(4.6) = Y y(k)
k=1

Now consider the characteristic polynomial of D, namely
f1(#) = |B—dy| = |2 —DPCdp 6e0— (8) 70pe+ Z"IZ (8) T+ €4 -

If we subtract the first row of this determinant from each of the other
TOWs, we geb

a—(p—1)e p~'g(1)7 ... p7g(p—1)r
- —@+po v—g(1)7 ...
—x-+pc | #—g(1)7
Expanding the determinant, we get
Pz (k)7

f(@) = (@—(p~1)¢)p(@)+ (@— po) ()
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where p1
p@) = [ [ (1—z(k)7)
k<1

Now let f be the smallest positive integer such that y' = z,, the
principal character. Then

plo) = (—7Y,

where if = p—1. We have also

-1 -1 -
T oy (-1
& o (k)T _1_p+7c.=.; P P LI s e

so that
f(@) = [e—(p—1)¢) (@ — Y+ p (p —1) ¥ (& — pe) (& — o)*!

= (mf—zf)“l (m’“—(p—l)omf—% zjm\).

We recall that among the characteristic roots of O the value 0 is
superfluous. We may therefore state

TeEOREM 4. The characteristic polynomial of the matriz (4.4) is given
by

(4.8) fa) = (& — oy (wf~ (p—1)ea’1— %a)

where | is the smallest positive integer such that y' = y,, fi = r—1, and
© 48 defined by (4.6). In particular, when y is the Legendre symbol, (4.8)
reduces to

(4.9)  f(&) = (B — (=)@ IR (52 (5 1) o—( —1)-08),

‘We shall now determine the characteristic polynomial of the matrix
(4.1). We first enlarge 4 to a matrix of order p

-Alz(ars) (7’,8:0,1,...,1)———1),

where

0 for

- ¢+ x(a+r+s) for
We next construct

r =0,

a,

" r=1,...,,p—1.
B =pT'B* A, B = (by,),

where E iz defined by (4.5); we find that

Dbys = P20y g0 — DOy + peT7(s )T0pn_s— e
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Thus the characteristic polynomial of B is equal to
— | = IW”P05r0530+05ao*5 i (S)Tarn_ﬁ-p -t —""*(s)rl.

On subtracting the first row from each of the other rows, this becomes

L p e (p—1)
— "Dy (p 1) v

e—(p—1)c ple "z (l)7

ﬁw_{-pc o
@) | ,
—&+pe —e ()7 »
Put
®=1)/2 - v for x(—1) =1,
2 ey — .
plo) = ﬂ @2y @ =\ o s -1 = 1.
Then expansion of (4.10) yields
”:% _ el
(411)  (o—(p—L)ejp(@)+p  w(z—pe)y Z w?—7 (k) w? +o
' k=1
= 1(702
+P o m pe (P( k‘_ll P2 — (702

Let f be the Teast positive integer such’ that X = y, and let g denote

a fixed primitive root (modp). Define

. (@-)/f
(4.12) = e
§=0
and putb
(4.13) —a=¢" (modp).

A detailed eiéamination of (4.11) now leads to the following
TeROREM 5. The characteristic polynomial of the matrin (4.1) is equal to

—1)/2f
(@ — )= (mj_(p.ﬂl)owf"l__%wf) (6 =0, f odd),

(414) e

(4.15) (m’——m’)""l’”“l(arf—(p-—l)cmj'l——-—;;—w’) (a =0, f even),

(4 16) (mzf—~ wnf)(p—l)lzf—x (wzj__ (p ~1) 0w2f——1_ ~1—a)2f-|- (w___ pc) Rl(mz)) )
i V4
(a# 0, f odd),
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(#17) (o o (m’~<p—1)c -l—%w’# (w—pc)Ro(wz))
’ (a # 0, f even),
where R, (y) is the unique polynomial of degree < f s@ch that for £ = 5(g)
Ry (87 w")= '

2

ﬂ:_"ﬂn—swﬂ—- 3
Ry(y) 18 the unique polynomial of degree < f = if such that

-Ro(gzrw2) = f’ _r(777+5"‘ 77r+s+f‘) ¥,

In these formulas f is the least positive integer such thai §f = Xo» 9 18 & fized
primitive root (modp), n, and z are defined by (4.12) and (4. 13), respectively.

In particular, when y is the Legendre Symbol, (4.15) and (4.17) re-
duce to

(@~ p)®~ (o (p—1)en 1),
o —p)* 2 (e — (p—1)e~1+ y(a) (w— p0)),

respect;lvely, these results can be obtained at once from (4. 11) and are
in agreement with Theorem 2 of Lehmer’s paper.
It follows from (4.8) that the determinant of (4.4) is equal to
1 i—1,_0—1
(4.18) ;(—1) =7

while the determinant of (4.1) is

1 .

;(_1)0%1)/2! wp—-1+ (__1)(20-1)[22((_1)(174-1)/2 a) Pt (f odd)
(4.19)

1

5 (TDEI PTG (1) (1)) 0?1 (f even).
For (4.18) compare [1].

5. If
(5.1) O = (65—s) (rys =0,1,...,n—1),
where ¢,,, == ¢, is an arbitrary circulant matrix, then, as is well-known,
n ' ECE = (d, Brs) s
where F is defined by (2.1) and
. el .

(5.2) 4= D6 (r=0,1,...,n—1).

8=0


GUEST


304 L. Carlitz

Thus € is unitarily similar to the diagonal matrix (d,d,) and the d, are
the characteristic roots of C.

Next if
(5.3) K = (k1) (rys = 0,1,...,n—1),
where %, = k,, then
n*ERKE = (L),
‘where
1o Bgs for r =20,
b = I0pps Tor r=1,...,0—1,
n—1
(5.4) =3 ke (r=0,1,..,n—1).
8=0

Tt follows that the characteristic polynomial of K is equal to

(=12

(m—15) ” =11, (n odd),
(6:5) (n—2)2
(@—1)(@—Tu) [[ @=Ll (0 even).

r=1

These general formulas can be specialized to yield results of arithme-
tic interest. In the first place, if ¢, = x(r), an arbitrary character (xmodn),
then (5.2) becomes

2(8)e"™ = 7(r)v(z),

‘where

(5.6)

=0

Note that (5.6) coincides with (4.6) when n = p. Thus it follows that the
characteristic roots of the matrix (n > 2)

(x(s—))

@

(3.7)
are the numbers
(5.8)

(rys =0,1,...,2~1)

rm)T(y) (r=0,1,...,n—1).

Algo the characteristic polynomial of the matrix (compare with (4.1)
(5.9) letxlatr+s)

(ry8 =0,1,...,,n—1)
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is furnished by
o112

@—en) [[ (@—z(=2»)} (n 0dd)
r=1
®-2)p2
(5.10) z(z— en) H *—x(—r)2(x))  (n even > 2)
(2—20)(x—(—1)9) (n = 2)

In view of the above it is of interest to know when z(y) = 0. The
following reyult may be cited ([4], vol. 3, p. 333). Corresponding to each
character (modn) there is a smallest positive integer ng, ng|n, such that
if r =1(modn,) then y(r) =1. Then we have z(y) = 0 if there exists
& prime p such that p|(n/n,), p*n; otherwise (that is when each pl(nin,)
occurs only once in )

lz(x)| = &'

In particular if #» = p then it is familiar that || = p*® so that (5.7) has
in this case just one zero characteristic root.

Specializing further, if » = p and y is the Legendre symbol, then the
non-vanishing characteristic roots of (5.7) are the numbers

-2 p (r=1,...,p—1).
Also the characteristic polynomial of (5.9) reduces to
(5.11) (2—op) (a% — p) =",

which may be compared with Theorem 5.
If » =p and g is any non-principal character (modp), we may put
" for phr,
0 for - plr,
where o is a primitive fth root of unity. Thus

T —2 o — (a, &),

ra=1

the so-called Lagrange resolvent ([2], p.429). This function has the
following properties:

x(r) =

(a,8)(a7, 8) = (=1)f'p  (ft=p—1),
(a, &)(a", &) = p,.(a)(a™, &) (p—1%(r+1)7),
where
»—2
(8.12) we(a) = 2 inds—(+1)ind(e+1) (r=1,...,p—2).
8=1

Acta Arithmetica V. 20
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It we assume in addition that f = p—1, then the watrix

U = () = (z(+*) (r,s=1,...,p—1)
- gatisfies

3

-1

70 = (Y 2 2(8)) = ((p=1) &),

b
I
—

g0 that (p—1)~"2 U is unitary. In the next place, if we put

(513) M = (qind~"~inds) = (x@a—rs™)  (r,s=1,...,p—1),
then

T =3 (e = N fller)) = (20 )kj # (e (k+1)77),
k

which is the same as
MU = U("/’s(a) 60‘8)7

where y,(a) is defined by (5.12) for L <s < p—2, and we get 1pp._1(fz)
= -+1. It therefore follows that the characteristic roots of the matrix
(5.13) are the numbers

yela) (r=1,...,p—1).

Tt should be observed that in proving this result we have assumed that a
is a primitive (p—1)th root of unity. ‘
Tn the present connection we also note that the matrix
(Me—p) (r,8=0,1,...,f~1),

where 7, is defined by (4.12), has the characteristic roots

-1
(5.14) (@) =D o (r=0,1,...,f-1),

=0

where fi = p—1 and a is a primitive fth root of unity. In this case (1, )
= —1,

(5.15) (o, p) (™", m) = (—=1)"p

8o that all of the numbers (5.14) are different from a zero. It follows readily
from (5.15) that the determinant (compare [1])

—pl—ue for f odd,
el = —{@TNEH=DB LD for  f even.
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6. In conclusion we mention a few more special results of a different
kind. If we put

ad - " 1—1 = om
T3 = 2 B T = Y (e )
0

m=0

then it is easy to verify the formula (see [3], p. 825)

gyt %
(6.1) Pp-1(NT, &) = (i—k)L' g; & By, (ﬁH- —;—):

where &" = 1, & = 1. For ¢ = 1, on the other hand, (6.1) is replaced by
the multiplication formula

fn—1
6.2 B =21 \N'p S
©:2) wtno) == 3150+ 7)
If we replace Bi(») by the function By(z) which satisfies

Bi(@) =Bi(2) (0 <0 <1), Bilw+1) = Bya),
and ¢(w, &) by the corresponding function

we(@,6) =gz, ) (0<2<l), @lotl,e) =g, e),
then By(x) and g, (z, ¢) satisty both (6.1) and (6.2).

Comparison with (5.2) now yields the following result. The matrix

§—7
(6.8) (fk(ac—j— o )) (ry8 =0,1,...,n—1)
has the characteristic roots
(6.4) #EBy(na), knb"f":;,(—iml’-f_) (r=1,...,n—1),

where ¢ = ¥,

If we solve (6.1) and (6.2) for By (w+r/n), we find easily that (¢ = ™)

n—1 — 8
Bk(m)-l-kz ‘Pk—;s(j'f;, g )s,, — nkgk($_i)‘

n
5 &=1
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Consequently if we put

. Bj(nx) for r=0,
(6.5) e = kw for r=1,...,n-1,
g—1
it follows that the matrix
(6.6) (Fep) (r,8=0,1,...,n—1)

hag the characteristic roots
r
(6.7) %kﬁk(mmz) (r=20,1,...,n—1).
In particular we can evaluate the determinants of (6.3) and (6.5).
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A note on the real zeros of Dirichlet’s L-functions
by

P. Tourin (Budapest)

1. For § = ¢-}it, the L-functions of Dirichlet belonging to a modu-
lus % are defined for o > 1 by

V1)

(L.1) I, = 3%
n=1

where x(n) are the characters of the group of the reduced residue-classes
mod#k. It is well known that the study of zeros of these functions give
the key to the distribution of primes in the arithmetical progressions
modk and the essentially new difficulties, compared to those connected
with the zeros of the Riemann zeta-function, are due to the appearance
of real zeros. Concerning them we know (1) that for a suitable positive(?)
¢, at most one of the L(s, y)-functions mod% can vanish in the interval

C
LoLs<1

(1.2) T logk

and, if such an exceptional L(s, y) exists, it has here a single simple zero
(called exzceplional zero and denoted by B). The possibility of an exception-
al zero gives a lot of trouble in the number-theory. A typical example
is furnished by the formula (Page, [2]), valid for x % x,

(1.3) | 3 amyztm)| <

n<e

‘ 0y (we—csYTom= - of)

Co @0 0sVioeZ

x 18 an exceptiomal character or not, respectively; here A(n) stands
for the known Dirichlet symbol and ¢(k) is the usual Euler funection.

(1) This is essentially due to E. Landau [11.
(*) In what follows, ¢y, ¢s,... stand for explicitly ocaloulable positive nume-
rical constants; as an exception ¢4 = ¢4(¢) is not and depends on e.
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