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Consequently if we put

. Bj(nx) for r=0,
(6.5) e = kw for r=1,...,n-1,
g—1
it follows that the matrix
(6.6) (Fep) (r,8=0,1,...,n—1)

hag the characteristic roots
r
(6.7) %kﬁk(mmz) (r=20,1,...,n—1).
In particular we can evaluate the determinants of (6.3) and (6.5).
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A note on the real zeros of Dirichlet’s L-functions
by

P. Tourin (Budapest)

1. For § = ¢-}it, the L-functions of Dirichlet belonging to a modu-
lus % are defined for o > 1 by

V1)

(L.1) I, = 3%
n=1

where x(n) are the characters of the group of the reduced residue-classes
mod#k. It is well known that the study of zeros of these functions give
the key to the distribution of primes in the arithmetical progressions
modk and the essentially new difficulties, compared to those connected
with the zeros of the Riemann zeta-function, are due to the appearance
of real zeros. Concerning them we know (1) that for a suitable positive(?)
¢, at most one of the L(s, y)-functions mod% can vanish in the interval

C
LoLs<1

(1.2) T logk

and, if such an exceptional L(s, y) exists, it has here a single simple zero
(called exzceplional zero and denoted by B). The possibility of an exception-
al zero gives a lot of trouble in the number-theory. A typical example
is furnished by the formula (Page, [2]), valid for x % x,

(1.3) | 3 amyztm)| <

n<e

‘ 0y (we—csYTom= - of)

Co @0 0sVioeZ

x 18 an exceptiomal character or not, respectively; here A(n) stands
for the known Dirichlet symbol and ¢(k) is the usual Euler funection.

(1) This is essentially due to E. Landau [11.
(*) In what follows, ¢y, ¢s,... stand for explicitly ocaloulable positive nume-
rical constants; as an exception ¢4 = ¢4(¢) is not and depends on e.
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For § we know at present only the estimation(®)

B <1—ou(e)/k*
for 0 <e<1, where — curiously enough —mno emplicit form of ¢,(e)
ig known and also that the exceptional k-values (i. . those with an excep-
tional L(s, y)) if they exist at all lie very dispersed (see Landau [1]). Taking
into acecount all these it iy of some interest to note that for the greatest
real zero y = p(y) = % of any L(s, x) function belonging to the modulug
% (if there exists such a zero) only the “small” primes are responsible.
More exactly we shall prove the following

TEEOREM. With P = el8"1189" 40 have for & > o5 the inequality

loglogloghk ] max log

A
loglogk log P 1<x<p |n§t/ (")x(n)l

F<)yx) <2

for each y # yo(modk) (if there are any real zeros of L(s, x)).

By more careful treatment of the details one could have the constants
in the theorem replaced by smaller numerical values and the estimation
refined so that it could be used also for numerical caleulations with prime
tables. We shall not do this. The proof of the theorem will be based, as
in many former applications, on the following theorem(4).

For any arbitrary non-negative integer m and complex by, z-num-
bers with

(1.4) L=la| Z |oa = ... 2 |2,
there is an integer y with '
(1.5) m+l <y < mtn

(*) C. L. Siegel [3]. Alternative proofs are given independently by §. Chowla
and T. Esterman.

(*) This is an improved form of Theorem IX of my book [5] where the theorem
stands with (n/246®(m+ 2n))" instead of (n/Se(m-+n))® The improvement is con-
tained in, the paper [6] (and also in the rewritten and enlarged Chinese edition of my
book in 1956). As E. Makai proved (see his forthcoming paper in Acta Math, Hung.)
the estimation (1.6) is no more true replacing the constant 8¢ by any one < 2e.
The improvement of the constant 8¢ will be of significance in some applications
(not here).

Added in proof. Suitable modifications lead to the following form of the
theorem (again no care is given to best-possible constants).

If k> o5, @ > o5 and Py = k+089)™ ghon with Ulm) = 3 A(n) g (%)

. n<w

GF<hrm< max log |U ().

1
—— + —
1+loge  logP; 1ge<P)
The proof will be given in the fortheoming English edition of my book.
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and n .
n "
, b z"\ > (_-m in by ... 4.
(1.6) | | So) ikt
This theorem will be applied here in the case b, = by = ... =b, =1
in the following form (which can easily be derived from (1.4)-(].5)-(1.6)).
If m >0 and max|y| >1 and 2 <n < N, then
7

N N
S S A [ PR —
(1.7) ’"‘:%Z’X'*N [ e e (22(M+N))
rini er

The proof of our present theorem is in prineiple similar to & previous
one(®) on the remainder-term of the prime-number formula but the appear-
ance of the parameter k necessitates unexpected changes in the choice
of the parameters of the proof.

2. We turn to the proof of the theorem. We fix an arbitrary z(n)
modk and suppose that L(s, y) has real zeros and y > } is the maximal
one. We yhall make repeated use of the fact that for & > ¢, and any real
7 the number of zeros of L(s, y) in the parallelogram

(2.1) 0=1 T<i<THl
does not exceed :
(2.2) -+ ologk(]e|+1).
The integer » will be exactly determined later; at this moment we require
only
(2.3) log?kloglog® < w+1 < log?k(loglog%-+3¢,).
Further let M be such that
(logk Log Yogk)* (loglogh)?
(2.4) elogzk(loglogk+ﬂc7)+l < M < eloglogk+3c7

and then fixed; further let
(2.5) &= Mot
then owing to (2.4) and (2.3) we have

(2.6) & < ellogkloglogh)® — P,
Finally let

1 & I
2.7 _ e——— f—'-——— d .
@.n J) =5~ 47" I (s, 2)ds

(°) See §9 of the German edition of my book [5].
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Owing to the well-known coefficient formula we have

ZA(% n)log® ——.
=
Putting
(2.8) 2/1(%)75(%) =U(v,2)
n<y
wo obtain 1 3 P 1 3 £
T = [0 5 4010, 2 = = [ 00, Diblo

i. e. from (2.6) an

I (x)l <

d (2.3)

log® &

(2.9) S o7 max [T (v, )|

log2k(loglog k)2 \®**
g(ﬁ,,gﬁ_“lg_&) max [U(o, 7)|
o-+1 1P

< (2eloglogh)® max | U(v, )|
I<ogP

3. Using (2.2) and the known fact (see [4]) that if ¢ = o, i, stand
for the zeros of an L(s, x) with any fixed y, then for o > % and any real
t the inequality

LV
(3.1) ‘—(s 7 — g ]g clog ke (|t 1)
L to—a<s © ¢ ’
a'q>1/5

holds, we easily get the existence of a connected broken line V, consisting
of segments alternately parallel to the axes, all lying in the infinite verti-
cal strip

1
3.2 <o P
3.2) A (log kloglog k)2’
on which the inequality
(3:8) T (8, 2)| < oglogR(lt]+1)

holds. For later reasons let us observe that ¥ does not depend uporn the
choice of w. Using this and the other known fact that for any real ¢ with
[z] =2 we have between 7 and r+1 a t — i, 8o that on the segment
the inequality ISos2, t=t
LI

T — (s 7%){ o10log® (k|7|)

holds, we infer by usual contour integration that
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EQ 1 ES LI
J{x) = wr T o | ot
o oni J s L
Y »°
and thus using (2.6), (3.2), and (2.3) for ¥ > ¢y,
69

T— D =

eright e

from ¥
This and (2.9) give — taking in account also (2.3) and y <
inequality

(3.4) max| Ulo, )l
1o

(8, x)ds

< 01, PMlogi k- 37+ < 1P,

< 1 — the

EE
4
o) e }
Itelalogk oTight
ag=1/3 from ¥,
itgl <logh

.3) the firgt sum on the right of (3.4) does

> (2eloglog k)~®+D. {— 1P

( - 1)‘”“
4

4. Owing to (2. 2) and (
not exceed

£
2 2
4@,
7 § CERT

n=logk

Plogk <e
(logk)® ~ %

= eylog?k < 3P,
Ag to the factor & in (3.4), we have for k > ¢, from (2.3), (2.4) and (2.3)

Plog*k
(10g k)logz kloglogk

(£.1) logkn << ¢4

(Ingklogkloglc)

OB OB OBR) _ ylog?kloglogk
£ > elogk(loglogh +3¢7)+1

(4.9)
1 _ 3ertl 3e74-1
> P" 1+(3¢7-4+-1)/log logk > P"( loglogk) -~ Ple Ioglogk

(4.3)

We estimate the remaining sum
= 2|
e right from¥,

w41
)
4
ltpl<logk

from below by & proper choice of w (so that the requirement (2.3) should
not be violated); this will be done by the theorem quoted in (1.7), where
the role of the numbers #; is played by the numbers M**-y/p and

(4.4)

m = log2kloglogk.

Since the line ¥ does not depend upon o and the numbers M®~*-y /g either,
Z is a power-sum of fixed complex numbers indeed, where the number
of terms is also independent of w. Obviously ¥ is among the o’s so that
the condition m?x ley| =1 is satisfied. Owing to (2.2) the number n of


GUEST


314 P. Turén

the terms in Z is for k& > o5
(4.5) < 210gk'c-,10g(k(1+10gk)) < 3¢;log*ke.
Hence if we determine w-1 as the exponent realizing the maximum
on the left of (1.7) and take
N = 3¢,log?k,
(2.3) is not violated and thus

3c,log?k )367103‘2k
21> 22 (log2kloglogk+ 3¢qlog? k)

or for &t > ¢y . )

7] > 6—40710g2klogloglogk

Putting this, (4.1) and (4.2) into (3.4) and taking in account that owing
to 9 > 1 we have for k > ¢ '

2 1 3ep+1 o1+l
P35 < 1P2 Toglogh, g—terlog”klogloglogls < 17~ loglog,c e—4c7 log* Jelogloglogle

we get, using also (2.3),
3¢7+1 o
max |U (v, 7)| > (2eloglogh) =+ " Tastugk. g *erlos’ klogloglos’
ISP

o7

3102
= Pv—m_e——ilog kloglogklogloglogk

v . ,~2log® kloglog klogloglog k Yo Loghglonk
> P?-¢ glogh . p Toglogk

which proves the theorem.
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On complete caps and ovaloids in three-dimensional
Galois spaces of characteristic two

by
B. Szere (Rome)

Summary

. Introduoction.

. Construction of a complete (29+4)s3 4 for ¢ = 4.

. Construction of a complete (3g-+2)sq for any ¢ = 2%
. Two additional lemmas.

. The polarity defined by an ovaloid.

. On the plane sections of an ovaloid.

. On ovaloids of Ss which are not guadrics.

W O O OB OB OB R
oy Ot s G0 bD

§ 1. Introduction

The study of the geometry of a Galois space Syq, i. €. of & projective

r-dimensional space over a Galois field of order

9= phy

where p, b are positive integers and p is a prime (the characteristic of
the field), has recently been pursued and developed along new lines (1).
In it, both algebraic-geometric and arithmetical methods have been ap-
plied, 4ncluding the use of electronic calculating machines; moreover,
some of the problems dealt with are deeply connected with information
theory, especially with the construction of g-ary error-correcting codes.
Tt is actually a chapter of arithmetical geometry, which reduces to the
investigation of certain questions on congruences modp in the particular
cagse when 7 = 1.

A set of & distinet points of 8,4, no three of which lie on a line, is
denoted by k., and called a k-arcifr = 2 and a k-cap if r > 3; any such
%, is said to be complete when it is not a subset of & (%-+1)pq. For given
r and g, & kg having maximum % is called an oval if # = 2 and an ovaloid
if r >> 8, and then it is consequently always complebe.

(%) See especially [8]; further listorical and bibliographical informations are
contained in [7].
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