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the terms in Z is for k& > o5
(4.5) < 210gk'c-,10g(k(1+10gk)) < 3¢;log*ke.
Hence if we determine w-1 as the exponent realizing the maximum
on the left of (1.7) and take
N = 3¢,log?k,
(2.3) is not violated and thus

3c,log?k )367103‘2k
21> 22 (log2kloglogk+ 3¢qlog? k)

or for &t > ¢y . )

7] > 6—40710g2klogloglogk

Putting this, (4.1) and (4.2) into (3.4) and taking in account that owing
to 9 > 1 we have for k > ¢ '

2 1 3ep+1 o1+l
P35 < 1P2 Toglogh, g—terlog”klogloglogls < 17~ loglog,c e—4c7 log* Jelogloglogle

we get, using also (2.3),
3¢7+1 o
max |U (v, 7)| > (2eloglogh) =+ " Tastugk. g *erlos’ klogloglos’
ISP

o7

3102
= Pv—m_e——ilog kloglogklogloglogk

v . ,~2log® kloglog klogloglog k Yo Loghglonk
> P?-¢ glogh . p Toglogk

which proves the theorem.
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§ 1. Introduction

The study of the geometry of a Galois space Syq, i. €. of & projective

r-dimensional space over a Galois field of order

9= phy

where p, b are positive integers and p is a prime (the characteristic of
the field), has recently been pursued and developed along new lines (1).
In it, both algebraic-geometric and arithmetical methods have been ap-
plied, 4ncluding the use of electronic calculating machines; moreover,
some of the problems dealt with are deeply connected with information
theory, especially with the construction of g-ary error-correcting codes.
Tt is actually a chapter of arithmetical geometry, which reduces to the
investigation of certain questions on congruences modp in the particular
cagse when 7 = 1.

A set of & distinet points of 8,4, no three of which lie on a line, is
denoted by k., and called a k-arcifr = 2 and a k-cap if r > 3; any such
%, is said to be complete when it is not a subset of & (%-+1)pq. For given
r and g, & kg having maximum % is called an oval if # = 2 and an ovaloid
if r >> 8, and then it is consequently always complebe.

(%) See especially [8]; further listorical and bibliographical informations are
contained in [7].
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When ¢ is 0dd (i. e, if p > 2), every oval is given by the points
of an irreducible conic (ef. [5], the converse being also tirue), and consists
of & = g+1 points. Likewise, when ¢ is odd, every ovaloid of S, 4 is given
Dby the points of an elliptic (i. e., non-ruled) quadric ([1], [2]), and consists
of & = ¢*+1 points.

The situation is not so simple when ¢is even (i. e., p = 2 and ¢ = 2%,
Then we obtain an ovel (having & = g-2) by aggregating to the points

of an irreducible conic the nuecleus of the conic, namely, the point of .

concurrence of its tangents (the existence of such a point being a conse-
quence of the fact that the ground field has now the characteristic p = 2);
but, with the only exception of some first few values of &, there are ovals
not obtainable in this way [6]. As for the ovaloids of 8, with even ¢,
it is known that, if ¢ = 2, they are given by the & =8 poinbs of 8y
outside a plame; if ¢ > 2 (i.e., h > 1), they consist of k = ¢*+4-1 points,
an example being offered even now by the points of an clliptic quadrio,
which is the only possible case of ovaloid if ¢ = 4 ([3], [1]).

In the present paper we show that, if ¢ = o* > 8, there may emist
ovaloids of 854 which are not quadric, an explieit example being congtruct-
ed for ¢ = 8 (§ 7). We also prove that any ovaloid dofines a null polar-
ity (§5), and establish a number of results on plane sections of an ov-
aloid (§ 6), as well as the existence of some complels (2q+4);, for ¢ =4
(§2), and of some complete (3q+2);, for any ¢ = 2" (§3).

‘We now recall some simple known results (see e. g. [4], [8]), required
later on.

The number of points of any Spq i8 ¢"-+ ¢ +...-¢+1, and so g+1
is the number of the points lying on a line (as well as of the lines of a
pencil), ete. The section of an arbitrary k., of S, , with any subspace 8.4
of 8,4, if not empty, is necessarily a T g (Where 1 <\r' < r—1, 1 B <R).

In particular, with respect to a given kg, the lines of the ambient
8,4 can be classified in three kinds: (i) secant lines or chords, containing
two distinet points of k,.g; (ii) external lines, containing no point of kg
(iii) tangent lines, containing a single point of %4, called the point of
contact between the line and J.,: then we say that each of these lines
touches %, , at their respective point of contact. At every point P of k.,
there is always the same number (possibly zero) of tangents, i. e., of lines
\having P ag their point of contact with %, g, this mumber being g™+ a4
Footg—k42. '

The g+1 lines touching an ovaloid of 8,, at any of its points, P say,
are the ¢+1 lines'of a pencil [1], and so they lie on a plane, which is
called the tangent plane of the ovaloid at P. It follows easily that the
planes of 8, which are not tangent planes are ¢*- ¢ in. number, and that
each of them intersects the ovaloid in a (g-+1)-arc,
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§ 2. Construction of a complete (2g+4)34 for g = ¢

‘We begin by proving the following

Levma L. If € and @' are any two ovals of a given Sy, free from
common points, then no line of Sy, can be external to both € and C'.

In fact, both € and @’ consist of ¢+-2 = 6 points. Through each point
of C there are on the whole ¢-+1 = 5 lines of S, 4, and each of these
lines meets © at a further point; moreover, exactly 3 among the 5 lines
just considered meet @ (in a pair of points), the remaining 2 lines being
external to ©'. It follows that the number of the lines of §,, meeting
Dboth € and € is given by 6-3/2 — 9; and that the number of the lines
of §,, meeting € but not @' (or, likewise, meeting €’ but not €) is given
by 6-2/2 = 6. The number of the lines of Sy, having some point in common
with @ u @’ is consequently 9+ 6+ 6 = 21, which is also the total number
(144-4?) of the lines of 8,4, whence the lemma.

We can now establish

Tusorer L. If = and m, are two distinct planes of an Ssy, and 1 18
their line of intersection, let us consider in = an oval € and in 7, an oval
@, both ovals having no common point with 7. Then the 6+6 = 12 poinis
of @@, constitute a complete 125 ,.

Tirst of all, it is clear that no three points of € v C; can be collinear,
and so the set of the points of @ G, is in fact & 12-caps of Sy,. In order
to prove the completeness of this 12;,, it suffices to show that through
every point P of 8, there is some line meeting Cu @, at two distinet
points. This is obvious if P les in # or in =, on account of the complet-
eness of the ovals C and @,. If P Yes outside = and m;, let us project C;
from P upon w; the projection is an oval €’ of =, and both @ and €' have
then no common point with . From the lemma it follows that € and e’
must consequently have some point in common: the lLine joining such
a point with P meets actually € v €, in two distinet points, and this complet-
es the proof of the theorem.

§ 3. Construction of a complete (3g-+2)3 4 for any g = o

We now assume that the character ¢ has an arbitrary even value
(g = 2", and we establish the following

Lewwa II. If n and m denote two distinct plames of an 8s4, and v is
their line of intersection, let us consider in = an drreducible conio C and in
7, am irreducible conic ©y, both conics touching r at the sime point T dnd
having the same nucleus O (necessarily situated on v and distinct from T').
Moreover, we denote by A any of the q points of € disvinet from T, and by A,
any of the g points of Cy distinct from T'. Then every point A, of intersection
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of two of the ¢ lines AA,, and not situated on either m or m,, lies always
on q of these lines exactly: the points A, just considered ave q in number
lie all on a certain plane m, (distinct from w, m,) which contains the line r’
and — together with T — they constitute the points of an irreducible com‘a,
@y, which touches v at T and has O as its nucleus. ’

Tet 44,, A'A] be two of the ¢° lines defined above — where A, 4’
are two points of € and 4;, A] are two points of C; — and suppose t’ha.t
they meet at & point, 4,, not situated on either = or =, (so that the four
points 4, 4', 4, 4] are distinet). Then the projection of ©, from 4
upon « is an irreducible conic having in common with the given conic é
the points T', 4, A’ and having the same nucleus 0; consequently, the two
conics just considered on = have at those three points the same tangents
70, A0, A'0, and so they coincide. It follows that A, must actually lié
on exactly g of the ¢? lines defined above.

Conversely, if we fix arbitrarily one of these lines, A4, say, we see
that precisely ¢—1 of the remaining ones are meeting it, and so the latter
intersect A4, all at the same point, A,. We obtain in fact each of the
required lines by considering any one, R say, of the ¢—1 points of » dis-
tinet from T' and O: if A, A} denote the intersections of €, @, with RA
‘RAI residual to 4, 4, respectively, then the points 4, 4,, A’, 4] aré
in a plane, and so the lines A4,, 4’4, intersect; and conversely.

If 4,18 — as above — the intersection of A4, 4’4, and A} denotes
the intersection of A4], A’4,, then the points 4,, A;, R are the diagonal
points of the quadrangle of vertices 4, 4,, A’, 4. Hence they are collin-
ear,-gince the ground field hag now the characteristic p =2 ([4], n. 103)
and so the line 4,4; meets 7. ’

.The previous argument gives immediately that the meeting points
outside w, 7, of two (and therefore of q) lines A4, are ¢ in number; and
that the join of any one of them with any point of € distinet fro7m T
meets €, at a point (also distinet from 7). Tf 4, and 4] ave any two distinet
of those meeting points, let us choose any point 4 of @ distinct from T
and denote by 4,, 4; the points where the lines 44,, A4, rogpeetivel;i
intersect C;. Then the line 4,4 will meet » at a point, B say (distinet
from_ T, 0), and the line RA will intersect @ -- residually to 4 — at
E:3 po,mt A’ (fijstinct irom T'). From the above, it follows that the lines
A,4; and r }nte.rsect; hence the ¢ meeting points defined in the lemma
;r;egwol by two in a pla.n_e Fhrough 7, and go they must all lie in a single
7 B r}())j‘c:}l;:i,nvrz gla;y, coa:almx%g 7. Those q1points can therefore be obtained
A (£ 1T) of eg ; consg‘::que}?ﬂgo}izrg:yj;lll ](Jf oln) ﬁ.Of e'l oy ("1}08911 L
r 50T ond tag O o n’ucleus. & conic G, of 7y, which touches
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Lemma IT is thus established. We see, moreover, that the relation
among the three conics @, Gy, @, is symmetric, any two of them being
perspective from & point — distinet from 7' — arbitrarily chosen on the third
conie.

We prove now

THEOREM II. With the notation of lemma II, the point-set C v Cpv O
constitutes an incomplete (2q-+2)-cap. Bvery k;, containing this (2q-+2)-
cap ocan be obtained by aggregating to it some points conveniently chosen on
the plane my; it follows that the number & of its points satisfies the limitation
k< 3¢+2, the masimum k =3q+2 being actually reached by certoin
(3q+2)5q, each of which is therefore complete.

First of all, the definition of k-cap (§ 1) gives at once that € v C; v O
is & (2¢+2);4. Since Cu O is an oval of @ (§1), no further point of =
(and, likewise, of =) can be aggregated to this (2¢+2);4, if we wish
to obtain still a eap. On the other hand, each line 44, (joining a point
A # T of C and a point 4, T of C,, and so containing a point 4, of
@,) has exactly (¢g-+1)—3 = ¢—2 points outside the planes =, m;, 7,;
gince the lines A4, are ¢* in number and — by lemma II — none of the
points just considered can he situated on more than one of those lines,
thus the total number of these points is ¢%(g—2), and so it coincides with
the number . >

(@ +¢*+g+1) =3 (" + ¢+1)+2(¢+1)
of the points of S, , which lie outside the three planes m, 7, 7,. It follows
that each of the latter points lies on one, and only one, line 4 4,; there-
fore none of them can be aggregated fo (2g+2);,, if we wish to obtain
still & cap.

In conclusion, in order to amplify (29-+2);, in a cap, we may only
aggregate to it some points of m,. From lemma IT, none of the addition-
al points can He on C,; moreover, gince m, meebs (29+2),, in the two
points T and O, the additional points can be chosen freely in m,, outside
©,, with the only further condition that the set of points obtained by ag-
gregating 7 and O to them is a k"arc of m,. As k' < ¢-+2 (§1), the number
of additional points is never greater than (¢-+2)—2 = ¢, this maximum
being reached if (and only if) the ¢ additional points — together with the
points T and O — constitute an oval, having no point distinet from T'
in common with @,.

We obtain such an oval by considering in =z, the pencil of conics
determined by @, and the line » counted twice, and aggregating the point
0 to the g+1 points of any of its conies distinet from the two conics by
means of which we have defined the pencil. Theorem II ig thus com-
pletely proved.
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§ 4. Two additional lemmas

‘We now give a couple of additional lemmas, to be applied later on,
the first of which can be conveniently compared with lemma I (§3).

LemmA IIT. If @ and m; are two distinct planes of an S, over an arbityr-
ary perfect (possibly infinite) field of characteristic 2, and r denotes their
line of intersection, let. us consider tn m an irreducible conic C and in 7
an irreducible conic €, the two conics having the same nudleus, O (situated
on 1), and touching r at two distinct points T, T;. Then a« third plane o —
passing through v — is defined, the points of which not lying on v constituie
the locus of those points of Sz— (mw m,) which lie on just one line meeting
both € and Cy.

We can introduce in S, homogeneous coordinates (zy,w,,a,, s,),
in such a way that T, T, have the coordinates (1000), (0100), and that
(0010), (0001) are two further points of €, @, respectively. Then, by
& proper choice of the unity point, the coordinates of O become (1100)
and the equations of G, G, can be reduced to the form:

e: 2, =0, (0t 2,)@5425 =0,

€ wmy =0, (mtz)wtat=0.
The points 4, 4, of G, G, different from 7, T, respectively, are those
of coordinates

A4: @y =244, @, =4 By =1, x,=0,

A @ =g, Ty =witu, =0, m=1I,

where the parameters A, u vary arbitrarily in the ground field. The coord-

inates of any point P of §; not situated in w or =, can be written in the
form

P: w=0, @,=0b, @3=0 @=1,

with ¢ 3£ 0; then 4, 4,, P are collinear if, and only if,
@ =0(A+A+pu, b=crt+(u+p).
On eliminating u among these relations, we obtain:
¥+ o(o-+1) 224+ (a+b+a2) = 0;

and the last equation has just oneroot 4 in the ground ficld if, and only
if, ¢++1 = 0: this is tantamount to supposing that the point P lies on the
plane @3+, = 0, which is therefore the plane o of the lemma.

‘We pass now to
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LemmA IV. Let K be o k-cap contained in an irreducible quadric
Q of Byq, with arbitrary (even or odd) q > 4; and suppose that

k= (P+g+4)/2.
Then Q 1is elliptic, and every cap containing K lies entirely in Q.

Q is elliptic, since otherwise K could have at most two points on
each of the ¢g-+1 generators of Q of one system, and so % < 2¢+2, in
confrast with our hypotheses.

If o cap containing K does not lie entirely on (9, and so it possesses
(at least) one point — O say — not situated on (3, then there ars exactly
¢-+1 points of O joined to O by a tangent and the % points of K are joined
to O by % distinect lines. Hence at least

k—(g+1) = (¢*—q+2)/2

of these lines do not touch Q, and each of them meets consequently
in two distinet points. The points thus defined on (§ and the points of
contact of the tangents of () passing through O are distinct, and at leagt

(F—g+2)+(g+1) = ¢*+3

in number, But this is impossible, since the quadric () — being elliptic —
contains ¢*+1 points exactly; and this contradietion completes the proof
of the lemma.

§ 5. The polarity defined by an ovaloid

We now consider an arbitrary ovaloid K of 8,4, with ¢ = 2" >4,
and any plane = of §,,. From § 1 there are only two cases to be distin-
guished, according as = intersects K in a single point, P say (and then
7 i3 the tangent plane of K at P), or in a (¢-+1)-are. In the first case,
the tangent lines of K lying in = are clearly the ¢+-1 lines of » containg
P. In the second case, the (¢--1)-arc iy contained in just one oval ([8],
n. 30), obtainable by aggregating to it a uniquely determined point,
P say; in other words, the ¢-1 tangents to the (g-+1)-arc (one at each
of its points) are the lines of the pencil of centre P, and they are mani-
festly the only tangents of K lying in . In either case, the above defined
point P will be called the pole of = with respect to K.

‘We shall prove

TreorEM III. The correspondence associating fo every plame of 8,
its pole with respect 10 K is always a null polarity. The linear complez of
the lines of S;q which are transformed info themselves by this polarity, con-
sists precisely of the tangent lines of K ; hence the tangent lines of K contain-
ing an arbitrarily given poini of Sy4 are g-+1 in number, and constitute

Acta Arithmetica V, 2
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a pencil. Moreover, the polarity transforms every chord of K into an emternal
line, and conversely.

We show first that the correspondence m — P — defined in the firgt
paragraph of the present section —is one-to-one, namely that each
point P of §;, lies on exactly ¢4-1 tangents of K, constituting a peneil.
For this purpose, we denote by ¢p the number of tangents of K containing
P, and we remark firstly that

tp 2 q+1.

In fact — if we suppose ip < ¢ — we deduce the existence of some plane,
a say, containing P but none of the ip tangents of K issued from Pj; this,
however, would lead to a contradiction, since we know that on « there
iz a pencil of tangent lines of K, and so at least one of these lines should
contain P.

On the other hand, K admits g1 tangents at each of its ¢>+1
points, and (g+1)(¢*+1) is the total number of points of §3, (§1). By
evaluating in two different manners the number of pairs formed by
a tangent of K and one of its ¢--1 points, we then obtain the equality

S = (g+Dxe+D,

F
where the sum rung over all the points P of S;,. Hence in none of the
previous limitations the inequality sign may hold, i. e., we must have
ip = ¢-+1 for every P, since otherwise — by adding them — we should
obtain a contradiction. We notice now that the ¢-1 tangents of K issued
from P lie necessarily on a plane (to be called the polar plane of P). For,
if that would not be so, there should be some plane containing P and
none of these tangents; but this, from what we have previously seen,
would not be possible.

In order to complete the proof of theorem IIT, there remains only
to be shown that, if'r denotes any line of §;,, when a plane = of Sy,
turns about r its pole P describes a line, 7’ say; and that »” coincides with
rif r i3 & tangent, while otherwise » is external or is a secant with
respect to K acecording as » is a secant or is an external line.

The stated properties being all obvious when # is a tangent, let
s suppose that » is & secant of K. If 4, B are the two (distinet) points
of K lying on 7, we denote by a, f the tangent planes of K at 4, B respec-
tively, and by ¢ the line of intersection of a, . Clearly, s’ contains none
of the points 4, B, and so it is external with respect to K (4, B being
the only points of K lying on a, ). Any plane = containing r intersects
@, B in two lines touching K (at 4, B respectively); hence these two lines
meet at a point P, intersection of x and ¢/, which —from the very defin-

e ®
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ition of pole —is precisely the pole of = with respect to K. And we
ghould notice that the pencil described by s and the line described by P
are homographic, since they are mubually perspective.

Finally, let us consider the remaining case — when » is external
to K — and denote by =, 7, m, any three distinct planes of §,, con-
taining 7, and by P, P,, P, the poles of =, m,, =, with respect to K. We
remark that none of these points can lie on », ag otherwisge » would touch
K at such a point, and so P, P,, P, are certainly distinct. Hence any point
O of r is joined to P, P,, P, by three distinet lines, which — from the
definition of pole — are three tangents of K issued from O, and so they
are coplanar. Since O is an arbitrary point of r, it follows that P, P,, P,
must lie on & line (skew to r). By keeping =, and =, fixed, and making
7 turn about r, we see consequently that the pole P of = lies on the fixed
line #' = P, P,. This line is certainly not a tangent, as this would imply
the coincidence of » and #'. In order to prove that +' is now a chord of K,
on using the results of the previous paragrapb it suffices to show that:

Amny ovaloid admits the same number of chords and of external lines.

In fact, the total number of lines of S;, is ([4], n.159):
(@+1)(*+g+1);
moreover, an ovaloid of 8;, has manifestly (¢-+1)(¢*--1) tangents and
(ng'l) chords. Hence the latter number is actually the same as that of
the external lines, since

(@+1)(@+g+1) = @+ D@ +D+2(7F).

Theorem III is thus established. From it we deduce at once

CoroLLARY I. When a point describes a tangent line of an ovaloid,
its polar plane turns about the same line, corresponding homographic-
ally to .

Another immediate consequence of theorem IIT is expressed by

CoroLLARY II. The fangent planes of cmiy given ovaloid constitule the
dual of an ovaloid, the lines situated on two (and so on only two) distinet
of those planes being the lines external to the given ovaloid.

§ 6. On the plane sections of an ovaloid

‘We shall establish later on (§ 7) the existence of ovaloids which are
not quadrics; and now we investigate some properties of the plane
sections of such ovaloids.

If K is any ovaloid of 8;,, with even g, let 7 be any of the ¢*-{- g planes
of 8; ; which do not touch K ; then wintersects K in a (g-+1)-are, I'say, giving
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an oval by aggregating to it the pole P of w with respect to XK (§5).
About I', we can distinguish from §1 the following three possibilities:

(i) I' is & conic (and then P is its nucleus).

(i) I" can be obtained from a conic by aggregating its nucleus, 0,
and. suppressing one of its points, coinciding with P. 'We shall then say
that I'is a pointed comic, having as nucleus the point O (which is a well
defined point of I"if g > 4); and we notice that the tangent of I' at O
is the line OP.

(iii) The oval I'vP can be obtained in no way from a conie, by
aggregating the nucleus to it.

It K is a quadrie, only case (i) can arise; and the converse is also
true (cf. theorem V). We shall say that K is singular or regular according
as some or none of its plane sections presents case (iii). No singular oval-
oid can therefore be a quadric. On the other hand, from known results
[6], we have that every ovaloid is regular for h = 4 and for h = 8; and we
shall not investigate the question of existence of singular ovaloids for
h>8, .

‘We prove first

TrmoREM IV. Al the poinied conics lying on an ovaloid K of Syq,
which have as nucleus o given point O of K (if any), must admit & common
tangent at O.

It suffices to show that, if @, m, arve two distinet planes of §;, con-
taining O and meeting K in two pointed conies, I', I, say, of nucleus O,
then the line 7 = mm, touches K at O.For this purpose, let us suppose
that » intersects K at a point, T say, distinet from O, so that the poles
of s, @, with respect to K are two points P, Py (of &, 7 respectively) not
lying on . Moreover, on =, m; We have two conics €, €, both having O
as nucleus and touching r at 7, such that

ToP=0u0, IyuP, =€ u0;

we then designate by 9, 9, the quadric cones projecting €, €, from Py,
P respectively.

From lemma IT and the proof of theorem IL (§ 3), we see that €, C;
define a certain plane m, containing r, and that the lines joining the gingle
points of

I—(0uT) =C—(PuT)
with the single points of

o I—(0uT) = €,— (P, o T)
up
N ) QA v Ky
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completely. Consequently, since K is a cap, the points of K—(I'v IY)
must lie on 7, v ¥ ¥, and so their number eannot be greater than 3g.
But the total number of the points just considered actually is (¢2+1)—2¢;
and this number is greater than 3¢, since now ¢ > 8 (otherwise K would
not contain any pointed conie (cf. §1)).

This contradietion proves the theorem, as an immediate consequence
of which we obtain

OOROLLARY ITI. Any point of an ovaloid of Syg is the nucleus of at
most q of its pointed conics.

‘We proceed to establish

THEOREM V. Any ovaloid K of 8, (q=8) containing (at least)
(g®—q2+24)[2 conics is comsequently an elliptic quadric.

‘We begin by showing that we can find on K two distinet points, 4,
B say, such that:

(i) there exist (at least) ¢2/2-+1 distinct conies lying on K and con-
taining 4;

(ii) there exist (at least) ¢/2+1 distinet conics lying on K and con-
taining both 4 and B.

If it should be impossible to choose a point A for which (i) holds,
then each of the ¢2-+1 points of K would lie on at most ¢*/2 conics. By
evaluating in two different ways the number of pairs formed by 2 conie
of K and one of its ¢--1 points, we then obtain:

(g+1)-(*—*+29) (2 < (+1)-¢*/2.
This inequality being not satisfied, it follows that we can in fact choose
A such as (i) holds.

Tf it should be impossible to associate to A another point B of K
for which (ii) holds, then A and any of the ¢* points of K distinet from A
would lie both on no more than ¢/2 conies of K. By evaluating in two differ-
ent ways the number of pairs formed by & conic of K containing A and
one of its ¢ points distinet from A4, and using (i), we then obtain:

(*2+1)-g < ¢*qf2.
This inequality being not satisfied, also part (ii) of our agsertion is proved.

It A, B are two distinct points of K for which (i) and (ii) hold, we
denote by a, B the planes touching K at 4, B, by Coy Cuyeeny Cgp 9/2+1
distinet conies of K containing 4, B, and by D a conic of K containing A
but not B. The plane of @ will then meet o in a line touching at most
one of the ©’s at A. Hence it is not restrictive to suppose that the plane of
@ intersects the planes of ©,, ..., Gy in chords of Kj if Py, R
denote the points distinet from 4 where these chords meet K, then P;
is a common point of €; and D (4 =1,...,4/2).
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The quadric — O say — defined by the condition of containing ¢,,
@, and Py, meets D at Py, Py, P; and (having o as its tangent plane at 4)
it touches @ at A. Therefore the conic @ lies on O; and so does the conic
€ (i =3,..., q/2), since &; contains the point P; of D, hence of (, and
it touches O at 4 and B.

From (i), (i) we see that on K there exist conics containing 4, but
not B, which do not touch &, at 4. By substituting such a conic for @
in the previous argument, we infer that G, must lie on. & quadrie containing
at least g/2—1 of the conics @y, ..., Cyy; hence also C, is situated on Q.

The points of Cyu Cyv...v Cyy v D are ab least

2+ (g2+1) (g—1)+(¢2—1) > (*+q+4) 2

in number. Since they lie on both K and Q, from lemma IV (§4) it follows
that K is an elliptic quadric, and that K is contained in Q. Hence K and
(O must coincide, as they contain the same number (¢4-1) of points.

Thus theorem V is proved. From it we shall draw as & consequence
(to be compared with corollary IIT) the following:

CoROLLARY IV. On evéry regular ovaloid I of S,,, which is not
a quadric, there exist some point which is the nucleus of at least q/2+1 of
its pointed comics.

For, if every point of K should be the nucleus of no more than g/2
pointed conics, then K could contain on the whole at most (g*+1)q/2
pointed conies, and so at least

@+ —(@+1) g2 > (68— g*+29)/2

.conics, in contrast with theorem V.

§ 7. On ovaloids of 83, which are not quadrics
Let us now suppose that K is an ovaloid of 8,, (¢ = 2">
ing 142 (> 2) pointed conics
Iy Ty 4y, iy 4y

with the same nucleus, O say, and denote by « the tangent plane of K
at 0. Then, from theorem IV, the planes =, my, g1, ..., 4 of these pointed
conics must all contain a fixed line,  say, touching K at O; moreover,
‘from theorem IIT (§5), their respective poles

T, Ty Uy ..y Uy

‘mustvb.e distinet points of . If 1 > 0, we see from corollary I (§5) that
the points O, T, Ty, U,, ..., U; must correspond homographically to the

8), contain-
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planes @, %, ®yy y1y ...y 1. 10 any case, from the definition of pointed
conics, we obtain the existence of 142 conics

€,C1y Dyyeony D

Iying in @, @, %1y -++; 71 and touching ¢ at T, Ty, Uy, ...,

gueh that

U; respectively,

=(@uO)~1, .., 4=(Dv0)—T.

The plane through r associated — from lemma IIT (§4) — with any
two of the conies €, Cy, Dy, ..., Dy, e. g. with € and @, has certainly
no point in common with K outmd.e r; hence it must coincide with the
plane « previously considered, which touches K at 0.

In order to construct an ovaloid K presenting the peculiarities
specified above, in the case when I reaches its maximum valus, ¢g—2 (see
corollary III, § 6), we define GF (2" as the field generated over the field
G F(2) (consisting of the elements 0 and 1, to be added and multiplied
mod?2) by a root  of an irreducible equation of degree h over GF(2),e.g.—
it h =3 or h =4 (but not if h = 5) — of the equation

a* = w1;

and we denote by ay, a,, ..., 6., the elements of GF(q) different from 0
and 1 taken in any order. Moreover, we recall ([4], n. 80) that an element a
of GF(2") is said to be of the 1st or of the 2nd category according as the
equation

£+&ita=10

has two roots £ or has no roots in GF (2" (which is tantamount to saying
that a2 4+a*~24-.., 4 a2+ a has then the value 0 or 1 respectively); and
that the sum of two elements of the same or opposilte categories is always
of the 1st or 2nd calegory respectively.

‘We shall presently give the required construction, leading to the
following

TeEOREM VI. In 8,, (with q = 2% > 8) there emists some ovaloid
containing q pointed conics with the same nucleus, if it is possible to choose
q—2 (mot mecessarily distinct) elemenis by, by, ..., be s of the 2nd cate-
gory of GF(q), such that also each of the elements a;b;+ a;b;
(4,7=1,2,...,9—2; 7 5%9§) 18 of the 2nd category.

Let us consider the Galois space 834, with homogeneous point
coordinates (2, ®,, s, #,) over GF(q), and denote by r the line
@3 =1, = 0. The ¢+1 points of r are then

0(1000), T(0100), T,(1100), U;(Vas100),
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where § =1,2,...,¢—2, and they correspond homographieally to the
planes

w: Bg=0, @ =0, m: B =0 g} 5”4":1/“«;%

containing r. The conics

2
e: 2, =0, 23+ wewg = 0,
2 2
C1: Wy = D, 3+ B3+ 13 = 0,
. 2 2 2
Dyt By = }/aims, @3 - By 5+ 0y 05 byt = 0

lie on the planes =, &, y;, touch r at the points T, T,, U; respectively,
and each of them has O as its nucleus.

Theorem VI will now be proved if we show that, on taking the s
in the demanded manner, we obtain a cap by aggregating the point
0 to the g-g == ¢* points which lie on the ¢ conics just defined, and are
distinet from their respective point of contact with r. This it tantamount
to proving that three of these ¢* points, arbitrarily chosen on three dif-
ferent conics, are then never collinear. Later on, we shall refer to the last
requirement as the #-condition for the three conies.

'We begin by noticing that the ¢ points of the ¢ point-sets €—T,
e,—m, D;—U; (4=1,2,...,¢—2) are those given by

p: @o=A ®=2 @=1 x=0
P o= pidp, =gt @y=1, =1,
Qi w = Vai”?i‘*"’i"‘]/a—ibi; Wy =vi+b;, w3 =1, @ = l/ai

respectively, when the parameters A, u, v; vary in GF(g).
Next we remark that, from the above, the line PP; meets the plane
% (0, = Vazw,) at the point

oy, = (Vart ) 2+Va(w+u), @ = (Var+D) 2+Va?,

sy =1, @ ="Va;

hence, by expressing that this point lies on ;, we obtain

b= £84+ &  where £ = (a+Vay) (224 ud).
The last two equations have no common roots &1, x in GF(g) if, and, only
if, by is of the 2nd category; this is therefore the #-condition for the conies

@, el and CD;.
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We now denote by 4, § any two distinet numbers 1,2,...,90—2,
and notice that the line ;@ meets the plane = (», = 0) at the point of
coordinates:

By = Va; (Va2 + Vi+1/ﬂ_ibi)+]/a_i(’/g;”§+1’r|-l/a;bi)y
@y = Va; 04+ ) Va5 +y),
Ly = I/&Z'H/c;; ,
3, = 0;
hence, by expressing that this point lies on €, we obfain
ab;+aby = B4 &, £ = Vaga; (03 + 93+ bk by).

The last two equations have no common roots &, »;,% in GF(g) if, and
only if, &;b;+ a;b; is of the 2nd category; this is therefore the #-condition
for the conies @;, @; and C.

We see likewise that the line @;Q; meets the plane =, (#, = &,) at
the point of coordinates:

where

2y = (1+Va) (Vapd + vV ab) + (1+Vag) Vapl 4,4 Vayby),
2y = (L4 ay) (- b9) + (14+V a) (3+ by),
By =By = l/a—i—!—l/t;;

hence, by expressing that this point lies on C,, we obtain

- bi+ b+ (@b 4 a;b;) = £+ &,

where
£ = (14+Va)) (1+Vay) (0§ + 9+ bs + by).
The last two equations have no common roots £, »;, % in GF(g) if, and
only if, b;+ b, (a;b;+a;b;) 4s of the 2nd category; this is therefore the
#-condition for the conies ;, @; and &, and — from the above —
it is a consequence of the d-conditions for the triplets (C,€;, D),
(e,el,(Dﬂ and (D, (Dh e). .

Finally, on denoting by 4, j, ! any three distinct numbers 1, 2, ..., ¢—2,

we remark that the line @;Q; meets the plane y (3, = Vca_,wa) at the point
of coordinates

o, = (Vay+Va) (Vagt+ vV agb) + (Ve +V w) (Vapi+m+V by,
@y = (Vag+V @) (034 b))+ (Vag-+Var) (54 y),

@y = Var+a;,

a, = Vay(Va+Vay);
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hence, by expressing that this point-lies on D, we obtain

(@3B arb)+ (@b + a;by) + (aby+ 0, b)) = &2 ¢
‘where -
§= (“z+1/“1‘11+ a ;- a;05) (Vi v+ b+ by).

These two equations have mno common roots & v,y in GF(q) it
(@bt arb;) 4 (@gby+ a;by) + (a;b;+asb;) is of the 2nd category; hence the
lagt property implies the #-condition for the conies Dy, D; and @,
and — from the above — it is a consequence of the #-conditions for
the triplets (D;, Dy, @), (D4, Dy, C) and (Dy, Dy, €).

Theorem VI now follows at once. We shall complete its content in
the first two cases, » = 3 and h = 4, by establishing

THEOREM VIL. While it is possible to satisfy oll the conditions stated
in theorem VI if we suppose q = 8, these conditions are incompatible for
g =16.

On assuming firgtly ¢ = 8 (1. e., = 3), we can define GF(8) in the
manner gpecified in the paragraph before theorem VI, and assume pre-
cisely:

a; =%, ay = o2, as = o'+,

o =0+, o =a"t+1, a=a*+o+1,

where 4® = x--1. From the obvious rules of addition and multiplication
among these elements (for the multiplication cf. [6], § V), we see that

0, ay, a5, 05
are of the 1st category, and
1y, 04,06
are of the 2nd category; and that all the conditions stated in theorem
VI are verified if e. g. we assume
by=bs=ay, by=by=a; b, =Dbs=a,.

) Let us secondly suppose g = 16 (i. e., b = 4). Now we define GF (16)
in the manner specified in the paragraph before theorem VI, and assume
precisely:

& =, ay = g1, Gy = wz,
4 = a*+1, 4 =o'+, @ =o"to+l,
a.,‘=ws, aazﬁa"'—l, @y =.’IJS+$,

— g8
Gy =2 +a+1, @y =odta?, a,= 2 a1,

Gy = w3+w2+w; Oy = w3—|~m2+m+1,
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where now z* = #-+1. We see without difficulty that, at present,
0,1, 8,0, ...,0
are the elements of the 1st category, and so
Ay gy vony Ogg
are those of the 2nd category; besides, we can dress the table

Gq Qg Gy Gy Gy Gyp Gz Gy

Gy % * * *
O * * * *
Gy * * & *
tyg * #* * *
@4 * * * *
Gy * % * *
Gy * * *
Oy * % * *

where the crossing of a line a; and & column g¢; is empty or is marked by
an asterisk, according as the product a;a,; is of the 1st or 2nd category.
From the above, in order that b, and b, are of the 2nd category we
must have
by =@y, by =ay,

where 4, j are any two (possibly coincident) among the numbers 7, 8, ..., 14.
Then, on using the table, and recalling that the sum of two elements of
@F (q) is of the 2nd category if and only if the two elements are of opposite
categories, we see that the condition for a,by+ agb; = a;,a;-+agd; 0 be
of the 2nd category gives:

1 =§ (mod2).

If 1 denotes any of the numbers 9,10, ..., 14, the table shows that
a,b; and azb; are of opposite categories. Hence, in order that

gyt ab,  and  agbyt-agds
are of the 2nd category, it is mecessary that
by = aa; and @by = may

are of opposite categories. But now, again from the table, we see that
(for no choice of 4, j satistying the conditions given in the preceding pa-
ragraph) the last property actually holds for all values of I =19, 10,
..., 14; and this proves the second part of theorem VIIL
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As an immediate consequence of theorems III, VI and of the first
part of theorem VII, we obfain
TrsoREM VIIL. In 8,4 there ewist ovaloids which arve mot quadrics.
However, each of them defines a null polarity, exactly in the same way as
it was & quadric.
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ACTA ARITHMETICA
|V (1958)

Les points exceptionnels rationnels sur certaines
cubiques du premier genre

par

T. Naecern (Uppsala)

§ 1. Les points exceptionnels sur une cubique

1. Soit donnée la cubique ¢ de genre un représentée par ’équation
(1)

en coordonnées homogénes. Soit P un point sur la eubique. La tangente
a la cubique en ce point rencontre la eubique en un second point Py,
le point tangentiel de P. Soit ensuite P, le point tangentiel de P, et soit
P, le point tangentiel de P, et ainsi de suite. Nous aurons alors une suite
infinie de points,

(2)

ot P, est le point tangentiel de Pp,_,. Si tous ces points sont distinets,
nous appelons le point P point normal. Dans le cas contraire, il n’y a qu'un
nombre fini de points distincts, et nous appelons le point P point ewcep-
tionnel. J’ai proposé cette notion dans un travail publié en 1935, voir
[L1], [2] et [3] (). Si le point P est exceptionnel, tous les autres points
dans la suite (2) sont aussi exceptionnels.

Les neuf points d’inflexion sont évidemment des points exception-
nels.

Choisissons la reprégentation paramétrique des coordonnées de la
cubique (1) par des fonctions elliptiques de telle fagon gue le point d’ar-
gument % = 0 corresponde & un point d’inflexion. Soit » I'argument du
point P. I’argument du point tangentiel P, est alors —2u eb I'argument
du point P,, dans 1a suite (2) est (—2)™u. Si, dans la suite (2), tous les
points coincident, le point initial P est un point d’inflexion.

Fa,y,2) =0

P =P07P19P2:Ps:-'-;Pm;---7

-

() Les numéros figurant entre crochets renvoient a la Bibliographie placée
4 la fin de ce travail.
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