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Denote by ¢(n, e, () the set in a, 0 < a <1, for which the in-
equality

(1) la— = <—(i

| p ol n<g<On, (p,g)=1

is not solvable. In a recent paper Sziigz, Tur4n and I (see [1]) have
obtained various inequalities for m[p(n, e, €)] (m(p) denotes the Lebes-
gue measure of ¢). We have conjectured that for every s and ¢

limm[p(n; ¢, C)]
N—»00

exists. So far we have not yet been able to prove this conjecture. At the
end of our paper we state without proof the following
THEOREM 1. For every ¢ and n, there ewists C = C(e, 1) so that for
every n
mip(n, e, 0)] < 7.

I have now obtained a different proof of this Theorem from the one
we had in mind at the time of writing our triple paper; the new proof
has also other applications, and thus it seems worth while to give it in
detail.

By the same method we can prove the following Theorem, which
containg Theorem. 1 ag & special case.

TanorEM 2. Let hin) > 0 be a non-decreasing fumction for which
2'(1 /wh(n)) diverges. Then for every > 0 there ewisis a Cy(7) so that if
n=1

1

S o,
g > &

n<q<k(n)

then the measwie of the set in a for which the inequality
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| p 1
| e ST TN =1 h < k(n
‘a 1 <q2h(q)’ 2,9 ) g <k(n),
is not solvable is less than 1.
We omit the proof of Theorem 2 since it is very similar to that of
Theorem 1. We obtain an interesting special case of Theorem 2 by put-
o
ting h(n) = logn; here k(n) = n° k)
Finally we shall outline the proof of the following
TuroreM 3. Let 1(n) > 0 be o non-decreasing function and  assume

o0

that 2(1/[(7»)) diverges. Denote by N(l,a,n) the number of solutions of
=1

the equation

ma— [ma] < <m < n.

m—), im

Then for almost all a

v ilji (t, a, n)(jﬁ)—l = 1.

M=1

By the same method we can prove the following
THEEOREM 3. Denote by N'(I, a, n) the number of solutions of

0 <ga—p < P, =1, 0<g<m

1
Up)'
Then for almost all a

lim 3'(, a, “’)(Zﬁ)ﬂ - %

We omit the proof of Theorem 3’ since it is similar to that of The-
orem 3. Theorems 3 and 3’ should be compared with a recent result by
Leveque(?) — Leveque's result is much stronger than ours but applies
to a more restricted class of functions.

Throughout this paper m,n,p,q,,8,t,... will denote integers,
Greek letters will denote real numbers, &, d;, 0s, 5, 04, Will denote
suitably chosen positive, sufficiently small numbers, @ will denote a num-
ber satisfying |6 <1, 0y, C;,... will denote positive constants, ¢ will
denote a suitably chosen large constant (C = O(e, 7, &;)). We will always

(*) See [2]; through the kindness of Professor Leveque I saw the manuscript

of another paper on the same subject, which helped me in writing some parts of
this paper. :
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have (p,9) = (Pss %) =1, 0<p<g, 0<p;<g. I,, wil denote
the interval :
P e P &
(q ¢'qg ¢
Define fy(a), 0 < a <1, as follows:

1 if for some p  |a—plg| < &/g?,
fq(a) = .
0  otherwise.

Theorem 1 will be proved if we show that the measure of the set
in o for which (¢ = C(e, 7))

D) fale) =0

n<q<Cn
is less than #. In fact we shall prove considerably more. Put (clearly
1
[fa(e)da = 2e(9) [g?)
0

1

By = Z f]‘q(a)cla=2e Z 2@

qz
n<g<Cn 0 n<q<On

By partial summation we easily obtain (as #n — oo)
12¢
By = (1+0(1))—W2—10g0.
We are going to prove that for every z and sufficiently large C

1
(2) I=[( 3 flo)—Bopda < nHy.
[

From (2) we immediately find by Tehebycheff’s inequality that
the measure of the set in a for which

fol@)— Bo | > pHq

n<g<On

holds is less than #/82, and thus the measure of the set with 3 f(a)=10

n<g<On
is less than # (here g = 1), which proves Theorem 1.
Thus we.only have to prove (2). Clearly by f,(a) = fa(a) we have
for sufficiently large ¢ = C(e, ) (we omit da since there is no danger.
of confusion)
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1 1
(3) = X ) for (@) g (@) — 2B f ( 20 fale)) + B
¢ n<q,<On n<g<Cn

=2 > fyla)fyle)-F +f D

0 n<gy<ga<On 0 n<g<Cn
1

=2f( " D' fulalyla)+Ho—Bt

0 meq<gy<On

1
=2 )4 B—By=2) ——Ef’ﬁ--zn@Eé.

To estimate
1

D=1 2 ftal@iyla

0 n<g<dy<Cn
we ghall need several lemmas.

1
LeEMMaA 1. qul(a)fﬁ(a) < 8e%qyqs.

Jay(@)fzy(@) > 0 holds if and only if for some p, and p,
Py |

a_m

qz7

and I, o overlap). But then

€
<,.._...

f

D2
a— 2

q:

(Le it I, o

nop
'8} q:

(4)

8( _|_1)<2s e <22
—_ ) <5 o p1qs— &=,
P @ &’ P19a— P20 P
Put- d = (g1, ¢»). The number of solutions of p,g,—p.q, =@ is 0 if
aaé()_(modd) or « = 0, and is at most d otherwise. Thus the number of
solutions of (4) (in p, and p,) is at most 4sg,/g,. Thus the Lemma follows
immediately since the intervals I, g @nd Ip . overlap in an infterval
of length at most 2¢/¢2 (i. e. the length of I,
Now write

© 3-3+3.

where in ), the summation is extended over the ¢, and ¢, satisfying
1<, <g, <On satistying every one of the following three conditions:

A (g1 ge) > 67,
b a<q<qdit,

1
2T

2, '12)
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where, in c., 7 runs through the primes satistying r|g ¢y, 7 > 65, 6y,
8,, 03, 0, are suitably small numbers, which will be determined later.
Lemma 2. ) <47B.
We evidently have

(6) 25 S 2t 22

where in ', condition a. iy satisfied, ete. Thus by Lemma 1 (the ‘dash in
the summation indicates that n < ¢, < go < 00, (g1, @) > 6Y)

\' : NV L . V1 ¥ S
@ "}J"'<88 2 QIQE<86 2" a } 49

- 192
d> "1_1 njd<g<qy<Cnfd

1
< 16e*(logO)? 2 = < 166%,(10g0)* <55 Ee
d>al
it 8, = d,(e, n) is suifficiently small.
Further by Lemma 1

v 1 1 . I R
— — log 8,1 < — nFE;
(8) Zb<sez Z Z - < LoslogOlog 5" <5 1

n<qy<Cn L -1
1 q<@<qd;

if ¢ = 0O(e, 7, 9,) is large enough.
Next we estimate Y. Clearly c. implies that for at least one of the
numbers ¢, or ¢, we have

1 1
—>—0.
(9) 511 2

f‘>l’

From (9) and Lemma 1 we obtain
1 ! 1 ’ l
2 — — < 18etlogC —
(10) Zn<86 q,Zq stlog Zq,

n<g'<On
where in Y the summation is extended over the n << g < Cn satisfying
(9). We have

@
z] 1 2 1
;S 4 rlr .
g=1 rjg .->,;1 >

r>oy
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Thus the number of integers ¢ << satisfying (9) is less than
2020, < b i O < §056,.

Hence by partial summation

1
Z? < do,logC.

From (10) and (11) we obtain

(11)

(12) D < 64e28; logC < gl

for sufficiently small d;. Lemma 2 follows form (6), (7),
Now we estimate }',. First we prove

Leuma 3. Assume that n < g, < g, < Un and that the pair q,,q,
does not satisfy, a., b. or c. Then for some |O| < 1

ffql(a)f@( ) = (H— W@) 4 fp(ql)fp(q).

) and (12).

92‘12
A 1 1 1
The Lemma implies that f (@) fg, (@) nearly equals j fo (@ f foy ()
or the f,(a) behave in some 1espects ag if they were mdependent functlons.

The mtervals I and I, ., overlap if and only if (4) holds. Clear-

P1,01

1y if

|91 Pe (1 1) (Qa &

e P} (R or [ < & il

P 7 ﬁ)’ P1gs—Petl 0 Q2)
then I, ,, is contained in I, .. Thus

Ze €

o 2 )< f (@) <55 g(a)

where g(a) denotes the number of golutions in Py and p, of

(14) @ = Pyga—Pady -

Pub (¢, @) = d <67, Clearly g(a) < d < 67 (by a.), and since by b.
there is at most one mtege] in the interval

(e ) o)
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the right and left sides of (13) differ by less than 2ed (g < 2e/g3 ;-

Thus we have

1
~ g -2¢ 2e6
as) [hneiate =22 3 o422,
0 & [al<fdz!!11 !
for some |@| << 1. (0 will always denote a real number satisfying

0] <1, but it will necessarily be the same number.) Clearly g(a) =0
if as=0(modd). Put o =afd, ¢ = q;/d, g = q;/d. Clearly g(a) =0
unless

(16) @ = 0(modd), (a’,g1qy) = 1.

LeMMA L. Assume that o satisfies (16). Then

-1k 1)

where the 1°s are the prime factors of d for which r~ a/'qiq;
through all the other prime factors of d.
To prove the Lemma observe that clearly

and the s run

o’ = PG Pt

has a unique solution in
0<p <qr, 0<p,<g,

(P1, @) = (g, ga) = 1.

We obtain g(a) by determining the number of integers # satisfying

a7 (pl”*"ml{y d) = (p2+uq;a d) =1, 0 < <d.

Clearly every solution of (17) satisfies (14), and (14) can have no other
solutions. Thus we have to determine the number of solutions of (17).
Let ¢ be a prime factor of d. By (g1, g;) = 1, tlg; and t|g; cannot both
hold. Tf t|g; then (17) implies % = — p,/gs(modt), if ¢|g; then (17) implies
%zt —p,gi(mods). If ¢4gigy then ws= —p,jgi(modt), u== —p,lg;
(modt). These two residues coincide if and only if #/a’. Thus Lemma 4
follows by a simple sieve process.

Now we return to the proof of Lemma 3. Leb wu, us,..., %z 1un
through a complete set of residues (modd) where we further assume
that p Y u; for every prime factor of ¢;¢; which is not also a prime factor
of d. (In fact unless (u;, g1gs) =1 we find from (16) that g(u;d) =0,
but if we did not exclude the prime factors of ¢ in the condition p-\u;,
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the »’s could not run through a complete set of residues (modd)). From
Lemma 4 and (16) we obtain by a simple argument

ég(dui) —e[[[-3)

where ¢ runs through all the prime factors of d.
Denote by N (z, u), 2 = [¢,¢/¢q,] the number of integers i satisfying

(18)

1<m<zd, m=u(modd), (m,t)=1
where #' runs through all prime factors of g¢;¢, which do not divide d.
A simple sieve process (the details of which can be left to the reader)

shows that for some (O] <1

1
(=

it 2/d® is sufficiently large (i.e. d,= 02(n, 01,04, 8,) is sufficiently small).
From (18) and (19) we easily find that (since as o’ runs from 1 to

z/d through the integers relatively prime to ¢j¢}, (19) shows that it runs
through at least

(19)

and at most through
2 7 1
#(+ ) [1(-)

complete set of residues modd)

(20) Ey(a) = ig(a') = z(1+ 7’1?)”(1~;~)2n (1»— %)

a’=1

"7@) o(¢1)p(q.)
= 2| l4——]
z( * 40 91492

Thus finally by (15) and (20) we have

: (1. 19\ 4(a)p(g) | 20
(21) i@t “(IJ”W)_}?E"‘*' =
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Now we have by a simple computation for sufficiently small 6§, = 4,
(€y 1y 61, 05, 04) .

L <£ ‘P(Ql)‘P(Qz)_
G 40 qg

(21) and (22) clearly implies Lemma 3.
From T.emma 3 we have

A 70 46%0(q1) (gs)
2=\ 5 Zz 7

(22)

(23)

and from the proof of Lemma 2 we have

N7 40 (6)p(gs) n
Zn" T gg <1

Thus from (23), (24), and (5) we have

2=+ 2=(+5) X

n<gr<gp<n

(24)

+e20(¢1) p(ga)

7%

7o _,

(25) - B

+

1 no\ , 1o _, 1 n@
—E-(l-l‘ﬂ)')Eoﬁ'?Ea——?Eﬂa‘{“'ZEﬂo-

(23) and (3) imply (2), and thus the proof of Theorem 1 is complete.

Now we outline the proof of Theorem 3. The most interesting spe-
cial case is I(n) = # and to. save complications we will only prove our
Theorem in this case. Thus we have to prove that the number of solu-
tions N,(n) of

1
0<ta——-[ta}<——t—, o<t <n,
satisfies for almost all a the relation

(26)
Now define

N, (n)/logn — 1.

1 P 1
Flr1p =T S g

k if for gome p, ¢ (k+1)?

Fo(a) == [
0 otherwise.
n
Clearly M F,(a) = N,(n). Define further
Q=1
{ Fola) i Fyla) < (logg)?,

Fyla) =
a(e) 0  otherwise.
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A well-known theorem of Khintchine agserts that for almost all

the inequality
1

g*(logq)*

4l

has only a finite number of solutions. Thus for almost all «

n

(@7) D (g “(a)) = 0(1).
g=1

Also a simple argument shows that
ZF (@) < N(n(logn)?).

Thus to prove Theorem 3 it will suffice to prove that for almost all «

n
1 .
e F, 1.
log’ng; gla) =

As in the proof of Theorem 1, put

(28)

(29)
gml
where
o 00 1 1
60) B=[( D Fw)= Y (+ Fol +[<1ogq)212)
0 g=1 a=t

5 p(9) (w“ i
6  (logg)
Further a simple computation shows that

| f (Fita)r <

]

(30) and (31) we obtain as in (3)

clw(q)loglogq

(31) pe

Thus from (29),

(32) =2 ) — B+ O(lognloglogn),
where

1
(33) =] Py (a) Fyy(a).

0 IS <@

2) = logn+ O (loglogn).

icm
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Now we write
(34)
where in )},

2=2+3,

T < grexp ((logn)'?)  (expz = ¢%)

and in Y,
75 > quexp ((logn)t?).
Ag in Lemma 1, we can prove that

1

[ Fola) ¥y (0) <
0

«

19

(85)

it g <gs < grexp ((vlogfn)”z).

Further as in Lemma 3 for ¢, > (/98
x exp ((logn)'?)

1
6 1
36 F, (a)F, =14 —— | —.
0 N Tt
Thus from (32), (33), (34), (35), and (36) we finally obtain

(87) I < o(logn)*~0,

From (37) we infer by Tchebycheff’s inequality that the measure
of the set (in «) for which

"
!q};l"’q(u) vlog'n! > elogn
is less than (:2 (logn)™**, and the proof of (28) proceeds by well-known
&

arguments.

The factor (logn)~Y" in (36) could easily be improved to say (logn)-2
but the ¢, and ¢, in 2, cause considerable difficulties and because of
these I have found it impossible to obtain a result analogous to the cen-
tral limit theorem which would generalize and strengthen the results
of Leveque.
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