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1. Introduction. In two previous papers [2], [3], also to be deno-
ted by I and IL, respectively, we considered properties of arithmeti-
cal functions associated with direct factor sets. It is the purpose of the
present paper to extend to arbitrary sets of (positive) integers several
of the results proved in I and IT in the special case of direct factor sets.
In this paper we shall use an asterisk (*) to denote reference numbers
appearing in the bibliography of I and a double asterisk (**) to denote
those oceurring in II. For the convenience of the reader, these auxil-
iary references are briefly indicated at the end of the paper.

The method employed in I and IT was based on the concept of arith-
metical inversion with respect to conjugate direct factor sets. This
method ceases to be applicable, however; in the case of arbitrary sets.
In treating the general case we employ the characteristic and inversion
functions of a set (see below), in connection with ordinary Mobius inver-
sion and an enumerative principle for residue systems. The remainder
of this section is devoted to a brief description of the paper, including
a number of definitions.

Let 8 represent an arbitrary set of positive integers s, and place
og(n) =1 or 0 according as n is or is not an element of §. The function
gs(n) is the characteristic function of 8. To define the zeta-function Cg(t)
of 8, place

(1.1) sty = 3122

With Z denoting the set of positive integers, it is observed that ;z(F) =
= {(t), where {(t) is the ordinary zeta-function, ¢ > 1. Moreover, it is
clear that ¢,(t) = 1. i
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Next, the inversion function pg(n) of § is defined by the relation
oY #s(n) _ Lslt)
¢’

Tt is evident that u,(n) = u(n) where u(n) represents the Mobius function.
Forming the Divichlet product, it follows by (1.2) that

D (@) = gs(n).

dajn

t>1

(1.2)

(1.3)

Hence, by Mgbius inversion, one obtains

o) = Y ui@) s(%)

din

(1.4)

The idea of inversion function of & set is implicit in Ceséro [1**] and
Gegenbauer [4*].

In addition, we define the emwmerative function of S, denoted by
[#]s, # > 2 to be the number of positive integers < # contained in §,
while the divisor function tg(n) of 8 is defined to be the number of (posi-
tive) divisors d of » contained in 8. The totient function @g(n) of §
denotes the number of integers a(modn) such that (a, n)eS. Obviously,
@,(n) = @p(n) where ¢(n) is the ordinary Euler totient. Similarly, 7, (n) =
= 7(n) and [2]z = [#], T(n) denoting the total number of divisors of
n and [#] the integral part of .

Sections 2 and 3 ate concerned principally with the function ¥, (x, §),
defined to be the number of integral, k-dimensional vectors {n,, ..., n}
such that 1 <m<a, i=1,...,k, and (ny,...,m)eS. In §2 (The-
orem 2.2) we obtain an evaluation of N(s, §), which in case % =1
(Corollary 2.1), reduces ‘o a formula for [#]y proved in II for direct fac-
tor sets. The proof of Theorem 2.2 is based on evaluations obtained in
Theorem 2.1 for the funetion,

2 zg((ny, ...

(15) Ty (o, 8) =
s e

' ”k))

As special cases it is possible to deduce classical results of Bougateff and
Gram for the exact number of primes beneath a given limit ([4], p. 429-
430, [11, [6]).

In §3 we are concerned with asymptotic estimates for N (w,S)
and T,,(a; 8), k> 2, valid for arbitrary sets §. The results contained
in (3.4) and (3. 6) were obtained for Ny(w, 8) in II, in the case of direct
factor sets.
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In the last section (§4) we obtain an evaluation (4.6) of ps(n), pro-
ved for direct factor sets in I. More generally, we evaluate a function
cg(n, r) generalizing Ramanujan’s sum (Theorem 4.4) and a second
function g@g(@,n), generalizing Legendre’s totient @(x, n) (Theorem
4.2). The evaluation formulas obtained for ¢g(n,r) and gg(z,n) were
proved for direct factor sets in I and II, respectively.

2. Evaluation of T)(xz, 8) and N, (x, 8). We first consider Ty(z, 8),
E>1.

THEOREM 2.1.

T k
(2.1) Tyio, 8 = 3 astn)| 2]
ng<x
alternatively,
2.
(2.2) Ty (2, 8) =2N,, (;,S).
n<e
Proof. By definition of T:(», §) one obtains
(2.3) Ty (2, 8) = gs(d).
(i=7;1;fx,k) di(ny,...,ng)

This formula may be restated in the form,

= ) Z os(d) =

<
(E=1,...,K) (dd«. "i)

from which (2.1) follows immediately. (2.3) may also be reformulated as

> =3 ) es@,

dd=(ny,...,n; ) i<z d—(al ,,,,, 31)
iy - R

so that (2.2) follows by definition of Ny(z, S).
‘We next prove the following analogue of (2.1).

THEOREM 2.2.
T k
Nato, 8 = ) ust 5]
n<z
Proof. By (2.1) and (2.2) it follows that

DN (5.8) = 3 st [g]"

n<xT n<z

D es(d) Z 1,

d<z
(1=-1 k)

Ty(w, 8) =

(i=Y < k)

(2.4)

(2.5)
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Applying the second Moébius inversion formula ([6**], Theorem 268)
Y

to (2.5) one obtains
©]87* ]
2] estan - 44[ ] D wo)esta),

DD
as® a=ds
(a:w{zﬁ)
and (2.5) results on the basis of (1.4).
Remark. Theorem 2.2 can also be proved on the bagis of (1.3)
independently of the function Ty(z, S).
Since N,(z, 8) = [#]y, it follows from (2.4) that
CororLARY 2.1 (k =1).

[#]y = 2 ug(n [n]

n<e

13 (w; S)

g

(2.6)

We consider some sPeclal cases of Corollary 2.1. Let P denote the
set of the positive primes, @ the set of all positive powers of the primes,
and R the set of all proper prime-powers (powers of primes with the
primes themselves deleted). Denote the enumerative functions of P,
9, R by =n(z), X(z), and ¥(s), and the inversions functions by a(n),
8(n), and »(n), respectively. It is convenient in the following to term
a number n primitive if n contains no square factor > 1, properly prim-
itive if m is primitive and # 1, and semi-primitive if n hag a prime-square
factor p* such that m/p? is primitive and (p, n/p?) = 1. If w(n) is used
to designate the number of distinet prime factors of =, it iz easily
verified by (1.4) that ([4*], p. 423)

(n properly primitive),

(—1)°" 0 (n)
(2.7) a(n) = l(—-l)“"") (n semi-primitive),

0 " (otherwise);
in addition, ‘
@8) B = {Fl)ww”(") (n properly primitive),

(otherwisge); -
therefore ‘
(=1)=™+1 (n semi-primitive),

(2.9)  »(n) = pn)—aln) ={

0 (otherwise).

We obtain the following results on the basis of (2.6), in connection
with (2.7), (2.8), and (2.9).
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COROLLARY 2.2 ([1], (6), p. 16).

D= Z] = 3 (1

<L

(2.10) (@)

[:o
n)’
where the first summation is restricied to semi-primitive values of n end the
second to properly primitive n.
COROLLARY 2.3 ([6], (125), p. 297).

D —1om [g] :

n<e

(2.11) X(#)

where the summation if over properly primitive values of n.
COROLLARY 2.4.

(2.12)

the summation being over semi-primitive values of m.

3. Asymptotic estimates for T(z, S) and N,(z,S). We obtain
first the asymptotic value of Ty(x, S), or equivalently, the average
order of 7:5((%1, ...,nk)) as a funetion of % integral wvariables, % = 2.

THEOREM 3.1 If & =2, then for all seis S,

0(z"1)

I, 8) — Fealiy + i k> 2,
wl@, 8) = a"(s(k) {O(mlogw)

(3-1) if k=2.

Proof. By (2.1)

ky
Ty(w, 8) = L\J s (7 [ ] 295 ( l))
n<w nex
k 1 ~ ('n)
= ZQS(N) (( ) +0( )) ——-mkyg;——-gsﬂ(l:) +0(1~" 1@ i‘fk_l )
— 2 7ej::%)+0(wk2 ei())JrO( Ze:k(_nl))
=1 n> n<z

Since gg(n) is obviously bounded, the first O-term in the last expression
is O(w), while the second is O(slogz) or O(#*™%) according as % = 2 or
k> 2 ([3], (4.1), (4.3)). This proves the theorem.
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CoROLLARY 3.1. The mean value of wg((ny,..., M) a8 a funciion
of Mgy eoey 1y (B 22) 18 Lg(k); that ds,

8
(3.2) lim ﬂ%ﬁi—) = tg(h).

This result was proved by Gegenbauer [6**] for various special

sets 8.
We now consider the function Ny(w, S).

TeEoREM 3.2. For k =2 and an arbitrary set S,
w g g (k) {O(m"”‘) it k> 2,
£ (k) O(zlog’s) it &k =2;

moreover, if ug(n) is bounded (and in particular if 8 is a directfacto r set
([3], Lemma 4.1)), then

(3.3) Ny(n, 8) =

0*s(2)
= O 1 .
(3.4) N,(z, S) 2(3) -+ 0 (xlogz)
Proof. Applying the second Méobius inversion formula to (2.2) one
obtains
®
(3.5) Ni(z, 8) = 2#(")171:(7&‘7 S)

n<a

It follows then by (3.1) that

) -.
o(wk-lzﬁ) it k>2,

mkfs(k) ( A ﬂ(")) <
Ni(w, Sy = 0
Mo, §) = =2+ acZ 2 +0( Zimf) L
mn<z'n g”b ’

The first O-term is O (w) because |u(n)| < 1; the second O-term is O(a*™)
it ¥ > 2, while in case %k = 2, it ig

O(wlogmz%) = O(wlogn).

nge
This proves (3.3).
Assume now that ug(n) is bounded. Then by (2.4), as in the argu-
ment of Théorem 3.1,

Vi =2 1258 o[ SR) ol 3 e

n=1 n>z NS T
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In view of the boundedness of ug(n), the first O-term is O (=) and the
second O(xloga). Thus (3.4) follows by (1.2).
CoroLLARY 3.2. If £ =2, § arbitrary, then the asymplotic density

04(8) of the k-dimensional, positive integral vectors with greatest common
davisor in S is given by

(3.6) 85(8) = lim Ny (=, 8) _ Ls(k)

The result in (3.6) is due to Cesaro [1**], [2**].

Let § =1 consist of the single positive integer ». Then (k) = r~*
and we have by (3.6) the well-known result ([3], (5.9)),

OOROLLARY 3.3. The asymptotic density of the k-dimensional vectors
(k = 2) with greatest common divisor equal to r is 1Jr*¢ (k).

4. Evaluation of gg(n) and generalizations. We. first define two
generalizations of gg(n). Let pg(z, n) denote the number of positive inte-
gers ¢ < @ such that (a,n)eS. In case § = 1, gg(z, n) reduces to Legen-
dre’s function ¢ (x,n). In addition, for a positive integer r, we place
e(n,r) = exp(2ninfr) and define

(4.1) cg(n, r) = 2 e(na, 1),

(a,n)eS

the summation being over an S-reduced residue system (modr), that
is, over the integers ¢ (modr) such that (a, r)eS. Note that ¢g(n, r) redu-
ces to Ramanujan’s sum in case § = 1.

‘We first express the function gg(x,r) in terms of ¢(z,#) and then
evaluate @g(x,r) on the basis of Legendre’s evaluation of ¢(x,r). The
basis of this procedure is the following enumerative principle:

Lemma 4.1. Let @ range over the divisors of n and for each d let X range
over the positive integers < w/d such that (X, n[d) = 1. Then the set {y},
y = dX, forms o least posivive residue system (mod [#]).

The proof, which is similar to that of the familiar special case in
which # = n, will be omitted.

THEOREM 4.1. For arbitrary sets 8,

(42) solasm = > estlio(33)
@

Proof. In Lemma 4.1, (y,n) = d; hence it follows that the number
of y <@ with (y,n) =a is (#/d, n/d). Summing over all deS one
obtaing (4.2).
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The following result, in case § is the set of h-free integers or the
set of k-th powers, is due to Gegenbauer ([5], § 3, (8), (12)).

THEOREM 4.2.
) = > us(@ [g-]

din

(4.3) .

Proof. The case § = 1 of (4.3) is Legendre’s classical formula ([4],
Chapter V, (B)), on the basis of which, by (4.2),

Zesd)z [——-]= [ ]ngd)/»

din Din/d Dd=s
Dd—a)
The theorem results by virtue of (1.4).
The function «¢g(n, r) can be treated in a similar manner.
THEOREM 4.3. For arbitrary 8,

oan, 1) = Y asta)e(n, 7).

ajr

(4.4)

Proof. By Lemma 4.1 in the case # = n =r, it follows that an
S-reduced residue system (modr) is furnished by the set @ = dX, where
d ranges over the divisors of » contained in § and for each such d, X ran-
ges over & reduced residue system (modr/d). Therefore, by (4.1),

2 e(dXn, r) = Z 0s(d) e(X'n,,%),

dir  (X,r/d)=1 ajr
dals (X.rid) |

os(n, 7) =
Xrig)=1

and (4.4) results by definition of ¢(n,r) = ¢,(n, r).

THEOREM 4.4.
S aus(7)
Mg\ =)
dj(n,r) d

(4.5) cg(n,r) =

Proof. The case § =1 of (4.5) is Ramanujan’s evaluation of ¢(n, 7).
Using this familiar fact, in connection with (4.4), it follows that

5] = B0 B ool )

S(ny)  dirjd

os(n,7) = 3 0s(d)

ar 9|(n,7}d)

and (4.5) is a consequence of (1.4).
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We note that qg(n,n) = cg(n,n) = gg(n). Hence by either (4.3)
r (4.5) we have the evaluation of ¢g(n),

COROLLARY 4.1.
K
0= Seufl)
din

(4.6)
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