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Remarque 2. Les théorémes 1 et 2 restent vrais dans le cas ol
(1) désigne le systéme de n équations différentielles u{(z,y) = (=, v,
w®, o u®ud @, e, wlh) (P=1,..., n) éerit sous la forme
vectorielle ().
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(*) La norme d'un vecteur w = (u), ..., u®™) étant donnde par la formule
ju] = max|u®)].
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Some properties of plane curves

by A. SmarMa (Lucknow)

Recently Golab has generalized an old problem known since the time
of Archimedes, viz. that if 4B denotes an arbitrary are of a parabola

and AB the chord joining its extremeties and if p denotes the area of the
segment and P the area of the rectangle with base AB circumseribing
the parabola, then

[

I

N[
[¥]

He is led in his investigations to a new formula of quadrature which is
claimed to be an improvement on the trapezoidal formula.

In the same order of ideas we shall prove a few results partly genera-
lizing Golgb’s results and partly of an analogous nature. We are further
led to a result which in turn leads to a new quadrature formula. Part I
deals with some situations analogous to those of Golgb’s while part IT
has been suggested by a generalization of Taylor’s formula due to Klooster-
man.

I. Let I" be an arc of a curve given by the equation y = f(z). If
f(z) possesses continuous derivatives of order & we say that the curve
is of class C,. We shall also make the following hypotheses about the
curves we consider:

HypormEsIs H,. If f(0) = f(0) =... = f™(0) = 0 we say that
the curve satisties the hypothesis H,,. The curve has then & contact of
order at least n-+1 with the z-axis at the origin O.

HypoTHESIS A. If the function f(z) is increasing to the right of the
origin in a neighbourhood of the origin, we say that the curve I" satisfies
the hypothesis A.

We can now prove

TEEOREM 1. Let I' be a curve of class O, satisfying H, and let it be
infinitesimal of order 2+ a (a > 1) and let P and Q be two points on it with
abscissae h and }h respectively. Let the straight line through O drawn parallel
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to the tangent at Q meet the ordinate at P in R. If L, is the lentil between the
chord QP and the arc QP and L, the lentil between the chord OQ and the are
bz), then

om(L)—m(L)  2(a—1)+1
@ - m(T) T (a+3)(2*T'—a—2)

where T denotes the triangle OPR and m(T) denotes its area.
In order to prove this we observe that

T) = $h1f(h)—F(0)—Rf (}h)]
and
3

w15+ o] - ff( )io—
[%% () ff dw]——hf [ff )do— fwf dm]

Since f(@) = #***(g+e(x)) where s(w) >0 a8 # >0, g % 0 and since
f(x) is of class C,, we can easily see, as Golab has done, that &' (#) exists
for 2 > 0 and that h'mma'(a:) = 0. Now

- mlZ)— (L) = 3

o | =

m(T) = $h[lg+ e(h))h"“ {(a+2) (3h)+1g

+ (%h)““s’(%hH (a-+1)(Fh) e (R)}],
8o that

1 1 (1 1)
n I —mZ) 4 at3 | 2

A0 m(T) 1 (1 a+2) 3

o\ gatl

2

which proves (1).
Denoting the right side of (1) by ®(a), we have
B(1) =} = &(2), limd(a) = .
Algo
& (a)(a+3)2(20+1— g — 2
= (2" —1)(2"" — a—2)+ (a+3) [2°(a—1)+-1]— (a-+8) log 2 [2%a(a+1)],

which shows that there exists a number ¢, such that for o > ay, P(a)
is increasing.
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THEOREM 2. Let I' be a curve of class G, satisfying H,_; and let f(x)
be infinitesimal of order n-a and ™ (x) of order a (a >=0) and let B be
a point on it with abscissa k. If P is another point on the curve with abscissa

n
Oh such that f(h) = h—]]“")(@h), then
n!

n4-a\mraa
@) lim m (L) . n—}—a—l. ( n )
1o M(T)  ntadtl (’n+a)("‘+“‘1)/“_

n

Since

h
1
m(L) = Eh]‘(h)——ff(m)dw
(1]

h

= SR g f o) — [ @™oyt e (o) dn

0

= 2'-h’“'"”'l (g+e(m)— ﬂg— prtetlgntag (9h)
2 n+a-+1
and the line OB being given by
yh = f(h)w

we have

m(T) = }|0hf(h)—hf{OR)] = T+ g (O — O™ )+ Oc(h)—e(Oh)].

Since lim@® = (":“)Mlla, we get the required result.
s
Denoting the right side of (2) by &,(a), and observing that

—1/a 1
]im(n:a) N =exp(—1—-l——...-—),
a0 2 (73
we see that
1 1
n—1 exp[n(1+—2~ —{—...-I—;;)]
o Pnle) = 231

exp [(%~1) (1+% +...+%)]~

Algo im @, (a) = 1.
a~»00

When n = 1, a = 1, the curve is a parabola and we get the classical
case of Archimedes.
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TEEOREM 3. Let the function f(z) satisfy the condition H,, A and also
O,. Let f(z) be infinitesimal of order a and f'(z) of order a—1 (a > 1). Let
P be any point on the curve I having abscissa h omd let OAPC be the 1 ectangle
with OP as diagonal. If @ is the point on the arc I' where the tangent is parallel
to OP and if R, denotes the rectangle with one side AC and the opposite side
passing through @, then

m(L) (a—1)a®leD

(3) ]h"l—’n;‘ m(Rl) = 2(a+1) [aal(a_l)'—a"i—l].

(If the curve is a parabola, we get the right side for a = 2, to be 2[9).
If the function f(x) is infinitesimal of order o near the origin, then
for # =0, f(x) = m"(g-{— e(w)), where ¢ = 0, ime(#) = 0. P is the point
0

(@h, f(Oh)). The line AC is given by the equation

—hy = f(h)(@— 1]

and 80
m(Ry) = |hf(Oh)—hf(R)(1—0)|.

Hence
P ik f fle
0 M(Ry) h—»qu(@h) kf(h)(1—0)

_ o 3—glla+1)+4e(h)— e(8h)
100 {g -+ &(Oh)}+{g+ e (h)} (1~ 6)’

which at once leads to the desired result since im® = ¢=Y¢~Y, When a1,

10

the right side of (3), call it @(a), tends to 0 and for a - co, P(a) - oo.

TEEOREM 4. Let f(o) satisfy the hypothesis H, and A and C,. Let
f() be of the order of smallness o and let f' (x) be of the order of smallness a—1
near the origin. Let P be a point on I' having abscissa b and let the tangent
to I at P meet the tangent at the origin ot P'. If O divides PP’ so that PO|OP’
= a and if T denotes the triangle OPO, then

m(L)

‘We know m(L) from the previous theorem. The co-ordinates of P’
are obtfained from

y—1(h) = (@—h)f' (i)

©
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on putting ¥y = 0. Then P’ is ((hf’(h)——f(h))/f’(h), 0), so that O is given
by (#1,¥,) where

o — (a+1)hf (k) —af(h) Yy = f(h)
’ @tn)f () ' 7' ekl
Again, the line OP (has the equation
hy = zf(h),
80 that
m(T) = §[2:7(h)—hy,]
-3 F(B)[(a+1)hf (B)—af(h)]—hf(R)f (R)
(e+1)f'(R)
Hence
m(L) _ 20 (a+1)f' (B) (39 —g/(a+1)+3e(h) — 0°c(Oh)]
m(T) alkf' (R)—F(R)]
— a+1(% 1 ) =1 as h—0.
ala— )

This theoreni can lead to & new formula of quadrature as the correspond-
ing theorem of Golagb has done.

II. In this we propose to extend a theorem of Golgb by using n'®
differences. The starting point of these results is a theorem of Klooster-
man, which may be treated as a generalization of Taylor’s formula.

Denote

i) = ) (7) (—0 @t ih).

Then if

(eml) ZP (r)a™,

n=0
Kloosterman’s formula can be written thus:
E-1

(8) R A f(@) = D) P(r) B (@) + By

n=0

where r, k& are positive integers and
Ry, = Pp(r) W0 (z+0rh) (0 <O <1).

We can then prove the following
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TuEOREM 5. Let I' be @ curve satisfying H, and A and let it be infin-
itesimal of order mta (a >=1) near the origin. If Py, Py, ..., P, are
n-+1 points (m i with abscissae by, 2h, ..., (n+1)h, L;_; the lentil correspon-
ding to arc P _1P; as shown in the f@gme 1, and R;_, the rectangle with the
chord P;_,P; as diagonal and with sides parallel to the azes, then

) lim At m (L) _ a )
(n+a+1)(n-+1)

1o A7m(Ry)
= (})miz

and m(L,) denotes the area of the lentil L,.

Apirte
A’;" 1nte— 1

where

0)22(—

=0

In order to prove this we observe that by hypothesis

] i f(a@) = @ (g+ e (a)
. Fasa where g(x) — 0 as # — 0 and ¢ £ 0.
¥ Now
. 4 ' i
Lo m(Lyy) = hf(ih)— [ fla)de
B @@=k
ok X
h nh-h nh  nh+h and
Fig. 1. m(Ry_y) = h{f(ih)—f(ih—h)},
80 that
n
Avm(L, hZ ( ) H(ih)— A F(0)
where
b4 n+a+tl z
F(z) = dr = 9%~ fita
(m) Eff(ﬂﬂ) n+a+l+.ﬂ[m &(w)da
g$ﬂ+u+1
= mtatl gnta
P +a P Tee (D).
Also

n+1

Apm(Ey) = RAGFH0) = et [gApsioreq 3] (gt (“) e(h)].
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Hence
o Aim (L) _
nso ATm{Ry)
Since APF1"er! = (n4-1) 421", we get the result of the theorem.
For n = 0, we get Golgb’s result. For n = 1, we have
m(Ly)—m(Ly)  (2*V'—1)a
e M(B)—m(By)  2(a+t2)(2°—1)
For ¢ =1, since A}™0"+! = (n+1)!, and AP0 = L(n+1)-(n+2)!
and A71"! = {(n+42)-(n+1)!(1), we have the right side of (7) = }.
We can easily show that the right side of (7) is an increasing function
of a for o > 1 and that it increases from % to 1 as a varies from 1 to oo.

But in the general case we do mot know if such a property is true. -
A more general situation than that of theorem 1 above can be stated.

THEOREM 6. Let I' be a curve satisfying H,_,, let P be a point with
abscissa h and let P; have the abscissa thf(n+1) (1 =1,2,...,0). If 4 is

the pO'L’i’bt

if the lentils between the chords P;P; ., and the arc P;P;,, are L; (1=10,1,
.., n) and if the triangle OAP is denoted by T, we have

Azhln+a An+10ﬂ+a+1/ ’H/+ CL+1)

An+1 onte

(M

Ay m(Ly)
8 _—
(8) P
1
Anpn+1ta nt+ltay __ nn+42+a
1 e [zAl(O +1 ) ———n+2+a410 ]
a (%—l—l) 1 [1_ (n+2+a)...(2+a)]
F) nl(n—LLy+e

(1) These results can easily be seen from (5). Thus to show that A7+1on+2
= }(n+1)(n+2)!, we put in (5), f(z) = o2, b =1, and n+1 for r, ¥ = 1. Then

AnFLE = P (1) (n-2)1,

But from Py (r) = 1, Pp (1) = 1/(n+1)! and the relation

n
Polr+1) = > Pu_i(nPi(l),
i=0

we gel
Py(n+1) = Pi(n)+%.

Hence the result Py(n+1) = }(n-+1), which gives the desired results.
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To prove this we observe that

(E+1)h[(n+1)

(L) =+ - hl[f( i )+f(i+1 h)]~ [ o,

n+ n—+1 n-+1 e
so that
Am(Ly = ¥ (—1ypi (“) (L)
=0 v
1 b [e 1y [ (P +Z’”J(_l)n_i n)f(i—l-l h]
T2 w1 [g(_) (z) ('n-l—l) ya (i 1 ) -

— A5y F(0)

]

where F(x) = f f(@)ds. Also
0
k [/ h
T) = —|f(h)— — ™ [——])].
ot = - 5]
Since f() = @"*'**(g+ 2(x)), the result of the theorem is eagily ob-
tained. :
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Sur la limitation des solutions d’un systéme
d’équations intégrales de Volterra

par Z. BUTLEWSEI (Poznan)

§1. M. T. Sato a publié récemment [1], sous le méme titre que plus
haut, un intéressant article dans lequel l’auteur considére un systéme
d’équations intégrales linéaires

(11) @) = 3 [apl@, hut)at+ba) (G =1,2,...,n),
k=la

ol les fonetions ay(w,?) (7, % =1,2,...,7n) sont continues dans le do-
maine D: a <t <2 < o0 e b(w) (j =1,2,...,n) borndes et continues
dans J: @ & < co. En supposant que

(1.2) max fag (@, 1) <4 (z,1), D |y(@)| <B,
7k —~

ol la fonction A (x,t) et dérivée partielle 4. (x, t) sont continues et non
négatives dans le domaine D, B est une constante dans D'intervalle J,
T. Sato a démontré 'inégalité (1)

]

(1.3) j[uf(wn < Bexp (an(m,t)dt) (= >a)

F=1 a
et il a remarqué aussi que I’inégalité

(1.4) fim [ A(w, t)dt < oo

00 g

egt, entre autres, une condition suffisante pour que la solution «, (=), ...,
U, (2) du systéme (1.1) soit bornée pour de grandes valeurs de la va-
riable .

() Dans le travail de T. Sato [1] # ne figure pas (voir p. 274, (8)).
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