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Then we have

yg—20 = hmyu = lim ffK &—y) dp,, dpto,,

N—>c0

,l,l.fo UfKM (@ —y) dug, Tpo, — +1]
= ffKM(m——y)duoduo >ffK(m——y)duod,uo—a Zyg—0,

which is an absurd. Then we must have y = yp.
Turning to the sequence =, we shall prove

THEOREM 2. The limit of =, ewists and is equal to yg.
Proof. First we shall prove the inequality ]EIET” < yg. By the
N—>00

definition of 7, we have for x<H

ZK z— M) = n,.

We integrate both sides and applying the equilibrium theorem we obtain

n, Zme tMdp*(z) < wyg.

=1

Henece H_mrn < yg. By lemma 2 and theorem 1 we have limz, >y = yg.
N—00

N—0
Hence follows the theorem.
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Generalized characteristic directions for a system
of differential equations

by Z. KowALskr (Krakéw)*

1. This paper will be concerned with the asymptotic behavior of
integrals for the system of differential equations
(1.1) X =F(,X),
where X = [@y,...,%,], F(, X) =[H{,X), ..., [0, X)], X' = dX/dt;
F(t,0) =0, and the right-hand member is continuous (for all 7) in a
neighbourhood of the point X = 0.

The characteristic directions play the fundamental role for (1.1)
if F is a linear or a perturbed linear dynamical system. If the right-hand
member does not contain ¢ explicitly and possesses the Stolz differential
at the point X = 0, then there is the possibility of employing the cha-
racteristic directions (see [2]).

In this paper we give a natural generalization of characteristic di-
rections which holds even for non-differentiable F(t, X). The idea of
that generalization for the system =z = f,(%,, #,), %5 = fa(®,, Ty) 18 con-
tained in [1]. 'We give necessary (theorem 2) and sufficient (theorems 3, 4)
conditions for the existence of trajectories tangent to a given generalized
characteristic direction at the point X = 0. The continuity of tangents
c0 trajectories is also discussed (theorem 2).

2. The letters X, ¥, ¥, ... will be systematically reserved to repre-
sent vectors or vector-funmctions, X = (@y, ...y %)y, X = (Y15 --s Yn)y
F o= (f1y ey fu)y | X| = (@2+...+a})'? while 2,y,7,... will be used to
represent scalars. Denote by S the (n—1)-dimensional sphere |¥| =1

with a centre at the origin and a unit radius.

* T ghould like to acknowledge my gratitude to Prof. T. Wazewski for his many
valuable rerharks. I should also like to thank Z. Mikolajska and A. Plls for reading
the paper and making helpful comments.
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DEFINITION OF THE SET . Let 2 be a set of such points Y eS8 that
the following limit exists:

(2.1) G(Y) = lim —:}— I, rY),
50, bspoo ¥

and

(2.2) @(Y) #0.

DEFINITION OF A GENERALIZED OHARACTERISTIC DIRECTION. The
divection of a wunit vector ¥,|¥|=1, will be called the generalized
characteristic direction if

(2.3) Y<X and G(Y) parallel to Y.

DEFINITION OF A SET Q. The get of all ¥ eS8 such that the direction
of ¥ is the generalized characteristic direction, will be called Q.
It follows that

(2.4) ecz.

. 'I}Hhroughout the rest of the paper we shall use the following assump-
ion H:

AssumprioN H. Suppose that X is & set on §, open relatively to 8,
such that

] 21" the limits (2.1) exist uniformly on every closed domain contained
in %; .

2° all accumulation points of @ (if they exist) belong to §— 2.

3. The following theorem can easily be proved:
TeEOREM 1. Suppose that
a. The right-hand member F (3, X) of (1.1) is continuous in the neigh-

bqurhoodA of the point X =0 for —oo <t < +oo, and there exists a Stole
differential at X =0 for all t.

b. There exist finite limits

(3.1) G =L];if; Ofifow)x_y (4,7 =1,2,.. FRON

t'We ?e;;ote bg:r A a set of intersection poinis of 8 and characteristio di-

rections of the maitriz [ay] that correspond to the » ~vanishs

roctions of D eal non-vanishing character-
Under these assumptions (and the assumption H) we have

(3.2) QCACR+(8-3).
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Remark 1. If § = X, then the set §—X is empty and from (3.2)
follows the equality

Q =4,

i. e. in that case the sets 2 and A determine the same directions. But the
set © can be considered even when the limits (3.1) do not exist (the right-
_hand member of (1.1) may not be differentiable at all). Hence the set Q
can be regarded as a sebt of generalized characteristic directions; they
reduce to the classical ones (A) under assumption (3.1).

Now we turn to the problem of the existence of tangents to traject-
ories of (1.1) at the origin. In that problem the essential role is played by
generalized characteristic directions for system (1.1).

First we give without proof two lemmas connected with & certain
transformation of system (1.1).

LeMMa 1. Let us introduce the transformation

(3.3) X=7¥Y, |¥|=1, 7>0.

Under the assumption H (3.3) transforms system (1.1) into a system
i = YY) +y(t, 7, ¥)

Y =6(Y)— Y(YG(Y))+I‘(t, ¥, ¥)
where y(t,r, ¥) = o(1), I'(t,r, ¥) = o(1) uniformly on every closed subset
contained in Z, for r — 0, t — oo

Write

(3.5)

(3.4) YeX,

o(Y) = Y&(Y), &(¥)=@&(Y)—Y(YG(T)).

In terms of this notation, system (3.4) takes the simple form

e =gty Dy g

(3.6) Y =o(Y)+I(t,r, ),

where y(t,7, ¥) = o(1), I'(t,r, ¥) = o(1) for + =0, £ +o0.
LemuMa 2. Under the assumption H, the set of points Y°, such that
Y'eX and

(3.7) DY) =0,

is identical with the set £.
4. Temma 1 and 2 permit us to establish the theorem connected
with the continuity (at the origin) of tangents to trajectories of (1.1).

TusorREM 2. Let us make asswmption H and let X = X(t) be a tra-
jectory of (1.1). Under these assumptions
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1° there exists no vector Y°
YoeX— 0

tangent at the origin to trajectories of (1.1) reaching the singular point as
1 — +o0;

2° 4f Y'eQ and there emists a trajectory tangent to Y° at the origin,
then the tangent is continuous at the origin.

Proof. First we prove 1° Suppose the contrary. Then there exists
avector Y°' = (49, ..., %p), ¥'eZ— Q, tangent to some trajectory X — X ()
at the origin. From the definition of set £, relation (2.3) and lemma 2
it follows that there exists such an integer 4, 1 < ¢ < n, that

@i(Y) = g;(Y () # 0,
for ¢ near --oo, where p;(Y) is the i-th coordinate of the vector DY)
2(Y) = [gu(X), 9o (X), ..y g (D))

But then (3.6) yields y; 7 0 for large ¢, whence ¥, can be introduced as
a new independent variable. The function » = r(y,) is then defined for
Yi— 8 <y;<wi or ¥ <wy; <yit+d, 6 >0, and satisties the equation
(see (3.6)):

dr _ , PE)Fo(1)
ay; Pi(¥)+o0(1)

Hence
i
¥)+o(1)
(4.1) r=ryexp | LB,
’ owp w(D) Fo@) Vo

where 7, and y,;, denote initial values for ¢+ and y; respectively. If ;
approaches the finite value !, then the right-hand member of (4.1)
approaches a finite and positive value, which contradicts r(y;) = 0 ag
¥; — 4. This completes the proof of the first part of the theorem.
Now we shall show that if ¥°¢®, then the tangent to the trajectory
is continuous at the origin, i. e. the direction of a tangent to a trajectory
approaches the direction of the tangent ¥° at the origin as f-» oo,

There is no loss of generality in assuming that ¥° = [1,0,..., 0).
Then from (3.7) and (3.5) follows

G(Y")—- X, (Y") =0,
where ¢;(Y) denotes the -th coordinate of the vector G(Y)
HY) =[0:(T), ga(T), ..., go(T)].
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Hence
g:.(¥) =0, i=2,3,..., 2.
On the other hand G(Y°) # 0 since Y’ 2 (see (2.2) and (2.4)), whence
$:(X°) #0.
The limit (2.1) exists uniformly in a neighbourhood of Y°; therefore

%—:jit;r—yl # 0 for ¢ near +oo,

where f;(¢, X) denotes the i-th coordinate of the vector #(t, X).

Hence
@ LX) A, rY) g (X°)
(4.2) i ! ’T s ’r ﬁgi(]?") (i=2,8,...,m),
as t—> Joo.

In order to discuss the changes of direction of the tangent vector
X = [#y,...,%,], We introduce the n-dimensional space and the point
A with coordinates A = (@}, @;, ..., ;) a8 well as its radius-vector X"
Let us write

(4.3) X =oU, |U=1, o3>0,

where the unit vector U has the coordinates U = [u;, %y, ..., %,]. Then
from (4.2) and (4.3) follows

ufu, >0, =2,3,...,m.

Therefore (u;/u,)* — 0 and
£ "

(L 2—i2 P S P R
D)~ Y g =g
7=2
whence %} ->1.

It can be seen from this that U = [u,, ...,u,,]—>[_i],0,..., 0]
ag t - 4 oo, i. e. the direction of the vector X' = [#}, ..., #,] apperaaches
the direction of the veetor Y° = [1,0,..., 0]. This completes thé proof
of the second part of the theorem.

COROLLARY. From theorem 2 it follows immediately that if there
exists tangent Y° (at the origin) to the trajectory

X=X, X#H->0 as 1t too

Annales Polonici Mathematici VI . 18
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then Y°e8—2X or Ye 2. In the second case the tangent is continuous at
the origin.

That corollary generalizes a theorem of P. Hartman and A. Wint-
ner [1].

5. Now we shall give a sufficient condition for the existence of tra-
jectories X = X (¢), X (1)~ 0 as ¢t > + oo, tangent at the origin to a given
generalized characteristic direction determined by a vector ¥°e¢Q (see
theorems 3 and 4).

For this purpose we introduce the hyperplane

(5.1) ZY'—1 =0,

tangent to the unit sphere at the point ¥° and the transformation

(5.2) X =0Z, where po>0, ZY"—1=0.
This transformation determines a correspondence between the radius-
-vector X and the radius-vector Z of the point on the hyperplane (5.1).
Now we give the following obvious lemma:
Lemma 3. Tet us suppose that the assumption H dis fulfilled. Then

(5.2) transforms system (1.1) into a system
e = p(Z)+4(t, ¢, 2),
Z =W(Z)+ Aty 0, Z)

(5.3)

for Z belonging to some mneighbourhood of Y°, where (1, 0, Z) = o(1),
A(ty 0, Z) = 0(1) for ¢ > 0, t— +-o0, and
(5.4) p(2) = Y'#Z), ¥(Z)=6(2)—Z(Y°6Z).

Ren%a,rk 2. In the second equation (5.3) the velocity vector Z'
of the point moving on the hyperplane (5.1) may be regarded as the sum

of two components ¥ and A. We shall verify the following conditions
of orthogonality:

(5.5) ZY =0, ¥Y'=0, AY" =0.
In fact, the fivst condition (5.5) follows immediately from (5.1) by

differentiation. The second condition can be derived from (6.4) as follows:
Y’ =G(Z) Y'—(Y'2)(Y°6(2)) = (re2)1-x2z) =o.

Finally, the last condition (5.5) results from (5.3), the first and the second
condition (5.5). ’
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Remark 3. It can easily be verified that the linear part of the
right-hand member of system (1.1) can be transformed into y(Z) and
Y(Z). This means that the system

X =FtX)=4X,
where A4 is a constant n xn matrix, can be transformed into a system
(8.3) with é(t, 0,2) =0, A(t,0,Z) =0.

Remark 4. The quantity g of the right-hand member of transforma-
tion (5.2) can be interpreted as the orthogonal projection of the vector X
on the direction of ¥°. .

In fact, from (5.2) follows X¥° = pZY° = g-1 = ¢.

6. Congider the sets

Op: {0<1Z—Y"| <&, 0 <o <)
and
Co: {|1Z-Y| <&, 0 <o < @o}-

G, in w—coordinates is a circular cone with a vertex at the origin. Denote
by D, and D, the sets of points Z on the hyperplane (5.1):

Dy (0 < [Z2—Y°| <&}y
Dy: {1Z2—T" < &}-

AgsumprioN K. We assume that the cone (, containg only one
generalized characteristic direction ¥° and

p(Z)<0 for ZeD,.(Y)

TueoREM 3. Suppose that the right-hand member of (1.1) satisfies
assumptions H, K and
(6.1) Z¥(Z) < a(Z*-1),

where a = const. o
Then all trajectories Z = Z(t), ¢ = ¢(t) of system (5.3) enfering into
the cone O, for large t, satisfy the conditions

a <0, for ZeDy,

Z{t) > Y% o(t)—>0 as > +oo;

(1) There is y(Z) % 0in soﬁe neighbourhood of ¥, since w(.Y".) =Y0G(X% #0
and p(Z) is continuous. If y(Z) > 0, then ¢ (i) increases for sufﬁmenﬁlx large ¢ and
small ¢ (see (5.3) and remark 4) and the trajectory cannot reach the origin. Therefore
we shall discuss the case y(Z) < 0.
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the corresponding trajectories X = X (1) of (1.1) determined by (5.2) reach
the singular point as t — --oo with the tangent Y at the origin.

Proof. We will introduce the moving cone C,

(6.2) 0: {|Z—Y" <&(f), 0 <o <e),

such that all trajectories enter into C through the lateral surface
(6.3) (1Z2—T = &,(1), 0 < ¢ < &)},

as well as through the rear surface

(6.4) (12— < &t), ¢ = &b}, ’

where 0 < (t) =0 as t > oo (i =1,2), and CCC,.
a. First we shall determine &,(t). If there exists a function e,() such
that the trajectories enter ¢ through the rear surface, then

(6.5) Edt—[g(t)—az(t)] < 0 along the rear surface.
But

d . .
(6.6) Zlel—al]l =¢—a =@+ 0, 2)—a

= EZ[W(Z)"I‘ B(t, 0y Z)]”E‘Z'

The assumption K holds for ZeD,, whence there exists a number g >0
guch that

p(Z)< —B for ZeD,.
On the other hand there exist such numbers g, >0 and T that

|8(t,0,Z)| <38 for t>T, 0 < Qo
whence

(6.7) p(Z)+6(, 0, Z) < —35.
(6.6) and (6.7) imply that .

d 1 .
o) —a] < —Sha—g.

It
—3Bt—e =0,
then (6.5) holds; therefore we take
gy(t) = e™Pi3,
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The function &,(f) just determined satisfies condition (6.5) and 0 < 2, (t)
— 0 as { > +oo.

b. Now we shall find &,(f). If there exist e,(¢) such that the traject-
ories enter C through the lateral surface, then

d
(6.8) ?Z;[(Z —Y°)P—ef(t)] < 0 along the lateral surface.
Let us note that there exists such a function u(z), 0 < u (f) - 0ast — oo,
4 (t) < 0, that
(6.9) ZA(t, ¢, 2)] < p(t)V/ 221,
along the lateral surface (6.3). In fact,
1Z—1|

[Z A, 0, Z)| = |Z|-|A(t; e, Z)|-leos (Z, )] = |Z]-[4] 7

= |A|YZ2—1.
On the other hand, if @(f) denotes the cone
O(t): {ZeDy, 0 < o < &5(1)}
and {— +oco, then

[A(t, 0, Z)] — 0.

That ensures that the function |A(f, g, Z)| has the finite upper bound
m(t) on the set O(t)
m(t) = Slbpld(t, 8, 2)| < +oo,
8(l)
and 0 < m(t) = 0 ag ¢~ +oo. The function m(f) may not possess the

derivative m'(t) for some ¢, but we can find ¢ new function (¢} such
that there exist u'(?), and for large ¢

0 m@t) <u(t) >0, as t->-4oo, p(t)<O0.

Hence (6.9) holds.

Now we turn to the left-hand member of (6.8). We obtain success-
ively '

%[(z— TP —e2(f)] = 2(Z— Y7 — 26,6, = 257 — 2,5,
= 2ZV(Z)+2Z A(%, 0, Z)— 2¢,5;
< 20(Z2—1)+2|ZA| —2¢, 5
< 2082+ 2u(t)e;— 26,8
= 2¢)(ag;+p(t)—&1)-
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We put
(6.10) ag+p(t)—e = 0.

The function .

(6.11) &(t) = e [e~"u()dv
0
satisties equation (6.10) and the condition
0<gl)—~0 as  t— Hoo,

which can be verified by means of de I"'Hospital’s theorem. Hence s,(t)
just determined satisfies (6.8).

¢. From the parts a and b of the proof it follows that all trajectories
X = X(t) of (1.1) entering the cone C remain in its interior, i. e. they
reach the singular point as t — +oo and possess the common tangent Yo
at the origin.

This completes the proof of theorem 3.

TaEOREM 4. If the right-hand member of (1.1) satisfies the assumptions
H, X and

(6.12) Z¥(Z) >b(Z—1), b>0, ZeD,

where b = const, then there exists a one-parameter family of integrals
Z = Z(t), o = o(t) of system (B.3) such that

Zt)y—~Y° o(t)>0 as t— +oo.

The corresponding trajectories X = X (1) of (1.1) determined by (5.2), reach
the singular point as t — oo with the tangent X° at the origin.

Proof. We shall determine the cone (6.2) such that the trajectories
leave (' through the lateral surface (6.3) and enter ¢ through the rear
surface (6.4), where 0 < &(%) - 0ast — +oo (i = 1, 2). We may determine

gy(t) = e PR
B satisfying (6.7)
Now we shall detemine &, (f). If there exist e, (t) such that the traject-
ories leave C through the lateral surface, then

d
(6.14) 71?[(2_ Y —£(#)] >0 along the lateral surface.

Let us note that as in the part b of the proof of theorem 3, there
exists a differentiable function x(t) such that

0<u®)—>0 as t— +oo, u(t)<O,
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and
(6.9) \Z At 0, 2) < w221,

along the lateral surface (6.3).
Hence along the lateral surface we obtain

d
-O—ZZ[(Z»« YO —e2(t)] = 2(Z— X2 —2¢,8; = 227 —2¢,5;

= 2ZV(Z)+2Z A(t, ¢, Z)—2¢,5,
> 2b(20 —1)—2|Z 4] — 2,63
> 20 (F—1)—2p (VB —1— 26,6
== 2be? —2u(t) e;— 2¢,
= 2¢;(bey— p(t) — &)

Let us consider the condition

(6.15) be,—u(t)—e > 0.
The function

1 1
(6.16) (1) = ?ﬂ(t)

satisfies (6.15) and 0 < &, (t) = 0 as { — +oo. Hence &,(?) just determined
satisfies (6.14).

Now we shall apply the theorem of T. Wazewski given in [3]. Let us
congider the set o of points P(t, ¢, Z):

w: {|Z— Y < g(t), 0 < o< gh),? > 1T},

and let us denote by L a part of the boundary of o such that the solutions
of {5.3) leave o through the points of L. If P(2, o, Z) denote the variable
point on L, then ’

(6.17) L: {|Z—Y" = &(1),0 < ¢ < &a(t), ¢ >T}.
We introduce the set H,
(6.18) B Z-T <e(t), 0= 01,8 =1},

where 1, is a fixed value ¢, > T, and p, is arbitrarily chosen so as to sa-
tisfy

0 < oy < &y(ty).
Then the set BL ’

(6.19) BL: (|Z—T) = &y(h), 0 = 01, ¢ = o)
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is the boundary of the closed sphere H, whence EL is not a retract of .
On the other hand EL is a retract of L. In fact, let us denote by

P(}, 0, %) a variable point on the set L; then P satisfies the conditions

(6.20) L: (17— = (1), 0 < ¢ < &5(1), 1 >T}.
Consider the following transformation @ = (t*, ¢*, Z*) = V(P):
ty) | .
(6.21) 7=l YY), o' =g, t*=t,.
& (1)

This transformation is continuous on the set L, and
1. if PeL, then V(P)EL,
2. if PeRL, then V(P) = P.

Hence ELis aretract of L. It follows from the theorem of T. Wazewski
cited above that there exists a point P, (I, ¢y, Z®), P,e(E— L), such that
the solution passing through P; remains in o, i.e. the corresponding
. trajectory remains in the cone O. :

There exists at least a one-parameter family of solutions contained
in o (see T. Waszewski [4]), since the quantity p, has been arbitrarily
chosen in the interval 0 < ¢ < &,(t,). This completes the proof of the
theorem.
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On the functional equation ¢(2)+¢[f(2)] = F(a)

by M. Kuczma (Krakéw)

§ 1. The object of the present paper is the functional equation

) o @)+ olf(2)] = F(z), ]
where @ () denotes the required function, and f(#) and F(z) denote known
functions.

Equation (1) is a direct generalization of the equation
p(@)+o@®) =2
discussed by H. Steinhaus [6], or of the equation

p@)+oe) =2 (a>1)

solved by G. H. Hardy [3], p. 77. I shall prove that under some natural
agsumptions equation (1) possesses infinitely many solutions which are
continuous for every x that is not a root of the equation

(2) fz) = =.

However, if we require the solution to be continuous for = x,, satisfying
(2), then it turns out that there can exist at most one such solution. In
the second part of this paper I shall prove that under further assumptions
such a solution exists and is given by an explicit formula.

Of course, further generalizations of equation (1) are possible. R
Raclis [5] discusses equation (1) for complex x and finds meromorphic
solutions. N. Gercevanoft [1] solves the equation

A(@)p[f(@)]+ (@) = F(@),
and M. Ghermanescu [2] solves the equation

Ao+ A, [f1+ Ay [F(N1+ .-+ Ano[f (... 1) )] = Fla).

Nevertheless both these authors assume other hypotheses with
regard to the function f(z). Lastly T. Kitamura [4] has shown that the
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