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Comme ‘
H(0, @, B*(0,9), ..., h*(0, 9)) = Q*(4,)cosp—P(4,)sing

et par conséquent
2 .
f E(O1 @, B0, 9), ..., B*(0, ‘P))d‘P =0,
0
nous pouvons écrire (12) sous la forme suivante
Bi(r, 2m)—2}
rin
171
= ;f ;[E(ry @, B (ry @)y ..oy B(r, ‘P))_Hi(oy‘%hl(‘o’ @)y B0, 9’))] dp.
(]

Lorsque r —> 0, le guotient sous le signe d’intégrale tend vers

B d _. ,
L) = [&;H‘(r,(}?’ By @)y .eny B (7, ‘P))]

uniformément par rapport & ¢ dans lintervalle 0 < ¢ < 2=. Il §’ensuit
que

=0

i b 2
(13) | lim X205 ;lt-f IHgp) dp.

r—>0 7'275
Mais, d’aprés (10) et (11), nous avons
(14)  L(p) = @i(4,)cos’p+ Q3 (4,) cospsing+
+ D' @(4,) [P/(4,)(cosp—1)+ Q' (4,)sing]cosp—
j=1
—Pi(4,)cospsing— P} (A4,)sin?p—

— P4 (40) [P (4,) (cosp—1)+ @ (4,)sinp]sing.

7=1

Les relations (13) et (14) impliquent la conclusion (9) de notre théoréme.
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Limitations and dependence on parameter of solutions
of non-stationary differential operator equations

by W. Mrax (Krakéw)

The purpose of the present paper is to discuss some properties of
the solutions of the differential equation

(%) o AWa+il, 0).

A(?) is a closed and linear operator defined on a linear subset of the Ba-
nach space E. The values of A (f) belong to E. The theory of equation (x)
is a continuation of the theory of one-parameter semi-groups of linear
and bounded operators founded by Hille and Yosida (see for instance
[2]). Kato in [4] investigated the case of the variable “coefficient’ A ().
Krasnoselskil, Krein and Sobolevskii presented in [6], [7] many new results
and discussed the case of the non-linear member f(t, #). This paper deals
with some general theorems concerning the limitations of the solutions
of (%). We use the epidermic theorem for ordinary differential inequalities.
The epidermic theorems have been introduced by T. Wazewski in [13]
(see also [8]). We apply the epidermic theorem for the reason that usually
the solutions of (x) do not satisfy the equation at the initial point ¢ = 0.
The nature of the epidermic effect is explained in [13] and [14]. We
present several uniqueness theorems. In § 4 we prove some existence
theorems which generalize in a certain sense some results of [6] and [7].
We use the topological method of Leray-Schauder. The a priori limita-
tions needed in this method are ensured by suitable theorems of §§ 2, 3.
In the last section we discuss the dependence of the solutions on a real
parameter.

§ 1. NOTATION AND DEFINITIONS. Let E be a real Banach space. The
elements of B are denoted by z, v, 2, ... The functions of the real variable
t with values lying in K are denoted by z(t), ¥ (¢), 2(#), ... |#| is the norm
of the element z, @ stands for the zero of E. In the following we investi-
gate the operators which are defined on suitable subsets of F and take
on values belonging to E. The operator V is linear if it is additive and

Annales Polonicl Mathematicl VI. 20



306 W. Mlak '

homogeneous; the set on which V is defined we denote by D[V V is
closed if the set of couples z, Vo) (xeD[V]) is closed in the topological
product E x B. Take the real 4 and suppose that there exists a bounded
inverse (A — V)~ (I being the identity operation), and that D [(i]— V)™!]
is dense in B. Write R(1, V) = (Al — V)" If V is closed then D[R(4, V)]
= F and

(AI—V)R(A, Ve =2 for welH,

RA, VYAL—V)e =a for wxeD[V].

R(A, V) is called the resolvent of V. We write

— 2(t+h)—a(t
D a(t) = hl}'_ggf——————«“”,i 20, w= 331‘3"'“"'—"’“( - ,i ®
if the limits on the right exist. By small Greek letters we denote the real
valued functions. The right upper derivative of ¢() is defined by
D, o) = 1imsup?i(fj"l;z—'-’i@. .
h—04-
§ 2. For the sake of simplicity we introduce two conditions:

(T) The non-negative function ¢(¢, %) is continuous for ¢¢<0, a) and » > 0,
Denote by w(t,u°) the right maximal solution of the differential
equation ' = ¢(f, u), such that (0, u?) = u®. We assume that
o(t, u®) exists in the interval <0, a) for every «° > 0.

(H,) Suppose we are given a one-parameter family {A4(?)}, e of closed
linear operators. We assume that for every ¢eA there is a A(f) such
that for A > A(f) the operator A (f) possesses the resolvent R(A, A(t‘)).

Now we formulate the epidermic lemma (see [8] and [13]):

LeMmA 1. Let the function o(t, w) satisfy condition (T). Suppose that
the function @(t) = 0 is continuous in 0, a) and satisfies the following con-
dition: there exists an at most denumerable set Z C [i{z¢(0, a), o(r, ¢(0))
< ¢(r)} = 8 such that the inequality D ¢ () < o (&, @(£)) holds for & (8 —Z).
Then the inequality ¢(t) < o(t, p(0)) holds for te0, a).

The second lemma is the following one:

LeMMA 2. Suppose we are given itwo linear operators A,.and A,.
We assume that (AI—A,)™" = R(A, A;), (AT —4,)"* = R(A, 4,) ewist for A
‘sufficiently large. The functions ,(t), @y(t) are defined for te(&, &+ 9)
(6 >0), ;(&)eD[A4,], and
1) D, 2,(§) = Ay (§)+ v,
Suppose that

@) Hm AR(A, 4;) A;my(8) = Am(8) (6 =1,2).
A—t-00

(i=1,2).
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Let the inequality
o , . 1 1 '
(3) ]AR(A,Al)ml(é)—wm,Azmz(s)ﬁ[yl—yﬂ < Gp+123(8) —ma(8)]

be satisfied for A sufficiently large. Our assumptions imply the inequality
D |w (&) —my(8)] <p.
Proof. Observe that

(4) @ (§+h)—ws(E+h)
= [@(&)+ hAd12,(8)]— [2(&) + hd o5 (§) 1+ h [y — 2]+ £(h)
for h > 0 and h sufficiently small. Write # = 1/1 and R;(h) = R(1/h, 4,).

In view of the definition of R;(k) we have

B RO [T R A0~ A5 = (6 + By (o

h
(i =1,2).
Relations (3), (4) and (5) imply the inequality
(6) lw1(£+h)~—w2(§+}7:)l—le(é)—wz(£)| <p_'_IH(}Z@)IJr

+ [%Rdh)AIwI(E)—Alwl(é)] + l%Rz(‘h)Azmz(s)—Aawz(a .

By (2), lim ’i—Ri(h)Aimi(E)—Aiwi(f)‘ — 0. From (1), 1im LM .
h—0+ h _ h—0+ h
from (6) we find that D [x,(&)—z,(8)| <p, q.e. d.

THEOREM 1. Suppose that the function o(t,u) satisfies (T). Let the
operators A;(t) (i = 1, 2) satisfy the condition (H ). Assume that the
function 2;(t) (4 = 1,2) ds continuous in the imterval <0, a) and satisfies
the equation D, ;(t) = Ay(8)w;(t)+f;(t, 2; (1)) for te(0, a)—Z;; Z; is an at
most denumerable subset of (0, a). Suppose that for every triple (=, vy, 1)
there is a A(x,y,t) such that for A = A(x,y, ).

(7) !m(z,m(t))m—m(a,Az(t))y—r-%—[fl(-t,m)ffz(t,yn

1
< oty le—yl)+|e—yl.

We assume that limAR(/l, Ai(t))m =u (1 =1,2; te (0, a)) for every zeh.

A—>00
Our assumptions imply the inequality |m, (t) — 5,(t)| < w(t, |m1(0)——m2(0)|),
te0, a).
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Proof. Let ¢(t) = |2, (1) —x,(f)|. Suppose that
(8) EEE{TG(O’ a), w(T, ‘P(O)) < @(0)}—(Z,+2Z,).

We find that D, 2;(&) = A;(8&)a;(8)+ (&, 2:(£)) (1 =1,2). Now write
Y = f;(&, (&), p = o (&, p(&))- Because of (7) inequality (3) of lemma 2
holds for A sufficiently large. Therefore :

(9) D, g(&) <ol p(£).

We see that (8) implies (9). From lemma 1 we conclude that |z, (1) — 2,(¢)]
< w(ty [2,(0) —2,(0)]) for 10, a), q.e. d.
Remark. Note that lim AR(A, Viz = o for every xel if V is
- A—>t00

closed, D[V] is dense in F and limsup|AR(4, V)| < 4-oco.

A—>+o0

Theorem 1 implies the following theorem:

THEOREM 2. Suppose that the funmction o(t, u) satisfies the condition
(T). Let the operators A(t) satisfy the condition (Hy,). We assume that
D[A(t)] is dense in B and |AR(A, A(%))| <1 for every te(0, a). Suppose
that |fy(t, ) — 1. (T, y)| < o(t, [w—y|). Let thé function wx;(t) (i =1,2)
be continuous in {0, a). Assume that x;(t) satisfies the equation D x;(t) =
= A(t)aw;(t)+fa(t, (1)) ewoept am at most denwmerable subset of (0, a).
Under our asswmptions the inequality |a,(t)—a(t)] < o (t, |21(0)—m,(0)])
holds for te{0, a).

Theorem 2 implies the following uniqueness theorem, correspon-
ding to theorem 10 of [12]:

TaeoREM 3. Suppose that o(t,u) satisfies (T). Let the operator A(t)
satisfy (H,q). We assume that D[A (t)] is dense in B and [AR(A, A(1))| <1
for every te(0, a). Suppose that |f(t, x)—F(t, y)| < o(t, |x—y|). We assume
that w(t, 0) = 0. Then through every point (0, x,) (x,<E) there passes at
most one continuous solution satisfying the equation D »(t) = A (t)x(t)+
+1(t, @(t)) emcept an at most denumerable subset of (0, a).

T]IEORP?M 4. Let the function o(t, u) satisfy condition (T). We assume
that A (t) satisfy (H ). Suppose that D[ A (t)] is dense in B and |AR (1, A(3))|
< 1 for every te(0, a). Let the continuous function x(t) satisfy the equation
D, z(t) = A(t)a(t)+f(t, ©(t)) for te(0, a)—Z. Z is an at most denwmerable
subs?t of (Q y a). Suppose that |f(t, »)| < o(t, |z]). Our assumptions imply
the inequality |o(t)| < o (¢, [4(0)]), 1€<0, a).

Proof. Suppose that teH{r¢(0,a), (7, |2(0)]) < [#(v)|]}—Z; in
lemma 2 we put & =1, @,(§) = (1), 2,(§) =0, 4, = A(§), A, =0,y,

= f(,2(£)), 2 = 0,p = o[£, |©(&)]). Th D
Nové we aIZPIY lemmlg. 1. olfs ot ) retare Delate) < G(E’ s
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Theorems 1-4 are generalizations of theorem 1 of Kato’s paper [4].
By means of these theorems we can prove some theorems concerning the
continuous dependence of solutions on the initial point and on the right-
-hand member of the equation. It is easy to see that there is no necessity
to assume that a = 4-oo. Therefore we can discuss the problem of sta-
bility of solutions. Remark that our theorems (except the unigqueness
theorem) remain true if instead of the norm one takes a pseudo-norm.
One can consider a finite sequence of pseudo-norms just as in [9]. We
observe that our method is applicable if the functions «;(t), x(f) satisfy
the suitable differential equations almost everywhere. In this case we
assume that the real valued functions |z, (t)— 2,(t)], |#(f)| are absolutely
continuous. '

Exampre 1. Suppose that A(t) satisfies (Hy,) and that D[A(?)]

“ig dense in H. Let g(t) be continuous and

e(?)

7

Assume that x;(f) (i =1,2) is continuous and ;(t) = A(t)#(t) for
t

te(0, @). Then, by theorem 1, |2, (t) —,(t)| < |@1(0)—22(0)]-exD (fe(s)ds).
0

ExAMPLE 2. Let A (1) satisty (H ) and |AR (4, 4 (1)) < 1. We assume
that D[4 ()] is dense in F and |f(¢, z)| < o(t)|2|. Suppose that z' (1) =
t

= A(®)m(t)+7(t, ©(t)). Then, by theorem 4, |z(t)] < [#(0)/exp (Ofg(s)ds).

[R(A,A(t))|<—:;—+ A >0.

oo
If @ = +oo and [p(s)ds < +oo then the solution x(t) =6 is stable.
0

We shall now prove some uniqueness theorems corresponding to
the general theorem of Kamke (see [3]).

THEOREM 5. Suppose that A (1) satisfy (Hy ). We assume that DA (t)]
is dense in B and |AR (A, A@®)| <1 for 4 > 0. Let the following condition
be satisfied:

(8) The function o(t, u) is continuous for 0 <1 < a and u = 0. Moreover,
for every oe(0, a) the unique function o(t) which satisfies the equation

w = o(t,u) for 0 <t< o and the equalities lim o(h) = w’'(0) = 0 is
Ts0 4

identically equal to zero: w(t) = 0.
Suppose that
(10) IF(t, ) —F(t, ¥)| < oty lo—yl)
for 0 <t < a and x,y<E. Let the continuous functions o, (1), 2,(t) satisfy
the équation &' = A (t)z+f(t, %) for 0 <t < a. We assume that |@, (h) — @5 (h)|
=o(h) for b >0 and h sufficiently small. Then x,(t) = 2,(t) for te(0, a),
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Proof. Suppose that there is a f,¢(0, a) such that 2y (o) £ ®5(ty)-
Denote by =(¢) the left minimal solution of the equation %' = o(t, u),
such that

(11) 7(to) = |1 (to) — @2 (lo)] > 0.

It follows from the inequality [AR(2, A(t)) <1 and from (10) that

AR (4, A (1))@, ( () —AR(%, A(1)) @l »—[f(t @y (1) —F (1, @2(2))]
< Telt lm@—m@)Hanb—aln]  (2>0)
for te(0, a). By lemma 2 we find that
(12) D |z ()2, (8)] < oty |501(t)*50z(t)!) for  1¢(0, a).

Therefore 7 (t) may be extended as a minimal solution to the whole interval
(0, %,). From (12) we find that the extended integral v(t) satisfies the ine-
quality 0 < 7(2) < |, (t)—wy(2)] for 0 <t <. Therefore limv(k) =10

h—>0-
2,(0). On the other hand 0 < 7(h) < |@y(h)—2,(h)] = o(h). It i3 clear
that 7'(0) = 0. Assumption (8) implies that ¢(f) = 0. This contradicts
(11).

Theorem. 5 implies the following theorem:

TEEOREM 6. Suppose that A(t) satisfy Hy.. We assume that for
every te(0, a) D[A()] is dense in B and |AR(2, A (t))| < 1. Let the function
o(t, w) satisfy condition (S). Suppose that |f(t, x)—F(t, y)| < o(t, |w—y]).
Then through each point (0, z,) (wyel) there passes at most one solution of
the equation &' = A(t)x+f(t, x) satisfying this equation for te{0, a).

A trivial modification of the proof of theorem 5 shows the validity
of the following theorem:

THEOREM 7. Let A (t) sam'sjy H(o o). We assume that D[A(t)] is dense in
B for every t<(0, a) and | AR (A, A (1)) < 1. Suppose that the function o(t, u)
sotisfies the following condition: o(t, u) is continuous for 0 < t < aand u = 0,
and for every oe(0, a) the unigque continuous function w(t), which satisfies the
equation u' = o(t, u) for 0 <t < p and which satisfies the equality o (0) = 0, is
identically equal to zero: w(t) =0. Assume that |f(t,2)—f(t,y)| < olt,
[ —yl) for (0, a) and x, yeH. Then through every point (0, x) (v k) there
passes at most one solution (in (0, a)) of the equation ' = A (t)x-+1(t, x).

TrEEOREM 8. Suppose that A(t) satisfy (Hpg). We assume that D[A(1)]

are dense in E and imsup|AR (3, A (t))| < +oo. The functional P (x) possess-
Astoo
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es the Fréchet differential L(w,y) and L(z,[(t, o)) < oft, O(x)) and
L(w, lR(A,A(t))m) < L(z, »). Suppose that o(t, ) satisfies (T). Let ()
be the continuous solution of the equation ¥’ = A (t)a—+f(t, x). Then D[z (t)]
< oft, @[2(0)]) for te<0, a).

Proof. Suppose that tefij{re(0, a),

find that
w(t+h) = a(t)+hA () o (t)+hf(t, 2(t)+ o(h) ‘
) R(—l— A(t)) )+ h [A (t)m(t)——l. R(i A(t)) A(t)w(t)] <+
h n’ h h’
+hf(t, x(f)+o(h).

oz, [2(0)]) < Bl(r)]]. We

Therefore

(13)  D(o(t), a(t+ 1) < L{o(t), () +AD(n(t), A @)a(t)—

——];,—R( W A (t)) A (t) () —]—]w(t, @[m(t)])—!—l}(w(t), o(h)).

Write @(t) = @[z(f)]. We have ¢'(t) =

L(x(t), ' (t)). (13) implies the
inequality ¢'(f) = L

(w(t), &' (1)) < oft, @(?)). Now we apply lemma 1.
§ 3. LeMMA 3 (see [11], theorem 1). Assume that the function o (t, u)

satisfies (T). Suppose that o(t, u) increases in w. Let the continwous function
(1) = 0 satisfy the inequalivy

(14) : n+f s, @(s))ds,” te(0,a).
Then @(t) < w(t,n) for 10, a).

Suppose we are given a family U(¢, s) of linear and bounded oper-
ators. Let U(t,s) satisfy the following conditions:

(15) U(t, s) is strongly continuous for 0 < s <t < g,
(16) IimU(t,0)x =2 for wek,

>0+
(17) [U,s)| <1 for 0<<s<t<La.

THEOREM 9. Suppose that o(t, «) satisfies (T). We assume that o(t, u)
increases in u. Let the function f;(t,x) be continuous for 0 <t < a and
xel. Suppose that the operator function U (L, s) satisfies (15)-(17). Assume
that x;(t) (¢ = 1, 2) is continuous and satisfies the equation

|
(18)  &y(t) = Ut 07+ [ Ult; )fsfs, m(s))ds (0 <t < a).
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Suppose  that  |fy(t, @) — fa(t, 9)| < o (ty lw—yl)- Then |@:(1) — @ (?)]

w(t, !ilﬂizl fO t€<0 a)
Proof. Write ¢(t) = |2, (f)—2;(t)|. From (18) we find that

t
p(t) < :571_52H‘f ]U(t; 3)[f1(37 ml(s))—f2(sﬂ w2(3))]|ds
0

t
< &, —%,| + f‘fl(s7 ml(s))—fz(é', mz(s))lds-

On the other hand |f:(s, o (s))—7als, #,(5))| < o(s,¢(s)). Therefore ¢(¥)
satisfies (14) with 9 = |&,—%,|. The assertion of our theorem now follows
from lemma 3.
One easily proves the following theorem:
TasorEM 10. Suppose that o(t,u) satisfies (
increases in w. Let the operator function U(t,s) satisfy (15)-(1
that the fumetions x(t), f(t, %) are continuous and

T). We assume that o(t, u)
7). Assume

i
(19) () = U, 0)ay+ [ U, $)f(s, (s))ds.

Suppose that |f(t, z)| < o(t, |@|). Then o) < w(t, |z|) for te<0, a).

Equation (19) has been discussed in [6] in connection with the differ-
ential equation @' = A(t)z-+f(t,2): in this case U(t,s) is the general
solution of the homogeneous equation #' = A(t)x. The existence of the
general solution is ensured by some assumptions given by Kato in [4]
(see also [6]). These assumptions are formulated in the last section of
this paper. The solutions of (19) may be interpreted as the generalized
solutions of the corresponding differential equation. Theorem 9 implies
the following uniqueness theorem for generalized solutions:

THEOREM 11. Suppose that o(t, u) satisfies (T) and increases in u.
Assume that w(t,0) = 0. We suppose that |f(t, »)—f(¢, y)| < o(t, [2—yl).
Then equation (19) has at most one solution.

§ 4. In this section we shall consider some existence theorems. By
Cz<0, a) we denote the space of functions 2(f) continuous in <0, a) with
the traditional norm || = |lz(-)|| = max|z(f)]. We say that g(t, ) is

0<<i<<a
completely continuous if it is continuous and compact.

One easily proves the fo]lowing lemma:

LeMma 4. Let Ult,s) (0 <s <t <a) be a strongly continuous oper-
ator function. Suppose that g(t, w) 18 completely continuous. Then the trans-
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formation G defined by the formula

{
o (1) —>f U, s)g(s, m(s))ds
0
1s completely continuous when considered in the space Cy<0, ad.
Let the function h(t, ) satisfy the Lipschitz condition of the form
(20) |h(t, x)—h(t, y) | < L(t)|z—yl.

L(t) is supposed to be surmmmable in <0, o). Owing to the idea of A. Bielecki
(see [1]) we introduce in Cz{0, &> the norm |jz(-)|, by means of the for-
mula

lle (). =

o<i<a

t
m(t)exp(——ufl}(s)ds)l (x >0).
0

This norm is equivalent to the traditional one.

Lemma 5 ([1]). Suppose that h(t,xz) is continuous and satisfies (20)
with summable L (t). Let the operator function U (t, s) be strongly continuous
and |U(t, s)| < 1. Then the transformation H defined by the formula

14
z(t) - U(t, O)w—l—fU(t, s)h(s, x(s))ds
0
satisfies the inequality

(21) [Haw(+)—Hy(-)ll, < —Ilw( =Y ()l

Proof. We have
1

lexp(—le)(s)ds) fUt 8)[h(s, o ))—h(s,y(s))]dsl

t 11 %
1
< — | xL(u)-exp|—x | L(s)ds)-exp|—x | L(s)ds|-|z(u)—y(uw) du
L[ sttwr ey [1m)esp( - [ 500l
, :
1 1
< o) =y 1—exp (— = [ @)} < Lol =yl
Therefore
11
|En( ) —Hy ()], = sup |exp (== [ L(s)ds) x
i . 1
x [T )[h(s, a(s)~2(s, y())]ds| < —lo( )=y ()l e

(]
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‘We shall now prove the non-local version of theorem 5 of [6]. In the proof
we use some properties of a resolvent of the non-linear operator. These
properties are discussed in [5], p. 148.

THEOREM 12. Let the fumction o(t,u) be continuous for te{0,a)
and u > 0. We assume that for every u® > 0 the right maximal solution
o(t, u®) of the equation uw' = o(t, u) exists in the whole interval (0, a).
Suppose that o(t, u) increases in u. Assume that the operator function U (1, s)
satisfies (15)-(17). The function g(t, x) is completely continuous; the function
h(¢, ) is comtinuous and satisfies (20) with summable L(t). Suppose that
ft, ) = g(¢, ®)--h(t, ©) satisfies the inequality |f(t, ) < ol(t, |#]) (te
0, ay, weH). Take an arbitrary z,eE. Then the equation

4
(22) a(t) = U, 0)ay+ [ U, 8)f(s, w(s))ds
[]

has at least one solution belonging to Cr<0, o).
Proof. Let us take a family of equations

. i
(23)  @(t) =AU, 0ot [ U, 8)f(s, (s))ds (0 <A<1).

Using the notation introduced previously we write (23) in the form
(24) u = AGu—~+ AHu

where 4 = #(-). From lemma 4 we deduce that @& is completely continuous.
By lemma 5 we find that H satisfies (21). Suppose that » > 1. With the
help .of some theorems of Krasnoselskii (see [5], p. 148) we conclude that
the inverse (I—AH)™' exists for 0 <4 <1 and depends continucusly

gnu;t. It is thus seen that (24) may be written in an equivalent form as
ollows:

(25) u = (I—AH)'AGu.

Suppose that 4 = w(-)qu<0, ay satisfies (25). Then wx(f) satisfies (23).
From theorem 10 we find that |x(f)] < o(t, Alam|) < 0, |2)) <o =
= ;n;a.xaa(t, |@o]). Therefore

<t<a

(26) (I—AH)'AGu #=u  for ul, = o+¢
The transformation T; = (I—AH)*AGu is completely continuous and
Tou = 6. From_n (26) and from the Leray-Schauder principle (see [10]
and [5]) vlve find that there is a u® = a°(-)eC05<0, ad such that u°
= (I—H)™" Gu’. Therefore #°(t) satisfies (22) for 10, a.

(e >0;0 <A<1).
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Suppose now that E is a Hilbert space. Let A be a self-adjoint oper-
ator and suppose that

(27 (Az,2) < —(z,2) for w@eD[A].

Then R(4, A) exists for 1 > —1 and |RB(4, 4)] < 1/(A+1). Denote by
U(t) the semi-group of linear, bounded operators generated by 4. We
introduce the following definition: the function z(¢) is said to satisfy the
local Holders condition in (0, «) if for every te(0, o) there exist constants
8 >0, fe(0,1>, K >0 such that |2(f)—=2(F)| < K[f—il° for i, Te(t— 4,
t+9).

Applying theorem 3 of [7] one can prove the following lemma:

LEMMA 6. Suppose that A is self-adjoint and satisfies (27). Let (1)
be continuous in <0, a> and let z(t) satisfy the local Holders condition. Take

t i
an arbitrary wx,eB. Then the function (3) = U(t)@+ JU(t—s)z(s)ds
0

satisfies the equation @ = As-+2(t) for te(0, a> and z(0) = x.
Lemma 6 is a slight improvement of theorem 4 of [7]. From theorems 5
and 6 of [7] we deduce the following lemma: i}
LeMMA 7. Suppose that A is self-adjoint and satisfies (27). Assume
that 2(-)<Cg<0, ay. Then

7 i
(28) lfU(i——s)z(s)ds~—fU(?—s)z(s)ds‘\ < K, 3| =7 ()l

K, being a sustable constant. If A~ is completely continuous then the transfor-
mation

i
z(t) _>fU(t—s)w(s)ds

is completely continuous when considered in the space Cg<0, a.

We say that the funetion f(f, #) satisties the local Holders condition
if for every (t, »)e(0, o)X B there exist a neighbourhood N(t, ») of (¢, »)
and a constant M > 0, ye(0, 1> such that |f(F, ) —/(3, o) < M[|z—al’
+[f—7|”] when (%, %), (%, 2)eN (¢, »).

LEMMA 8 (see [7], theorem 7). Suppose that A is self-adjoint and sa-
tisfies (27). Assume that f(t, z) is continuous and satisfies the local Hilders
condition. Let x(+)eCg{0, ey and

t
(29) #(t) = U(z)m,,+fU(t—s)f(s,w(s))ds for 10, ad.
0 . .

Then o' (3) = Aw(t)+f(t, o()) for 0 <1t < a.
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¢ .
Proof. Write y(¢) = [U(t—s)f(s, #(s))ds. From (28) we find that
p ‘

ly(0) —y (@) <K, =17 F—1"7|In [f—7/|- sup |f(s, z(s))].
0<C8<a
On the other hand lim[i—ﬁ]”z[ln[iw?l[ = (. Therefore y(f) satisfies the
1,1t
local Holders condition. The function z(r) = U(7)x, satisfies the equa-

tion #'(v) = AU(z), for v > 0. Take an arbitrary ve(0, a). Then #'(v)
= U(r—h)AU(h)m, for 0 <h <wv. Take a fixed h <7v. Then |¢/(7)]
< [AU(h)xo|. Therefore z(7) satisfies in <k, a) the Lipschitz condition.
From the previous discussion we conclude that x(f) satisfies the local
Holders condition. Hence the function f(s, #(s)) satisfies the local Hgl-
ders condition. The assertion of our lemma now follows from lemma 6.

We. shall now prove 2 non-local generalization of theorem 7 of [7].

THEOREM 13. Suppose that A is self-adjoint and satisfies (27). Let A~
be completely continuous. Assume that f(t, ®) is continuous and satisfies the
local Hélders condition. Suppose that o(ty, w) = 0 is continuous for te{0, >
and u = 0. We assume that for every w® > 0 the right mazimal solution o (t, u®)
of the differential equation w' = o(t, u) exists in the whole intérval <0, a.
Suppose that |f(t, x)| < o(t, |#]) (te{0, ad; zeH). Take an arbitrary x, e Ii.
Then there exists at least one function x(t) 0y<0, o) which satisfies the
equation @' = Ax--f(t, x) for te(0, ad> and ©(0) = m,.

Proof. Denote by F, the following transformation:

t
a(t) > uUO)ao+p [ Ult—s)f(s, n(s))ds (0 < p <1).
Observe that ' ‘
If(s, 2(s))] < sup

0<l<a, Ocuglz(-)|

o(t, u).

By lemma 7 we conclude that ¥, is completely continuous. Suppose that
¢

F,u =wu,u =u2(-). Then x(f) = uU @) 2o+ufU(t—3)f(s, x(s))ds. From
0

lemma 8 we find that 2’ (f) = A (t)+ pf(t, #(1) for 0 <t < a, #(0) = uw,.
From theorem 4 we conclude that

l2()] < w(t, play]) < @ = maxw(t, |z)).
I<i<a

Therefore F,u # u if |ju| = o+¢ (¢ > 0). Hence F, is homotopic to zero
on the sphere [ju|| = p4e From the Leray-Schauder’s principle we

deduce that there is at least one u® = %°(+) €050, a) such that F,u0 = uo°,
Now we apply lemma 8.
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Remark. Write
Z = F{lz(®)] < o, |@l), 10, a)}.
z()

If o(t, u) increases in % then F,Z C Z. Z is convex, bounded and clbged
in Cz¢0, a). In this case the existence of the solution of the equation
F,v = v follows from Schauder’s fixed-point theorem. The use of the
Leray-Schauder method is superfluous. X

§ 5. Let us formulate the assumptions given by Kato in [4] (see
also [6]):
(K) For every te(0, a) A(t) is a closed and linear operator. The ope-

rators A (f) are defined on a linear set D. D is dense in E. For

te{0, a) the inequality

|B(2, A1) < 1/(2+1)
holds. The derivative

(2> —1)

—gt—[A(t)A'l(s)w] = (C(t, 8: 2)

exists for every weE and t,se{0,ad. O(t, s:») is continuous with

respect to ¢ for fixed s and .

The assumption (K) implies the existence of the general solution
U(t, s) of the differential equation &' = A(t)x. U(t, s) satisties (15)-(17).
If zeD then x(t) = U(t,s)z is continuously differentiable and '(f)
= AW)a(t) for 0 <s <t <a Ult,s) will be called the Kato function
corresponding to A (t).

We introduce the following assumption: )

(P) We assume that for each fixed ue{u, ) (4 < p) the operator At, p)
satisfies the assumption (K). The set D[A(f, u)] does not depend
on ¢t and u, i.e. D[A(t, 4)] =D = const. We suppose that for
every well,1¢{0,a) and u, Ae(u, uy the limit

A, pR) AT, Ao — A, m) AN, D
lim = =
h—>0

exists and |B(t, u, )| < M (M = const < +oo) for {0, a). We

agsume that B(f, u, A) is strongly continuous in f.

Denote by U(t,s: A) the Kato function corresponding to A(t, 1). We

have the following theorem: :

THEOREM 14. Suppose that the assumption (P) holds. Take xeE.
Then HEmTU(t, s: A+h)a = U(t,s: )@ uniformly with regard to © for

At -

B(t, u, A)w
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fized s. If xeD then there ewisis the derivative U (i, s: A)z/0 and

U (t, s: A ¢
((;;_l?”_ = (U, 7 )B(z, 2, YA(z, ) Uz, 5; Dodr.
8
Proof. Write ¢,(A) = A(v, ) A7 (v, w)@. Then |dp,(A)/dA] < M |x|.
Therefore
A+ h)—
On the other hand
(31) Aty A+1) ANt Ao = o+ hB(t, A, Ao+ e(z, h)
and
(32) lime(w, h) /b = 6.
R0
From (30) and (31) we get
(33) le(@, h)[h| < 2.M |a].

Suppose that zeD and put U(t, s: o = y(t, A), (1) = (y(ty A+ n)—
—y(t, A))/h. We define B(t, 4, 1) = B(t, ). By (31) we find that

(34) U(t,v: A+h)z(zr) = UL, = A+h)A (%, A+ h)%, (1) +

+ Tty v A1) Bz, Ny’ (z, )+ Ut v:A4h) me(y’(r,’ QLU
]

Remark that (see [6] formula (12))

d
(88) ——[U(t,w: A+ h)al = —U(t, v: A+ W) A(r, i+h)s  for weD.

On the other hand

d
(36) 7 LU 72 A+ Rh)2(v)]

i d
= Uty 7 A W33 (2)F — (Ut 83 ot W)y
8=t

From (34), (35) and (36) it follows that

a
(37) 77 LU 72 A+ R)2,(7)]

= Tlty bW B(s, Ay, A4 U1, 2 a4y LR
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The functions y'(z, ), s(y’(r, A), h) are continuous with regard to .
B(7, 1) is strongly continuous with respect to 7. Hence the right-hand
member of (37) is continuous with regard to z. Observe now that z,(s) = 6.
From (37) we get by integrating

(38)  #&(9)
t t ;
= fU(t,T:/H-h)B(r,l)y'(r,ﬂ)dt—!—fU(t,r:l—}—h)i@ﬁ;b—a—’-ﬂdr.

Therefore, because of (33)

(39) [U(t,s: A+h)a—U(t, s: A)z| < 3SMK |- |t—s|
where K = sup |y'(¢, 4)|. From (39) we find that
s<i<ca
(40) m U, s: A+h)e = U(t,s: )z for zeD
h—>0

uniformly with regard to ¢, for a fixed s. But D is dense and |U (¢, s: 1)| < 1.
Hence (40) holds for every z<H. Because of (32) and (33) we get

) 8(:’/’(3, A), h)

h =6,

(41) Lm U(t, 8: A-+h
h—0
5(yl(87 ), Zl‘_)_

(42) U(t,s: A+ h) W

< 2MEK.

By (40) we find that
(43)  lmU(t, v: A+h)B(z, )y’ (v, 4) = U(t, v:2)B(z, Ay’ (7, 4).
h—>0

Obviously
(44) |U@, t: A4+-h)B(z, A)y'(z, )| < MEK.

By (38), (41)-(44), applying the Lebesgue theorem we conclude that the
limit limg,(t) exists and
h—0

i
lime, (1) = [ U(t, v: ) B(v, My’ (v, Ndz, q.e.d.
8

fr->0

THROREM 15. Suppose that assumption (P) holds. We assume that the
continuous function f(t,y,2) possesses the bounded and continuous deriv-
ative 0f [0A and the bounded and continuous Fréchet differcmtial L(t, x, A)
taken with respect to y. Let y(t, 1) be the continwously differentiable solution
of the differential equation x' = A(t, A)w-+-f(t,x, ). Assume that y(0, A)
= const = weD for Aelm, py. Under our assumptions there exists a deriv-
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ative 8y [0A, continuous in t and satisfying the integral equation

dy(t,2) _ 69/(8,/1)] drt
0s =1

aA
¢
—l—f Uty 7:4) [M] dv+
y 5=y(5,0)

t
fU(t, z: ) Bz, A, z)[

iy

0y (v, 4)

57 dv.

t
+fU(t,r:/‘{)L(r,y(1,l),Z)

Proof. We shall prove that limy(¢, A4+h) = y(¢, ) uniformly in
B0
the interval {0, a). Our hypotheses imply that

(45)  f(ty @, A)—f(ty ¥, p)

af(t, x, A
=L(t9m,1)(w“y)+"f_(,ﬁ”’_l(2’“#)+5(t7m7lzw"‘?/y}“_/")
where
(46) lim 6(t,z, A: x—y, A—u) —0

[ —y|+ |A— ul

Furthermore there exist such constants R and F that |L(t, », ) <R
|0f (t, 2, A)[0A] < P for 0 <t <a,wek, Aelpn, uy. Now wiite %(z,h, )
= 8(v,y(z, ), A: y(v, A+R)—y(z, 4), h). Applying the mean value theor-
em one shows that

(47) (T, by Dl < 2[R |y(z, A+h)—y(z, A)|+[hF|].

Y—T,u—>A

One eagily proves the following formula

¢
(48) y(, A+h)y—y(t, 4) = hf U(t,v: A+ h)B(z, 4, )y (v, A)dz+
0

t
+ [ U, 24 WL, y(r, 2, ALy (e, 24+0) =y (v, W)+

af(""; y(z, u),y }')
o2 ],,fﬁ

ot ¢
+fU(t,r:l—l—h)e(y’(r, 2),h)dr—|—fU(t,r:l—l—h)n(r,h,l)dr

) t
+h| TR, A+h)[
of ,
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(the function ¢ is defined by (31)). We write K = sup |y'(¢, A)|. By (33)
we find that O<ica

(49) le(v'(z, 4), )| < 2MK |

Now let Q@ = MK+ F+4Fa+2MK and ¢() = |y(t, A+h)—y(t, 2)|.
By (48) and (49) we find that

¢

(50) 0 < @4 (0) < Qb+ [ 3Rpy(s)ds.
0

Applying lemma 3 we conclude that

(51) 0 < () < QIh|-exp(3R).

Hence limg,(t) = 0 uniformly in (0, a), g.e.d. By (46) we conclude
h—>0 ;

therefore that
(52) lim#n(z, b, A)[h = O.
hs0

On the other hand it follows from (47), (51) that

- (83) 17(v, b, 2)/h] < 2[RQexp(3Ra)+ F].

Now write the integral equation

t
54) (1) =fU(t,r:l)B(r,l,Z)y’(r,l)dr—{—
0 -
6]1(7)'7"71)]
7y =y(z,3)

with an unknown function z(f). Equation (54) has a unique solution
z(t). This solution may be constructed by means of the method of suec-
cessive approximations. We write 2,(t) = (y(t, A4+h)—y(t, 1))/h, on(?)
== [, (8) —2(1)] and

t 4
—}—fU(t,r:/’L)L(r,y(r,l),l)z(r)dt—}-fU(t,r:l)[ dr
0 (1]

t
?
a0 =| [ o, = a0 -00, v 01 B, by Y (2, B o
0
t 1
+L(r,g/(r,l),l)z(r)]dr+fU(t,'c: l—}—h)Mdr—l—
0
t
b, A
+0fU(t,'c:2.+h)l7—(—T~’—ﬁ’—)dr|.
By (49), (52) and (53) we conclude that
(55) lim§&,(t) = 0 for the fixed t¢{0, a).

-

Annales Polonici Mathematici VI, 21



399 W. Mlak

Obviously there is a ¢ such that

(56) |5 (1)] <€ for 10, a) and & sufficiently small.
By (48) and (54) we find that .

(57) 0 < onlt) < &M+E [ en(s)ds.

Therefore t t 0

(58) 0< Of on(s)ds < exp(Rt)- of £,(s)-exp(— Rs)ds.

From (55)-(b8) it follows that ]ihﬁgh(t) =0, q.e.d.
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