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where 2, (%) = g,(#)/M, (n=1,2,...). Moreover, in virtue of (x), (12),

(18), (14) and (24), we have
(32) plen(@) =1 (0 =1,2,..),
xely
(33) lim Az, (2) = 0
Ne=y00

and for each rational w

(34) limz, (w) == 0.

Tr00
o k—1),

k-1

APz, ()] 4 Z‘ ( )m (- 31)]

< |4z ()] + 2"

Hence and from (33) it follows immediately that

Further, if x+jhel, (j =0,1, then, according to (32),

[ (@ + Bh)| <

(n=1,2,...).

lim sup |#, (% + kh)| < 2°
P00

By iterating of this procedure we finally obtain for every finite inter-
val I the inequality

suplim sup |em (2
wel

Hence and from (33) and (34), applying lemma 2, we obtain the con-
vergence Um 2, (#) = 0 for each », which contradicts (31). The theorem

)i < co.

Tep OO
is thus proved.

References

[1] G. Hamel, Hine Basis aller Zahlen und die unstetige Lisungen der Funi-
tionalgleichunyg f(x+y) = f(x)-+ f(y), Math. Ann. 60 (1905), p. 4569-462,

[2] H. Whitney, On functions with bounded n** differences, Journal de Math.
pures et appliquées 36 (1957), p. 67-95.

INSTYTUT MATEMATYCZNY POLSKIRS AKADEMII NAUK
MATHEMATIOAL INSTITUTE OF THE POLISH ACADEMY OF SOCIENUDS

Regu par la Rédaction le 22.5. 1968

ANNALES
POLONICI MATHEMATICI
VII (1959)

On a certain method of Toepiitz

by L. WropARskI (LédZ)-

When considering a method of summability we come across a ques-
tion of basic importance, namely that of the domain in which that
method sums the analitical expansion Y'a,¢" of the function f(2) to the
function f(z). The limitability of the geometrical sequence (a™) plays a de-
cisive part in considerations of this kind. The range of classical methods,
as far as the limitability of a geometrical sequence is concerned, is rather
restricted. The mean methods (the methods of Holder and Cesaro), and
the continuous methods of Abel-Poisson limit a geometrical sequence
within the closed circle |a| < 1. The method of Euler (E, k) limits a geo-
metrical sequence within an open circle |a+k| < k-1, adding the
point @ = 1 (see for instance [1], p. 178 below), whereas the classical
method of Borel limits a geometrical sequence within the open half-
-plane rea < 1, adding the point ¢ =1 (see [1], p. 183, th. 128).

In this paper we define a permanent method of Toeplitz which limits
a geometrical sequence all over the complex plane, namely for a = 1
to one, for & real greater than one to co, and for any other complex &
to zero. In this way the method in questnon sums the geometrical series
4" to the function 1/(1—=z) all over the complex plane, with the excep-
tion of real numbers z > 1.

A sequence transformed by this method we define as follows:

(1) = 27" HMZP 2—’"+1)

The construction of this method is connected with Borel’s conti-
nuous method B ([4], p.143) defined by the formula

k t tﬂﬂk
x(t @) =2 —Zl’(n 1) -
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Indeed, we have

(2) N
this means that the m-th term of the transform by the method defined
thus is ‘“taken out” of the transform by the method B_,, (with ¢ = m).
To begin our considerations we give the following lemma:
Levya 1. For any complex a, non-negative t and q which is a posi-
tive integer the following formula is true:

= B_n(m, );

Pl |

- B

where & is one of the roots *V1 chosen suitable for a. If, for u = p(cosp-+ising),
where 0 <argu =@ <2m, by w* we mean o°(cosap--isinap), then & =1
if and only if

)

oy 2—4q-1 du]

tnz"n at

< I'(n-27 T(n-2774+1)

[

(%) 0 < arga < w277,
Proof. In order to prove the above lemma we define a function

pnt+2—4 i

— 2t
@ 4 T(nt2r1) v 21‘ 2 1)
where ¢* is understood. in the above sense, and ¢ is a fixed integer. Func-
tion (4) satisfies the differential equation
5 ' /02“‘1—1
(5) f('”)—"f(’v)"—‘f'@:q')‘

where f(0) = 0. Hence the function is

» v

(6) f(v) = (67)‘ nf w11y

we integrate along the segment connecting the points 0 and v. Now let
us congider the function
oy fnamg g2l

M g(a,1) = 2 Ty )

According to the above sense of raising to a power if a = g6 (0 < <
< 2m), we have

(8) (aad )z—q — [Qzaemap]n—q — QE@(zaﬂ_zzn)]g—a = ge~~Utla
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where
24—1
(9) = Ent( ﬂ) (f = arga).
ks
Comparing (4), (7) and (8) we receive
(10) 9(a, 1) = &f(¢-a*)
‘where
(11) R
and 1 is defined by (9). It follows from formula (11) that
(12) &2l =1,
Taking into aceount (6), (7) and (10) we have
o 2= gn 2041 sea?le atl¢
— —u g2~ 2-1
(13) 2 T2 1) = 7059 of v -1y,
Likewise for 1 <r << 2¢ we have
intr-2=gn 28+ Brgazq-t a?lee

— —ag e 2—d—
(4 & L(ntr27041)  I'(r27%) et

And we also have the obvious equality

{nan22 ey
(15) 2 Tt ) = ¢ 't,

Adding by parts equality (15) and equalities (14) for r =1,2,..., 29—1
we receive equality (3), where ¢ is defined by (11) and salisfies condi-
tion (12). Let us observe that ¢ =1 if I = 0. In virbtue of formula (9)
the equality I =0 is equivalent to inequality (). In this way the lemma
has been proved completely.

TrEOREM I. The method of Toeplitz defined by the matriz

9—m
mﬁﬂ

(17) Appyy, = 27~ m

is permanent, i.e. it limits convergent sequences to their ordinary limits.

Proof. As we know (see for instance [3], p. 117) the following .con-
ditions are necessary and sufficient for a Toeplitz method to be per-
manent (regular):
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1° lim @y, = 0 for n =0,1,2,...,
M~>00
oo

. -l
2° lim Uy, = 1,
M0 =
o0
3° Z |0 < K < oo where K does not depend on m.

n=0
Oondition 1° is plainly satistied. We receive the sum 3'a,, appearing in
]

condition 2° by putting in formula (3) @ == 1, { = ¢ = m and multiplying
both sides of the equality obtained by 27"e™™; for a =1 we plainly have
¢ = 1. Hence we have

aMh—1 m

(18) 5 G, = 27" [1 + Z 1—,—(4—%7")] e ’M'.'z_m"ldu].
r=1 0

n=0

Using a well-known formula
(19) I'(e) = [ e~ u"du
0

we have the inequality

(N

(20) 1—dy < Uy, S 1
n=0
‘where
oMy 1 o0
o B ey P
(@1) i Z e u

Further, we notice that for 0 <r < 2™ we have
©0 " ’

(22) fe‘“u"rm’“ldu < f e du = e™™.
m m

On the other hand, we know (see for instance [2], p. 29) that
(28) ey >1 for O0<a<l.

It follows from equalities (21), (22) and (23) that 0 << d,, <e¢™™ and taking
into account equality (20) we have

(24) 1™ < Yty <1.

N

It follows from inequality (24) that condition 2° of the permanence of
the method is satistied.
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We notice that all the elements of the matrix a,,, are positive, whence
it also follows from inequality (24) that the permanent condition 3° ig
satisfied and K = 1. In this way the proof of the theorem I has been
given. -

LumMA 2. The functions defined by the formula

bt
1
(25) (b, 1) = eb’mofe““u"‘ldu

(where the integration-path on the right is a straight line) are uniformly boun-
ded by number 6 for all real t = 0, a real, satisfying the inequality 0 < a < 1
and b complew with their real part reb < 0.

Proof. We notice that 5(0, «, t) = 0, whence we may assume that
b = 0. Likewise we may assume without reducing generality that

(26) | = 1.
For it can be seen from the formula

(27) (b, a,t) =n(b, a, gf) where b, =ble, ¢ =]

that if functions (25) are bounded by number M for b, lying on the eircle
|b;| = 1, then they are also bounded by the same number M for all b.

In the integral on the right-hand side of equality (25) we substitute
% == bv and receive

. 1
bﬂ
(28) n(b, a,t) = e"‘—fe“'”’v“‘ldv.
I'(a) J

In order to assess the integral on the right-hand side of formula (28)
we divide it into a sum of two integrals — from zero to one and from
one to ¢ (provided t > 1). We assess the first: of the integrals

1 1
. 1
fe”"%"“dv < efu"“‘dv =—¢;
. 3

0

hence, taking into account (26) and the supposition red <0 we have

61+t1:eb P
< .
al(a) I'a-+1)

(29)

1
ba
bt f by =Ll <
€ e v AES
I'(a) ¢
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Now we want to assess an analogous term, in which appears an inte-
gral from one to #. By applying to the integral in question the formula
for integration. by parts, we have
: ¢
fe——bv,ua—ldm — _l::;(e—b___ta-le—-bt)_ l;[;_g_fg—bu Wu—.zd?);
1 1

taking into account (26) and writing reb = —yp <0 we have
! ¢
[f@—b"”"_ldvl < 11 (1—a) e”‘fv““zdv,
1 1

whence after calculating the integral on the right-hand side and redu-
cing

11
(80) ’fe“"”v““‘dw) SeFet L2 (E>1).
1

Now if ¢ < 1, then reasoning in the same way as we did when deriving
formula (29) we receive

8
b ) =<4

(b, e, 8)] < T(at+1) )

for 1/I'(a-+1) < 1,2 when o > 0 (see for instance [2], p. 27). Now if 1 > 1,

then taking into account (23), (25), (28), (29) and (30) we have

e 2
+—],——<G

[n(b, a, )] < T (@)

(a--1)
and ultimately
_(81) @, e, t)| <6

for all values of the variables b, a and ¢ given in the lemma.

TanorEM II. Toeplitz’s method defined by matrim (17) limits the geo-
metrical sequence (a") all over the complew plane, namely to 1 for a =1,
to oo for a real and greater than 1 and to zero for any a other.

Proof. We notice that the transform (1) of the geometrical sequence is

g—m
mﬂ 2 a’n

32 )
#2) » e =00 %:r(n-z—’wrl)
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It follows from Stirling’s formula,
(33) T(s) ~Vome 512,

that the series on the right-hand side of equality (32) is convergent for
any ¢ and for any m.

The validity of the theorem for ¢ = 1 follows from the permanence
of the method (theorem I) and particularly from condition 2°.

Now let us suppose that @ is real and greater than one. Then trans-
form (32), in virtue of formula (3), can be written in the following way:

2M—1

a2y
am. 1 -
0 = ammom i S nna]
& Tre™

It can be distinetly seen from the shape of the transform that limz,, = oo,
which proves the theorem in this case. Kimae

Let us now consider what happens if a is not a real number > 1.
We perceive once more that if |a| < 1, then the theorem follows from
the permanence of the method, for in this case lim o™ = 0. Thus the only
case to be considered is e
(35) 0 <arge <2x, |aoj=1.

Let ¢ be a complex number satisfying conditions (35). Thus there exists
such an m, that

(36) arga > n2”™ for  m > m,.

In virtue of formula (3) we can write transform (32) as follows:

1
oM. a®"om

A
BN = 2‘”’0"‘2”1'1)"‘[1—\- 2 TE—E ( (""“'ur"rm"‘(lw]
£l (r-27") |

where in virtue of lemma 1
(38) ez21 for m > my.

In the further considerations a is fixed, whereas m is variable, yet we
continuously assume that

(39) m > m.

According to various values of m we distinguish two possible cages:
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I° rea®™ < 0. In this case, since |¢f =1, applying lemma 2 to the
terms on the right-hand side of formula (37), we receive the following
aggessment for #,,:

—m

(40) Im| < 6Ge

Tet us now consider the second possible case:
1I° rea?™ > 0. In virtue of supposition (39) formula (38) is satisfied,
W
whence, according to lemma 1, ¢ is one of the roots V1 but different
from 1. In this case

M1

(41) 14 D) & =0.

=1

Taking advantage of the above relationship we can write formula (37)
ag follows:
o™

M1 -

1 p .9 =T
_p—m (azm—l)m vl f —T, 2 ‘ldu].
(42) 7y =276 E £ [ 1+ _————_F(T'Z'm) J )

r=1

With regard to a well-known formula

b.oo
(43) Ia) = [ e “u**du,

0 .

true for complex b the real part of which reb is positive (see for instance
[4], lemma 4, p. 157), we may put relationship (42) in case II° in this
way: .

m_ o
_ azm_lmz R o w1
(44) T = 27T@ Y 2 T f e du.
M Pe=] a™.m

It follows from the supposition made (35) that the terms wr2~™-1 appear-
ing in the integrals in formula (44) are bounded with regard to the ab-
solute value by the number 1, whence each of the integrals on the right-
-hand side of (44) is bounded with regard to the absolute value by the

number e—m‘e“w.
According to (23) and the above congiderations in this case we re-
ceive the following assessment from formula (44):

(45)° {1l < 6™

icm
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So we see that ultimé,tely in virtue of formulas (40) and (45) for any com-
plex 4, satisfying conditions (35), there exists such an m, that the ine-
quality

(46) [m] < 667 for m > m,

holds whieh proves the theorem in this case.
In this way the theorem has been proved for all complex a, which
means that the proof of theorem II has been given.
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