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But the set {zeX: f(z,y) = a-c for some y in Y} is the projection upon
the X-axis of the closed set [(&,y>eX X Y:f(®,y) = a—s}, whence,
according to the lemma, it is closed. Consequently, L is also closed.
Finally, g(x) is continnous on X, and thus it is bounded. It implies that
f(®, y) is also bounded and (ii) is proved.

Theorem (iii) may easily be proved using the following result of
Smirnov [5]:

A subset P of a topological space R is said to be normally disposed
in R if for each closed set F lying in R\ P there exists a Gy-set containing
I' and disjoint from P. Then:

if X is a Lindelof space, then X is normally disposed in amy of its
compactifications ;

if X is normally disposed in some of dts compactifications, then X is
a Lindelof space.

By a compactification we understand here any compact space which
containg the given gpace as a dense subset. :

Now (iii) can be proved in a few words. Assume that X*is o compacti-
fication of X. Then X™\ Y is & compactification of X X ¥. Let I be any
closed set lying in X*xX Y\ X XY and F, — the projection of F upon
the X-axis. Of course, F; is disjoint from X, and, by the lemma, it is
closed. Thus there exists a Gy-set @ which containg #; and does not meet
X. Of course, the counter-image of G under the projection is a Gysot
which contains F and is disjoint from X X Y. Thus XX Y is normally
disposed in X*x ¥ and it follows that X X ¥ iy a Lindelof space.

REFERENCHES

[1] P. Alexandroffand P. Urysohn, Mémoire sur les espaces lopologiques com-
pacts, Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen,
Afdeeling Natuurkunde, I Sec., 16 (1929), p. 1-86.

[2] E. Hewitt, Rings of real-valued continuous functions I, Transactions of the
American Mathematical Society 64 (1948), p. 45-99.

[8] J. Novak, On the Oartesian product of two compact spaces, Fundamenta

Mathematicae 40 (1953), p.106-112.

[4] J. L. Kelley, General Topology, New York 1950.

[6]110. M. CvupuHOB, O HOPMALBHO PACTLOAOHCEHHVIL MHOICCOINEAL HOPMUNLHLL
npocmpanems, Maremaradeckult ofopuur 29 (1951), p. 178-176.

{8] C. Ryll-Nardzewski, A remark on the Cartesian product ol fwo compact
spaces, Bulletin de I’Académie Polonaise des Sciences, Cl. III, 6 (1954), p. 256-266,

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY O SCIENCES

Regu par la Rédaction le 10. 10. 1968

COLLOQUIUM MATHEMATICUM

VOL. VII 1959 . FASC. 1

ON THF POTENCY OF SUBSETS OF N
BY

8. MROWKA (WARSAW)

Let N be the space of positive integers and BN — the maximal
Stone-Cech compaectification of N. In [5] B. Pospisil has gshown the fol-
lowing: .

(i) The potency of BN is equal to 2°. N

In [4] J. Novak has given another proof of (i) and deduced from (i)
the following:

(ii) Bach closed infinite subset of BN is of the power 2

Now we shall give a very simple proof of (i). Let us consider the
Cartesian product I° of continuously many unit intervals I=1[0,1].
Of course, I° is a compact space of the power 2°. On the other hand,
I° may be considered as the set of all functions from I to I and it is clear
that the set M C I° consisting of all polynomials with rational coetfi-
cients is dense in I°. Let ¢ be any mapping from N onto M. Then @ is
a continuous mapping (because N has the discrete topology), whence ¢
can be continuously extended over the whole SN; let ¢* denote this
extension. Of course, the image ¢*(AN) is a closed subset of I° and since
it contains M, it coincides with I°. Thus 317 > 9. On the other hand,
it is plain that AN, having an enumerable dense subset, is of the power
< 2°% Thus (i) is proved.

Now, following Novak, we can easily show (ii).

Let F be any infinite closed subset of SN. Note that F containg an
enumerable subset B which is homeomorphic to N. Indeed, this results
for instance from the following lemma (see [3], Lemma 1):

If X is a compact space and F is o closed infinite subset of X, then there
ewists a sequence Gy, G, ... of mulually disjoint open subsets of X such
that B ~ @, £ 0 (n=1,2,...). )

Of course, if p,eF ~ Gy (n=1,2,...), then the set B = {P1; Pas---}
is homeomorphic to XN,
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Now let us notice that each bounded real-valued function f defined
on K can be continuously extended to a bounded function defined over
B v N (the space B v N, as an enumerable completely regular space,
is normal; on the other hand, N, as a locally compact space which is
dense in B v N, is open in B « N and it follows that ¥ is closed in & ~ N,
whence the Tietze theorem can be applied); thus f can be continuously
extended over N and, in particular, f can be extended over E (the bar
indicates closure with respect to SN). It follows that F coincides with
B and, since F is homeomorphic to &, & is homeomorphic to AN. Since
ECPF, Fis of the power 2. .

Of course, there are finite and countable open subsets of N ; for
instance, each subset of N is open. Nevertheless, from (ii) we immediately
obtain:

(iil) Bach uncountable open subset G of N is of the power 9.

Indeed, & containg a point p, from SN \NV which is not isolated. Let
U be any neighbourhood of p, such that U C G. Since p, is non-isolated,
U is infinite, whence U is of the power 2¢ and so is G-

Similarly to (i) we can prove:

(iv) Bach pseudo-compact subset P of BN which contains N is of the
power = C.

‘We recall that a space is said to be pseudo-compact if each continuous
real-valued function on the space is bounded (see [17).

In order to prove (iv) suppose that ¢ is any mapping of N onto the
set W of all rational numbers of the interval [0, 1]. Then ¢ can be conti-
nuously extended to a mapping ¢* of BN into the interval [0, 1]. Since
NCP, WCo"(P). But p*(P), a5 a continuous image of a pseudo-com-
pact space, is again a pseudo-compact space and it follows that " (P)
is closed in the interval [0, 17 (a pseudo-compact space iy cloged in each
super-space which satisfies the first axiom of countability, see [2]), whence
i coincides with the interval [0,1]. Thus P > «.

Now, in the same way as we have deduced we can show:

(v) Bach infinite pseudo-compacs subset of BN is of the power = c.

In particular: each infinite countably compact subset of SN 48 of the
power = C. !

The above estimation of the powers of countably compact subsets
of BN is exact; indeed, there exists a countably compact subset of N
which is of the potency c. In fact, let us define by means of transfinite
induction the sequence {N,,N,,..., N, - Jeco Of subsets of SNV

ON THE POTENCY OF SUBSETS OF BN
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1° Ny = N;

2° Agsume that for some & << Q the sets N, are defined for each
& < &, are of the power < ¢ and form an increasing sequence. Let R be
the family of all countably infinite subsets of {_J{N,: & < &}. Let us assign
to each CeR a point P, which is an accumulation point of ¢ and let

Ney = UlNg: & < &} o {po: CRY.

Of course, N is also of the power < ¢ and contains each ¥, with
& < &. Thus, by transfinite induction, the sets N, are defined for each
£ < Q. Let ’ '
D= U{N: &< 2},

Of course, D <C ¢. On the other hand, if ¢ is any countably infinite
subset of D then there exists & <. £ such that O lies in U{N,: & < &)},
and this 0 possesses an accumulation point lying in Ny C D. This shows
that D is countably compact.

According to (ii), D is a countably compact infinite space which

' contains no compact subsets except finite subsets. It is interesting to

show, without the use of the hypothesis of the continuum, the existence
of such a space of the power ¥,.
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