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tla = s|a what implies
a < ,. Suppose some te ﬂﬂa T{). Then tjae S, and t|a = sla what implies
s|ael,. Now it follows from

m I =1 —52 m (1% o 1)) =1
f<a <a

that ()} 7§ is not empty for o < w,.
p<a
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ON THE REPRESENTATION OF PIBLDS AS FINITE
UNIONS OF SUBFIELDS

BY

A. BIALYNICKI-BIRULA, J. BROWKIN axp A. SCHINZEL (WARSAW)

The purpose of this paper is to prove the following theorem:
THEOREM. An algebraic field cannot be represented as a umion (in
the sense of the theory of sets) of a finite number of proper subfields.
n

Leyma 1. If @, G4, Gy, ..., G, are groups, G = |J &,
i1

CJ G for

=j-L1

j-1
1) G+ UG v 1<j<n
iz1

n
and G is an infinite set, then () @, is infinite.
=1
Proof. We shall prove by induction that for each k < » there exists
such a sequence ;, 4y, ..., 4, of different natural numbers < n that

k
(2) () @ is infinite.
. =1
n
For k =1, (2) follows from the fact that (JG;is infinite. Suppose
i=1
that (2) holds for & < n and let {a,} be an infinite sequence of dift rent
23 i .
elements of the group ﬂGij. By (1) @ #UJ GS-,]. and so there exists
k F=1 F=1
Q I)GG—U G,;j.
j=1 Lk .
Consequently a,b¢(J @ and a,be |J @;. Hence there exists
j=1

iy, 1g,... 0

& NUMber fgy; 7 9y, by, ..., 4 Such that infinitely many elements of the

sequence {a,b} belong to Gipyy- Lot @ be@y | (n=1,2,...). Then a,m”a;::
k
= (tm, b) (@) 0) e @, and by the definition of {a,}: U, Oy € () G, Then
k+1 k41 j=1

i s € 6y, and (&, is an infinite set, which completes our induc-
=1 =1

tive proof.
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For k& = n we obtain Lemma 1.
LEMMA 2. I/ L Ll,L2 L Ly, are linear

L= UL“L#ULUUL

==1 =41

spaces over a field K,

(1 <j <nyn=2), then I contains less

than n elements
Proof. Let us suppose that there exist different elements a,, a,, ...,
n
apeK. Let aely—\J Ly, b = L,—L,.
i=2
wise it would be beL,. One has a;a-+b 5 a;a-+b for i # j, because a = 0.
Among n elements a;a+b two at least must be contained in the same
gubspace Lj (k>1). E. g let aya+beLy, a,a-+bel,. Consoquently
(ay, — a,) e Ly, and aecly, because da; # . This contradicts the defi-
nition. of element a.
Proof of the theorem. For finite fields it follows from the fact
that all such fields are generated by one element.
For infinite fields we give an inductive proof with respect to the
number 7 of subfields. For n = 1 the theorem is trivial. Suppose that it
n

Then a;a-b¢.L,, because other-

holds for some n—1 and suppose that K = | K, is a decomposition of

i=1

-1
the field K. By the induction hypothesis K # UKi v U K; (1 <7 <n).
=1 =il
From lernma 1 it follows that ﬂKi is an infinite set. But the fields

=1
n
<4 <n) are linear spaces over the field (M) K;; thus we
i=1

Kand K; (1

n
obtain & contradiction of lemma 2, which implies that (}.K; has less
4=l

than n elements.

Remark. A ring of real numbers with the unity can be represented
as a union of three proper subrings with the unity:

= {a—l—bi/ﬁ—l-oi/ﬁ: a is an integer, b = ¢ = 0(mod2)},
{a+b?/15+ci/f)?- @ is an integer, b = 0(mod4), ¢ = 0(mod2)},

a i8 an integer, b =0(mod2), ¢ = 0(mod4)},
P, = {a+ bl/D-{—cl/D“:

where D is not a cube of an integer and 64.D. It is easy to verify that
P; (4= 1,2, 3) are proper subrings of the ring P and P = P, v P, v Py.

a i3 an integer, b = ¢(mod.4), ¢ = 0(mod?2)},
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ON THE FIRST COUNTABILITY AXIOM FOR
LOCALLY COMPACT HAUSDORFF SPACES

BY

F. B. JONES (PRINCETON, N. J. ax» CHAPEL HILL, N. C.)

Recently A. Hulanicki [1 and 2] has shown that:
Bvery locally compact topological group of ¥, elements is metric.

This theorem also follows from the Birkhoff-Kakutani theorem on
the metrizability of groups, and the following lemma. Hulanicki’s meth-
ods may be modified to prove this lemma, but the proof I outline below
is somewhat more elementary.

If U is an open subset of a compact (= bicompact) Hausdorff space
8 of R, elements, then the first countability axiom holds true at some point
of U.

Indication of proof. Let a = {az},,<ml be a well-ordering of 8.
If the first countability axiom is false at every point of U, there exists
a well-ordered sequence f = {U},cu, ‘of non-vacuous open subsets
of § suech that

(1) T, CUT—a,

(2) if # < w, and z—1 exists, then U,C U,_, and U, contains a point
of M{T,}y<s but U, does not contain a,,

and

(3) if 2 < @, and #—1 does not exist, then U, contains a point of
M {Uy}y<s but U, does not contain a,.

Now S is regular; so j exists because if (M {U,},, contains only a,,
then, as is easily proved, a, = () {U,}y.s and the collection of intersec-
tions of finite subsequences of {U,},., forms a countable basis for §
at ay. Bub (V{U,}scq i8 vacuous which contradicts the existence of f.
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