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§ 1. The notion of cluster set was first formulated explicitly by Pain-
levé [17] in his well-known Stockholm lectures of 1895 on differential
equations, where the cluster set was introduced as a descriptive device
to characterise in an intuitive way the behaviour of an analytic function
in the neighbourhood of a singularity in terms of the set of all limiting
values of the function at the singularity. For a function f(z) defined in
a domain D we define the cluster set C(f, P) of f(2) at & point P of the fron-
tier of D to be the set of all values « such that there exists a sequence
{2a} of points of D with f(z,) — a as 2, — P. By its definition as an aggre-
gate of limit points, the set C(f, P) is closed, and if f(z) is continuous,
then C(f, P) is also connected.

The concept of a cluster set is thus fairly general and is applicable
to a wide range of topological mappings. Historically, the theory of cluster
setig has developéd within the theory of functions, to which it has added
anumber of theorems of a striking sort, and, for the most part, the approach
to the theory of cluster sets has been function-theoretic, since the results
were to be applied directly in the theory of funetions. The present-day
approach to the theory is more general, with the hypotheses less deeply
rooted in the theory of functions, although the development has not yet
reached the point of starting from the most general topological ideas
and then particularising when a more concrete result is wanted.

In this lecture (1), we shall describe the application of some of the
more recent topological ideas to a generalisation of the Gross-Iversen
theorem. There are two results of topological character which are related
to the form of the Gross-Iversen theorem to be discussed here. Colling-
wood [3] has shown that if a function f(2) is meromorphie in [z << 1,

(1) Presented to the Second Conferemce on Analytic Functions, held in Lublin
2-6. 1X. 1958.
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then, for each point P on |z| = 1, there exists a curve y in |2| < 1 termina-
ting at P such that C(f, P) = C,(f, P), where C,(f, P) denotes the curyi-
linear cluster set along y of f(z) at P, which is defined in the same way ag
O(f, P) with the added restriction that the sequence used in the definition
of O(f, P) Lies on y. As was pointed out in [11], the proof of Collingwood’s
theorem does not require any assumptions whatever concerning 1(2),
80 that the result is valid for an arbitrary function defined in |2| < 1.
The curve y depends on P, of course, but the extent to which a fixed
form of curve can be prescribed, for example in the case that y is a radius,
is given by the following theorem of Collingwood [4]:

TuBOREM 1. If {(2) is continuous in |2| <1, then O(f, ¢*) = C,(f, ¢
for a residual set of points €® om |2 = 1, where C,(f, ¢") denotes the cluster
set of f(2) along the radius drawn to ¢®.

Since the complement of a residual set is a set of the first category’
it follows that the radial cluster set must coincide with the cluster set
O(f, P) “almost everywhere? in a topological sense. The study of curvi-
linear cluster sefs has led to significant results in the theory of prime ends;
we can do little more here than to refer the reader to Collingwood [5]
for an acecount of these developments. The study of curvilinear cluster
sets has led to the discovery of striking and ugeful results, one of which
we shall describe before discussing the theorem of Gross and Ivergen.
The function

21

(1) F(z) = exp 1

has the property that [F(z)| = ¢! as v>1 along the curve y:|z—3} =}
and F(z) >0 as #—1 along the curve y,: arge = 0, so that 0, (I, 1)~
~C(F,1) = {lw| =67} ~ {0} = &. Given a function f(2), defined
in |¢] <1, we may agk how dense is the set of points P on [z] =1
such that for each P there exists a pair of arcs y1 and y, terminating at P
with the property that

@ Cnf, P) 1 O,,(f, P) = .

This problem has been solved recently by Bagemihl [1] who has

shown that the set of points on 2l = 1 with the property (2) is at most
denumerable,

.§ 2. Before stating the theorem of Gross and Iversen, we must define
an Important subset of C(f, P), the so-called boundary cluster set COy(f, P)

—_ iom®
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of f(¢) at P, which is defined as follows. If P = 6%, we form the set
(3) O, 0 <0—0l <7) = U 0(f,é")

0<|6—6pl<n
for an arbitrary 5 > 0, and define Cy(f, €®) to be the intersection

- (4) Og(f, 6°0) = QOC'(J‘, 0 <108 <m),

where O(f, 0 < |0—6,] < ) denotes the closure of the set (3). The first
significant result concerning the sets C(f, P) and Qg(f,P) was given
by Iversen ([8], [9]):

THEOREM 2. If f(2) is meromorphic in |2| << 1, then for every point
& on l2| =1,

(5) Fr0(f, ¢°) C Cx(f, ),
where FrO(f, 6°) denotes the fromtier of C (f, €%).

The theorem of Gross ([6], [7]) and Iversen ([8]-[10]) yields a rela-
tionship between (5) and Picard’s theorem:

TEEOREM 3. Under the hypotheses of Theorem 2, every value of C(f, 6%)
—Oplf, €°) is assumed infinitely often in every neighbourhood of &2, with
two possible exceptions. If there are any exceptional values, they are asympto-
tic values of f(2) at €%.

We remark first that Theorems 2 and 3 are meaningless unless the,
point ¢® is & singularity of (2), for otherwise the sets (f, ¢®) and Cz(f, %)
are identical and consist of a single point. We illustrate these theorems
by means of the funetion (1); here C(¥, 1) = {|w| <1} and Cp(¥F,1) =
= {lw| =1}, and the fact that every value of ¢(F,1)—Cgp(¥, 1), except
for w = 0, is assumed infinitely often in every neighbourhood of z = 1
follows at once from the classical form of Picard’s theorem together with
the observation that |F(2)] <1 in |z] < 1.

Theorem 3 is limited essentially to the case of an isolated singularity,
as the following example shows. Let w = b(z) be a Blaschke product
with the property that every point of |¢| = 1 is a limit point of zeros
of b(z); thus every point €% of |¢] = 1 is a singularity of b(e), 8o that, by
a theorem of Seidel [18], the cluster set (b, ¢) is the closed circle |w| << 1
for each ¢. Consequently, the set Ogp(b, ™) is also the closed circle
w <1 for each €, so that the set C(b,e™)— Ogp(d,¢?) appearing in
Theorem 3 is empty for each 6%. Attempts have been made during the
past twenty years to modify the set Cz(f, P) by excluding from the union
(3) various sets of points on [2] = 1, but as the example b(z) shows,
the results obtained are applicable only to rather restricted types of
singularities; for an account of these difficulties the reader is referred
to [11].
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Having defined the radial cluster set C,(f, ¢®) in §1, we proceed
next to form the union

(6) Oolfy 0 < [0—0s <73 B) = U Cylf, &)

0<10-0gl<n
R

for a fixed 5 > 0 and a given set # on |2| = 1, and then define the radial
boundary cluster set of f(2), modulo B, af ¢® as the intersection

(7 Crglf, &™) = ﬂoﬁa(f, 0 <000 < n; B).

‘With these concepts, it follows eagily from a theorem of Carathéo-
dory [2] that, if f(2) is meromorphic in |2] <1, and if B is an arbitrary
set of measure zero on |z| =1, then

(®) Fro(f, ) C Op_u(f, )

ab every point ¢ on |o| = 1. If, in the ease of the Blaschke product b(z)
considered above, we take F to be the set (of measure zero) where the radial
Limits of b(2) either fail to exist or, it they exist, are of modulus less than 1,
we have that C(b, ") = {jw| <1} and Op_g(b, ¢°) = {jw| = 1} for each
¢ on || =1. We may now show that earlier methods of the author
([12]-[157]) yield the following result:

THEOREM 4. If f(2) is meromorphic in || < 1, and if B is an arbi-
irary set of measure zero on |¢| = 1, then every value of C(f,6") — Op_g(f, ¢
is assumed by f(2) in every neighbourhood of ¢°, with the possible exception

of w set of capacity zero. If, in addition, B is of logarithmic capacity zero,.

the exceptional sef consists of at most two values. Any emceptional values
are asymplotic values of f(z), either at € or arbitrarily close to 6.

Theorem 4 includes and extends some results recently announced by
Noshiro [16], and the methods of proof consist essentially of refinements
of the topological properties mentioned in § 1 together with an extended
form of the maximum modulus prineiple. We remark that, by Theorem 1,
the sets C(f, 6¥) and C,(f, ¢°) are the same for all points ¢® belonging
to a regidual set on [¢| = 1, and the nature of the proof of Theorem 1 and
various of its extensions indicates that little improvement can he expected
by replacing C,(f, ¢*) by another type of cluster set. The recent inte-
rest is therefore centred in the conditions under which a set & can be
chogen so that C(f,6")— Cx_p(f, €°) is not empty, and certain uniqueness
theorems involving the concept of category now come to the fore.
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