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ON A PROBLEM OF STEINHAUS ABOUT NORMAL NUMBERS
BY
J. W. 8. CASSELS (CAMBRIDGE)

§ 1. Introduction. Let &£ be a real number and b an integer >1. We
say that & is normal with respect to the integer b as base if in the “decimal”
expansion of £ to the base b every digit occurs with the same asymptotic
frequency (*). Steinhaus in the ‘“New Scottish Book” hag raised the ques-
tion as to how far the property of being normal with respect to different
bases is independent (2). In this note I shall prove a result which answers
Steinhaus’ particular question in the negative.

Let &; be the set of numbers in 0 < & <1 in whose expangion
to the base 3 the digit 2 never occurs. We introduce a measure in $l; as
follows: To every nmumber

=637 46,87 437+, (5=00r1)
in $l; corresponds the number
F(8) = &, 27 46,272 b 4270

in 0 < E(§) < 1. Conversely every number Fin 0 < & < 1 is of the form
B(&), and & determines & uniquely except for the denumerably many &
such that 275 is an integer for some infeger z. By the u-measure of any
subset B of H; we shall understand the Lebesgue measure of the corres-
ponding set of F(£), £¢B. We shall say that u-almost all & in &, have
a certain property if the set of & without that property has u-measure 0.

‘We can now enunciate our theorem.

THEOREM. u-almost all & in Yy are normal fo every base b which i not
a power of 3. :

(1) G. H. Hardy and E. M. Wright, An introduction io the theory of numbers,
second edition, Oxford 1945.

(*) H. Steinhaus, Problem 144, The New Scottish Book, Wroctaw 1946-1958,
p. 14.
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The numbers of &, are, of course, by definition not normal to base a
power of 3. It will be clear that the method of proof is quite general and
should probably enable one, for example, to prove the existence of numbers
which are normal to every base b which is not a produet of powers of any
given get of primes p,,...., p;, but not normal o the bases p,,...,p;.

§ 2. A simplification. We first note that our theorem follows almost
immediately from the following apparently much less general statement;
where we write

. e(z) = ™™,

Lemma 1. Let h be any integer # O and let b be any integer

is not & power of 3. Then

1) D) 6(hh"E) = o(N)

o< N

ve 1 awhieh

as N — oo, for u-almost all &eSl,.

‘We first deduce the theorem from Lemma 1. Since the union of a de-
numerable set of sets of u-measure 0 also has y-measure 0, it follows that
for p-almost all & the statement (1) is true for every b == 0 and every b > 1
which is not & power of 3. For such £ and fixed b a well-known criterion
of ‘Weyl(®) shows that the sequence b"& (n =0,1,2,...) is unitormly
distributed (gleichverteilt) modulo 1. Hence £ is normal to the bage b; and
thig is true for all relevant b. Thus it remains only to prove Lemma 1.

§ 3. Alemma. The proof of Lemma 1 depends on the following result,
which we first prove.
LEMMA 2. Let b, b be as in the enunciation of Lemma 1. Then
co
@) D [ leos(37nb"m)| < AN*—,
0gn<N f=1
where A, § are absolute constants.
Suppose that b = 8*b,, where b, is prime to 3. By hypothesis b, > 1,
and 8o b; satisties the conditions laid on b in the Temma. Further, substi-
tuting b, for b increases the left-hand side of (1), since

[] teos (37715 a)| = [ leos (3~"nt2m)| < ﬁ |eos (377 hb% 7).
7=1

f=1-nz J=1
Henee it is enough to prove the Lemma when b is prime to 3.

(%) Bee H. Weyl, U_ber die Qleichverteilung von Zahlen mod Fins, Mathema-
tische Annalen 77 (1916), p. 313-352, or also chapter IV of J. W. 8. Casnels, Adn
Introduction to Diophantine Approzimation, Cambridge Tracts in Mathematios and
Mathematical -Physios No. 45, Cambridge 1957,
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‘We note now that it is enough to prove Lemma 2 under the further
restriction that

) b =1 (mod3).
For denote the left-hand side of (1) by S(N, k, b). Clearly

(3) SN, kyb) == S([3N], b, b?)+ 8(N —[$N], kb, b?).

In any case, b? = 1(mod3). Thus if the required inequality (1) has
been proved under the assumption (2) for some particular A and & then
it is true in general on replacing the value found for A4 by 24.

We first prove Lemma 2 in the special case N = 3" for some integer
r 2 0. Let the integer I be defined by

b =1 (mod3},

) b = 1 (mod3™Y),

Then, as is well known, " (0 < » < 3") runs modulo 3" through all
residue classes which are congruent to 1 modulo 3% Let b = 3™}, where
%' is prime to 3. Then clearly 25™(0 << < 3”) runs modulo 3"+™+" through
all residue classes which are congruent to » modulo 3™+™. That is, if we
have the expansion

hb* = D'e(n)3%, where e(n) = 0,1 or 2,
k=0
then
(8) erem(n)y erpmer(N)y vy E1pmayra (B)

take precisely once every one of the 3" possible sets of values as » runs
from 0 to 3"—1.

We now divide the integers » in 0 < n < 3" into two classes which
we treat differently. Liet (I) be the set of % such that the digit 1 occurs
more than r/6 times in the set (5) and let (II) denote the remaining n.

If ne(I), then the fractional part of 37hb™ lies between 1 /3 and 2/3
for more than r/6 values of j, namely those § such that &_,(n) = 1. Hence

(6) [ 1cos (376" m)| < (cosm /3y (ne(I)).
j=1

The right-hand side of (6) is just 37" for some &' > 0. Since the set
(I) contains trivially at most 3" members, we have

(M D) [ eos (37 nbmm) | < 300,
ne(l) 7=1
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Tt remains to deal with the set (II). Here we use the fact that the
number of sequences (5) having s members equal to 1 is at most
8 3"exp {— K (s—47)*/r},

where K > 0 iz an absolute constant (see e.g. Hardy and Wright loe.
cit.). For ne(I1) we have s < /6, and 8o (s—4r)%r = T/SQ. Egnce?, on. sum-
ming (8) over 0 <s < /6 we see that the number of # in (II) is at most

{(T/6)+1}3'exp{—ffr/36} <_A_”3(1—d”)r
for some 4" > 0, ¢ > 0 independent of r. Thus

oo
|GOS(3hih/b"TC” g‘ Au3(1—-d”)r.
ne(II) §=1

(9)
From (7) and (9) we have

ﬁ leos (37 hb™m)| < A7 80—

ogn<3 =1

A" = 144", & =min(d, 8).

Now let N be any positive integer, say

¥ = Z 73",

0<r<k

(11) where 7, = 0,1 or 2.
The range of summation 0
2 n,intervals of the type
0<r<R

(12) p

<n < N in (1) may be subdivided into

gn < -No‘|‘3r7

where there are precisely 7, intervals of length 3". But now

[ ] 1cos(3~7hb"m)|

Ny No+3* J=1

(13)
is just & sum of the type in (10) with b™Moh ingtead of h. Flence the estimate
(10) applies, and the sum (13) is at most

A!ll (3!‘)1-—6”' < .A.”/.Nl-am.

But now

D < < K(logN+1)

0<r<R
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from (11) for some absolute constant K > 0. Hence the left-hand side of
(1) is at most

K(logN+1)- A" N7 « 4N
for some suitable 4 > 0, § > 0 independent of XN.
§4. Proof of Lemma 1. The first step in the proof of Lemma 1 is
the following
LemmA 3. Let A, 8 have the meanings they have in Lemma 2, where
without loss of generality

0<d<l< A
Put 6§ = 34.

Then for all integers N =1 the set of £eSly such that
e(hD™£) | > N4
on<N

has p-measure at most 4AN"4, where b, h have the meanings they have in
Lemma 1.

We shall use an averaging argument and must first introduce the
integral
(1) [ (&) au
£ellg

of a function f(&) with respect to the measure 4 introduced in § 1. If f(=)
is a function defined on the whole interval 0 <z < 1 and continuous
there, then clearly

[

fellg

(2) £)du = lim2™* Y (37" M),
T>00 M

where 3} is taken over those non-negative integers M < 3" which have
o

no 2% in their expansion in the scale of 3. In particular, when

(3)

for some 1, then

[ e(ag)du =lim2~" [ [{1+¢(372)} = [ r+e37 2}
T=>00 7=0

delly i<t

f(@) = e(Aw) = &*

Hence

| [e@s) ya| =[] ]eos(3 Tim)].

Lell f=0
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Tn the notation of the enunciation of Lemma 3, we have now

[ el (b —1b™) &} du

0m< N 0sn<N fellg
o0

< 3 3 []reos 3 rpm—smm}.

ogma N 0gn<N §=0

(4) [1 D emre |2 dy =

Eelly 0<n<N

Tn this sum put s = min(m, ») and r = max(m, n)-~s Then cer-
tainly the right-hand side of (4) is not greater than

2 b leos {3~ B (b"—1) b*w)]| .
ong:N O&N fI:oI
When 7 s 0, the inner sum is at most AN'"° by Lemma 2. When
r = 0, the inner sum is trivially at most N. Hence
f { 3 embne) f Ay < 2N+ 24N < 4AN

Eelly O<n<N

since 0 <34 =86<1l<Ad.

The truth of Lemma 3 is now apparent.

The deduction of Lemma 1 from Lemma 3 now follows from Lemma 3,
by a routine argument. Let

N,, = [expm!®].

(Al that is really necessary is that N, shall increase fairly fast but slower
than a geometric progression). Then trivially

ZN,;" < oo,

m=0

0y

Hence, by Lemma 3, for u-almost all £ there is an my(£) such that

(5) | o™ 8)| < Nir?  (all m > mo( ).
0<n< Ny,

On the other hand, if m = m(N) is defined by the inequalities
Np <N < N,,,, then clearly

(6) N —Nppgayy = 0(N)

as N — co. Since frivially

| D e~ 3! e(h8)| < NN,

os<n<N 0<n< Ny,
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it follows from (5) and (6) that

e(hb"E) = o(N) (N — oo)

ogn< N
for u-almost all &

This proves Lemma 1, and it was already shown in § 2 that this implies
the truth of the Theorem.

Regu par la Rédaction le 1. 12. 1958
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