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Deformation and mapping theorems *
by
D. G. Bourgin (Illinois)

A class of theorems, (Q), may be characterized in a general way
as asserting that in the deformation of a manifold, A, a point set, P,
satisfying a certain property, contains an element for which a presecribed
real valued continuous function f takes on an assigned value. This would
follow as a corollary if (T): P contains a continuum jeining points with

= 0 and those with { = 1. The demonstration of (T), in particular cases,
depends on the fact that otherwise P would admit a separation by a car-
rier, €, of a cycle homologous to the base eycle of the manifold though
in the cases treated in this paper, contrary to its definition, ¢ must con-
tain points of P.

This method, (T), would seem to have inherent interest, and is
applied to some deformations of cireles, etc. For instance, ¢f a circle of
radius 2 is deformed in a plane into one of radius %, then o fized circle of
radius 1 intersects some intermediate curve of the deformation in a pair of
points which are maps of antipodal points or which (under weak regu-
larity conditions) bisect the length of the intermediate curve, ete. When
the t segment is replaced by a circle, applications to doubly periodic func-
tions may be derived. However, a theorem in the class (Q) may be valid
without (T). For instance, if circles are replaced by # spheres above,
then without establishing (T), we show there are » -1 orthogonal points
of intersection, for some t, of the fized unit sphere with the deformed sphere
corresponding to this t value. In connection with the n sphere, we de-
monstrate a general criterion for the existence of a common image point
for the map of orthogonal % tuples of 8™ to F', yielding the first general
breakthrough on a problem of Knaster’s and as a gpecial case, for n
a prime, the generalized Kakutani theorem.

We use S, S(g), # and E(+) for the circle, the circle of radius p
about the origin, the real axis and the positive real axis, respectively.
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Contract No. AF 18 (603)-32 monitored by the AF Office of Scientific Research of the
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D is a disk, namely the circumference plus the interior of a cirele. Ap
open disk is one with the circumference discarded. A superseript is used
to indicate dimension here, thus E' is the ! dimensional Euclidean
space, etc. The notation v = co means merely v is sufficiently large and
positive. The unit segment {{0 <t < 1} is denoted by I. We sometimes
write 8y, I;, B, to indicate the parameter elitering where this adds to
clarity, and « is a real number, or a real number modl, according as
we have B, or §,. Maps are understood to be continuous and the term
curve A, is used both for the continuous correspondence A2 1) and
for the graph I'(4). A curve is 4n a set P if its graph is a subset of P.
The interpretation intended for §xI is connoted by using terms like
cylinder or amnulus. The notions of separation of subsets used here are
covered by two anterior results of the writer’s ([1], Theorem 1A and 10)
which we refer to as BA and BC respectively. Unless otherwise stated
the coefficient group for homologies is I, namely the integers mod?2.

Lemma 1. Let f(2,t) be a real valued continuous function on ExI
satisfying: f(w,1) is periodic of period 2n in x for each fized t and f(z, 1)
= —J{@+x,1). Let Z = {{w,1)|f(x,1) = 0}. Then Z contains a continuum
connecting EX 0 and B x 1.

Interpret # as an angle coordinate and r as radius. Let 8'xI be the
annulus {(z,7) | 0 <2 < 2%, r=1+1}. Because of the periodicity re-
quirement, we may consider f(z,%) on §xI to the reals. Suppose the
lemma’s assertion false. We rephrase BA for our special situation. Thus,
if Z= 0" (" where X,= 00U 8% 0 and X;=0"u8x1 are disjunct
compact sets, there is a set Q, the boundary of a finite number of open
disks, covering €%y §x 0, which is disjunet from X, X, and carries
& cycle homologous to that of §x 0. Then either from the fact that @
is a finite sum of arcs or, since @ is locally connected, by closing §xI
by two disks and applying a corollary of the Torhorst theorem ([10],
Theorem 6.7, p. 114) henceforth referred to as CT, @ contains a simple
closed curve K separating Sx 0 and §x1 by the Jordan Separation
theorem ([6], p. 358). §x 0 and Sx 1 are in the two disjoint domains
into which 8 x I is separated by K. Moreover X is homologous (= homo-
topic here) to & x 0.

Let K’ be the reflection of K in » — 6 defined by (#',7') = (z+=, 7),
(m,7) e K. Let 1, and 7, be the maximum and minimum radii of K, taken
on, in view of the compactness of K , in distinet points (w,, r,) and (29, 75)
respectively. To show @ % K ~ K’ we may as well assume (z;, 7,) U (a5, 73)
¢ K'. Since 7, and 7, are likewise the maximum and minimum radii of
K’y (@, ;) can be joined to §x 1 by an arc not cutting K’ while (@, 72)
can be joined to §'x 0 by an arc not cutting K'. Since K’ separates §x 0
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and 8 x 1, the points (@, r,) and (a,, r,) are separated by K’'. Accordingly
each of the two sub continua of K joining (m,,n) and (@, ) cuts K’ 'Let
(o; To) € K n K where ry=1-1, then (x0+n,_l +tg) e K "K', . Since
fl@gy to) = —f(To+7,1,) there is a point (Z,1+7) on a ‘subcontlmmm
of K joining (@y, 1+1%,) and (ze+ =, 1+1,) for which /(Z, ) = 0. On the
other hand, (£,1+1) ¢ K and hence cannot be in Z, a manifest contra-
diction.

For completeness we present three lemmas which seem intuitively
evident.

Levma 2. Let o be the square I, xI, and let A be a curve joining
0x I, and 1 X I, in {(u, v)| 0 < v < 1}, Then A separates I,,X 0 from I, x1.

Let u, v, refer to Cartesian coordinates. We shall say (u, v) is over,
or covers, %, and write p, for projection on the hyperplane orthogonal
to the v axis. Thus py(u,v) = u. The curve 4 = A(A| I;) can be con-
sidered represented by a generally multi valued function of « and the
point set is indicated by the graph, where the independeut variable is
included in the symbol, when this lends clarity. Thus

Td, u)={(u,2)| (n,v)= (0(2), v(A)} e AR CE,XE,.
We interpret addition of graphs by
T(Ay; )+ (Ayy u) = {{u,9) | v =00y, (u, ;) e (g, 1)}
In general it is, of course, not true that I'(4,, u) +I'(4,, %) is connected.

Lemma 3. Let « be the strip I, X E,. The two curves A;= A A I,),
i=1,2, are entirely in I, xI, and satisfy

() A{0), 4,1) are over u=10 and w=1 respectively.

Furthermore

(b)y 4; covers I, finitely, i. e. A; contains a finite number, only, of
points over each u in I,.

Then I'(A4,, w)+1(A,y, u) contains a curve K, where p,K = I,.

If A; and A4, represent single valued functions of » the result is
immediate. The argument given below assumes neither 4, nor Az. is
single valued in . Imbed « in a XTI, where w refers to the third Cartesian
coordinate. Let 4. be the cylinder in axI, with generators parallel
to the 20 axis and generating curve 4,. Let 4,4 be the curve in axI,
defined by

(1, m) e Ag(A), w=141.

The cylinder A,z has 4,; a8 a generating curve, and the parall'els
to the » axis as generators. Hvidently each generator cuts the gen('emtmg
curve in a unigue point. As easy consequence of hypothesis. (b) is that
Age cuts Ay, in o locally connected point set € (which projects by p,
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into 4,). Project 4,q, into the »,w plane, and in fact onto o = K, xI
Then write v

Pudig=A4;, p,0=RB.

It is immediate from Lemma 2 that 4, separates points with » = —eo
ﬁom those with v = oo in I, xH,xI, and so C separates such points
in A;4 whence B separates such points in B, xT,. Moreover B.contains
a a(?minuum Ay connecting I, x0, and I,X1,. (For instance using the
d'evme of taking two copies o', «”’ of I, x I, and identifying the horizontal
gides »= 0 in o’ and «” for one seam as well as the sides » = 1, for an-
other, Fhere results the circular cylinder §x1,. Since B intersects every
C}lI‘VG in o' joining =0 and v»=1 it follows that B intersects every
glmple closed curve K in §xI,, which is homologous to §x 0. The italic-
ized aL‘ssertion now follows from BA.) If 4! is taken as the componeﬁt
of B joining I,X 0, and I,X 1, then it is loeally connected, since (¢ is
locally Aconnected and maps preserve local connectivity. By the Hahn-
Maz@kleMcz theorem ([6], p. 185), 4 is a curve, and is a lsingle valued
funct}on of w. One could reduce to the case both curves are single valued
funetxons of the base variable by proceeding as above with U, v, w going
into w,‘v,u' and o, A; replacing «, A;. However, this is unnecessary
on noting I'(4{, w)+I'(4;,w) = %, is a homeomorphism of I'(4i, w)
with the' points of 4; over w =0 and w =1 moving vertically. E[:a’noe
2?' contains a curve K’, where K' is a curve covering I, since a subecon-
tinuum of a curve is a curve. Let P, be the projection of «' onto 4
80 @ = P, P3" maps o’ onto « preserving the v coordinate. Write @ (w 1:;
= (g(w), ) whenee Q(w, v, +v,) = (g(w), 9,+7,). Then 7

K = QK CQI'(41, w) +QI' (43, w) CT(Ay, u) +I'(4,, u) -

The fact that g7, = I, shows j = inui i {
ohe fact 1 9y = I, shows p,K = I,,. The continuity of @ insures K
LevmMA 4. Let o be the circular cylinder SyXB, and let A, and A
be two curves each homotopic to S,x 0 and covering S, finitellz/. The-;:
(a) I'(Ay, w)+T(4s, u) contains a simple closed curve homotopic to 8 \<’0
and (b) no two distinet curves satisfy (a). o
. There is no loss of generality if 4, and 4, are considered curves
in 8, {r|0<v<}} and we may even require that A4; and 4, be simplis
elz,osed curves homotopic to the base circle. (Indeed A; cox;sidel'ed on
*f =C 8xIuDx OUD‘XI separates the north and south poles whence
y CT, I'(4:, u) contains a simple closed curve with this property.)
Let’y be the radial coordinate measured orthogonally to the'a\'iﬂ
of the circular cylinder a so %, v,y constitute the w :

: . sual cylindrical co-
ordinates. Let Ay, be the cylinder determined by the radial rays starting
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at 4,, i.e. the lines (u,) constant in axI,. Suppose 4, given by
A(A ] I,), A4(0) = 44(1). Then Aiq is defined by

(w,v) e A;(4), y=14a.

This is a generating curve for the cylinder Aig, whose generators are
the lines (u, y) = constant. Denote by C the intersection of A,z and As,.
Without our hypothesis that A; covers S, finitely we should not be
assured, as here, that € is locally connected. Let A° be the intersection
of Az with v = 0. Note ¢ projects radially onto A,.

In Ag identify the generators g,= {0, v, 0} and g, = {0, v, 1}. The
result is a eylinder § homeomorphic to a circular cylinder. Denote the
effect of the passage from A4 to § by adding a dot. Thus A° becomes A
and O becomes (°, ete. Since A4, separates §x 0 from §x 1 in a, " se-
parates 4'° from points with » = co. We may replace ¢° by one of its
separating components and hence, applying CT, (¢ contains a simple
closed curve B with the same separating property or, equivalently, B is
homologous or homotopic to A in f. ¢ can contain no other simple
closed curve, D, homologous to 4 and disjunct from B. Indeed under
radial projection denoted by p, pB~pA*~8x 0. Since the projection
of B is in A,, it must therefore cover all of A,. Similarly the radial pro-
jection of D is onto A,. Let s = sup{v | (u,0) e I'(4,)} and let ! = ini{v |
(4, ) € I'(4,)}, where only the case s 5 1 is of interest. For suitable values
of % and y, B must contain points ¢ and g, whose ordinates are s and !
respectively. Since D must lie between these ordinates, ¢, is above and
¢, is below D, whence the arcs of B joining ¢ and ¢, must cat D contrary
to the postulated disjunction of B and D.

Let the parameter {o| I} increase monotonely in traversing 4
in one sense, with 4°(0) = 4°°(1). Then the situation in g is that of one
curve {4;q) a single valued function of ¢ and the other (B) a simple closed
curve. For this case the lemma is valid because

I'(Aig, o) +I'(B, o) = &

amounts merely to a homeomorphic displacement of I'(B, ¢) and so z
containg a simple closed curve E' homologous to A’ (Though the trans-
formation p: A,z—B has no continuous inverse, the composition y = u,
u: a—>Asg, admits the continuous inverse y=? which is simply the radial
projection p of # (a folded cover of a) onto a.) Hence I& = pK’ is a simple
closed curve homologous to §x 0 and

I(dy, 0+ Ay w) D K .

The demonstration of (b) is immediate. K and I are two disjunct
simple closed curves in I'(4,, u) +I'(4,, u). Let K, and L, be the cylin-
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ders defined analogously to 4., with generating curves K and I re-
spectively and generators the radii through K and L. Then in 8 we should
have for the intersection of 4,4 and K, and L, the sets k. and 1, which
in turn contain simple closed disjunct curves F and F respectively each
homotopie to 4%, and projecting radially onto K and L. Since A4,; has
one point only on each vertical in f there are unique disjunect simple
closed curves B and D in f homotopic to 4% and homeomorphic to E
and F which satisty

(A, 0)—T(B, 0)=T(B,0), I'(diaje)—I'(F,0)=T(D,q).

These relations are preserved under radial projection onto o« and since
the separate terms on the left hand side project onto I'(4,, p) and into
X respectively, it follows that the right hand side projects radially into
I'(4,, ¢). Hence B and D are in ¢". However, in the demonstration of
part (a) the possibiliby of existence of two curves such as B and D was
climinated.

Write E*—6 for the plane punctured by eliding the origin, 6. De-
note by O(f) the closed curve h: S,xt and by C(t, 2, 3,) the map of
the arc [z, ,] of 8, x ¢. Require that variation C(¢, z;, #,) for each fixed t
be continuous in f, z,, and z,. We then say that the family of closed
curves {C(t)| I} is of equi-bounded variation or EBYV.

TerorEM 1. Let h: SpxI;~E*—0 be a homotopy and suppose that
G(0) is a circle of radius 2 about 0 while C(1) is contained in the interior
of the disk of radius 1 about 8. Then

(a) for some @ and t, say x,, to, h(x,, to) and h(xg+ 7, 1) are on S(1);

(b) if the family {C(t)} is EBV then for some %, C(f) intersects § (1)
i two points 1w, w, such that the two sensed arcs of C(I) with these end
points have equal lengths;

(e} the radial projection on the cylinder 8, xI; of the anmtipodal point
pairs of O(t) for each t € I,, includes a continuum joining Sy, X 0; and Sy, X I;.

For (a): Let

He, 8) = [h(z, t)] — |h(z+m, 1)

where |h| is the norm or length of the vector to h(z,t). The continuity
of h implies that of the norm, |k(z,?)]. (The immediate observation that
for each ¢, f(x,f) has a zero can be viewed, in the light of possible later
generalization, as a trivial example of a theorem of Borsuk’s ([6], p- 20)
or of Dyson’s [5].) Then f satisfies the conditions of Lemma 1. Hence
there is a continuum K (contained in the set of zeros, Z, of f(z, t)) joining
80 and §x 1. Fort = 0, |h(z, 0)| = 2 and for ¢ = 1, |h (5, 1) |< 1 whence

for some %y, ¢, on K, [k (z,, ty)| = 1. This is tantamount to the assertion (a)
of the theorem,

icm

Deformaiion and mapping theorems 291

For (b): Introduce the parameter
s = s(w,t) = 2rl(x, 1)/10(t)

where [(z, ?) is the length of the curve C(t, 0, x) and 10(t) that of C/(t).
Sinee the family {C(t)} is EBV, s(z,t) is continuous in # and ¢ simul-
taneously.

Let %(s,%) be the point on C(¢) with parameter s. That h is con-
tinuous in ¢ and ¢ follows directly. (Thus suppose for some sequence
(8" 1") (3, 1) yet h{s",t") does not converge to h(3,?). Accordingly for
some positive ¢, there exists a subsequence {(s™, ¢™)} C {(s", ")} sueh that
JB(8, B) —Rh(s™, t™)|>¢ Let X™={x | s(z, {™) = s™}. Choose 2™ arbitrarily
in X™ By compactness, {«™} contains a subsequence {z'} converging to
9 value z, i. e. (, t’)—>(§, i). The continuity of s in 2 and ¢ implies that
s = s(a), 1 —>s(7, f) so that §= s(z, ). Note that h(s(z, 1), 1) = h(x, t).
Since h(z,t) is continuous, h(a',?)~=h(F,7), whence h(s\,#")>h(s, 1), in
contradiction with the definition of the subsequence {(s™, t™)}.) Writing
|h(s,t)] in place of |h(x,t)| and f(s,t) in place of f(x,¢) in the argument
for (a) yields assertion (b) since [h(s,t)| = 1= [h(s+mn,t)| is effectively
the desired result.

For (¢): We may, if necessary, deform C(1) onto the circle 8(3)
by projecting radially from 6. Since the truth of (¢) is not affected by
this, we therefore assume (1) = 8(}). We use polar coordinates (w, y)
in the punctured image plane, B*— . Thus w can be interpreted as the
arc length mod 2~ of (1) and y is the norm |X| of the radius vector Y.
If Y is associated with (w,y) then —Y is associated with (w+ =, y).
Let p project E®—6 radially on 8(1) and write P(w,1) for the closed
set. p~ w) ~ C(¢). Let the possibly multiple valued representation of
C(?) in the polar coordinates be indicated by the closed set

Rw,t)=1{y| ¥ eP(w,1)}.

The elements of R(w,t) are inferior to a fixed constant sup{|h(w,t)][
Sz X I} Moreover R(w,t) is upper semi continuous on S, xJI—Eyt).
(Thus suppose w”,y", t*—, 7,1 where y"¢ R(w"t"). TFor some a",
(w™, y") = h(a", t"). For a suitable subsequence {"}, 4" —% and (", 5")
—(®, §) = (%, i). Hence W,y e C(t) or jeR(w,1).) Define
flw,t)= inf |y—y|.
o € R(w,t)
¥ €R(w+m,t)
The zero set
Z = {(w, )] flw,t) =0}C8,xIy,

is closed. (Suppose for ¢= 0,1, Z contains {(w"+ er, ")} which .con-
verges to (% sm, 7). Thus some 4" e R(w" ") ~ R(w" +=,1"). For a sui-

Fundamenta Mathematicae, T. XLVT, 20
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table cofinal collection {n'} of positive integers, w" --em,y”, ¥ >+
+em, 7, The upper semi continuity of E guarantees 7 e R(w,i)
AR(@+m,1) so (W+er,i)el.)

We assert: Z contains a continuum joining Sy X 0 and Sy X 1 0.8y X I.

Suppose the contrary. Then Z = C°u ¢’ where (° and ¢’ are com-
pact and disjunct and €7 ~ S, x§ # @, j= 0, 1. The fact that 8, refers
to the image space whereas in Lemma 1 S8, was in the object space, ig
not significant. The argument in Lemma 1 applies verbatim, on replacing
z,t by w,t and using 7 in place of r—1, to show there is a simple closed
eurve K (composed of a finite number of cireular ares) which separates
C°Uu8x 0 and ¢'w8x1 and contains a pair (@, ) and (W+ =, ).

Let the reflection be indicated by 7': (w,i)—>(w-+=,?). We assert
that K may be taken reflection invariant, i. e. TH = K. The type of
argument used in Lemma 1 shows K ~ TK = @. Suppose that (w,,1,)
and (wg+ 7, t,) are in K ~ TH. Let K” be the closed curve obtained by
piecing together one of the two ares of K, say K,, joining these two
points and TK,. Thus TK"” = K". Since Z is obviously reflection in-
variant, Z ~ K" = @. In general K" is not simple, but separates 82D 8x I
into the domains D,, D, when Dy= TD,28x0 and D, = TD,;D 8Sx1
and D;, TD; where i = 3, ..., m. Here §? is obtained by adding a lower
and an upper unit disk to 8, xI;. Drop out the boundaries of the pairs
Dy, TD;. Since this amounts to dropping out cycles homologous to 0,
the residual point set is homologous to §x 0 and is a simple closed curve
which we denote again by K in the sequel.

Suppose the curve K = K(1| ;)= K((w, )] (w, 1) = (w(2), z(l))).
The graph of R(w,t) when (w,t) traverses K is indicated by

I(R; K) = {{[w0(2), 4(2)),3) | v e Rlw (), 1(1)} CR xB(+) .

Suppose that inflh(z,?)| > 6 > 0. Let G be the cylinder (a homeomorph
of a circular cylinder) with the generating curve K and the rays, (w,?)
= constant, y > 0, as generators. Then I'(R, K) is the intersection of
I'(h} and @, and, as a simple argument shows, separates @ since k(S xIy)
separates Sy, X Iy X By(t).

We proceed now on the assumption that R(w,t) is a finite set for
(w,t) e K. Thus I'(R, k) is locally connected. Then, taking a suitable
component of I'(R, K) and applying CT we infer I'(R; K) contains
a simple, closed separating curve A homotopic to K (in @).

Write A (w(2),1(4)) or A(w,t) for the set of y values correspond-
ing to the intersection with A of the ray through K (1) = K(w, ).
Since K is reflection invariant, (w, ) in K implies (w+m,t) e K. Interpret
A(w(2),1(2) as 4, and Afw(A)+w,t(4) as —4, in Lemma 4. Thus
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T'(4)+I'(4,) contains a closed curve ¢ homotopic to K in @ Let
(’w(lo)’t(lo)) be {(wq, 1) and (w(ll)yt(}q)):(’wu+‘"-‘,to)- Then it F(4)
= A(w(d), 1(1))—4 (w(A)+ =, t(l)) s

(1) F(le) = —F(4).

Note Q(1) or Q(w(l) ,t(l)) consists of a finite collection of real
numbers constituting a subset of F(A). It is therefore conceivable, in
the event F(1,) contains both positive and negative reals, that Q(4,)
and ¢(4,) consist of real numbers of the same sign, and that in fact the
numbers in ¢(1), for all 4, are of the same sign and avoid 0. We assert
this last cannot happen, for if it did, then if —Q (1) denotes =y vy Q)
by (1) P = {P(})] P(3) = —Q(4)} wounld constitute a simple closed eurve
included in I'(4,)+I'(4,) homotopic to X, and disjunct from ¢. The
existence of such a pair P and @ contradicts Lemma 4 (b). Hence 0 € Q(4)
for some 4, i. e. for (w,1) = (w(2),t(4)) on K, f(w,5) =0 or K ~Z @
which is at variance with the defining property of K.

We show now that the restriction to the case that R(w, t) is a finite
set for (w,?) ¢ K, can be waived. Thus, for small enough positive #, the
solid spheres of radius % in 8 X Iy X By(t) intersect @ in connected sets,
termed # disks. Let I'” be the union of a finite number of 7 disks, whose
open part includes I'(R; K). Replace I'(R; K) by I in our previous
argument. Then I'7 is locally connected and hence contains a simple
closed curve A" homotopic to XK in G- We can therefore conclude that;
for some point in K denoted by (w", "), Q"(w", 1"y D 0.

Hence f(w", ") < 29. Let 4—0; for some sequence of values, (w%, {")
= (', t')—(, ).

Since R(w,?) is compact, for each 1

97— 34| = & <21,
with y; e R(w',¥), 3; ¢ R(w’ +x, ). For an infinite subset ('}
Yir>yY, >3, &0,
whence y—3 = 0. Since R(w, 1) is upper semi continuous,

FeR(W, 1), 3eR(B+m,i).
Therefore ;
0</(®, i) <|y—3]|=0,

whence again the contradiction (@, ) e K "% # @.

Hence the italicized assertion about Z is substantiated.

Remark. Two assertions are involved in Theorem 1. The first and
most significant is that of the existence of a continuum in Z on which

20*
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% is symmetric. The second is derived here as the trivial consequence
of the first, namely that this continuum joining two circles must inter-
sect an intermediate circle, or for a more general conclusion for Theo-
rem 1, the deformed circle must at some stageintersect a fixed sym-
metric closed curve (separating Sx 1 from 8 x 0) in two points satis-
fying (a), (b). Moreover if only this second type of assertion is desired,
it, and indeed much more general such conclusions, can be established
without inveoking the first assertion, which may indeed be invalid. (It is
not difficult to give examples of a continwum in Z, joining 8, X 0; and
8, X 1; in Theorem 1 (c), which contains no antipodal pair (w, 1,1),
(w+=,1,1).) We illustrate this by the next theorem.

THEOREM 2. Let b represent a deformation of the n sphere Sp(3) of
radius § onto a conceniric sphere of radius §, in R*1— 6. Then for some t,
the dejormed sphere meets a fized wnit sphere in 2n points which are

(a) the transforms of extremities of n orthogonal diameters of S%;

(b) the emtremities of n orthogonal diameters of the image unit sphere,
8a(1).

For (a): Let W= {(z, )] |k(z, t)] = 1}. Evidently W separates §"x 0
and §"x 1. Let the closed set

W= {(z, t) 1 “h(m; t)|~—“h(—a‘,t)“ =01~ w.

Write T for the fixed point free involution T'(z,t)= (—a,%). Then de-
fine W~ by
W= {(=, )] (~w, ) e WF}.

The set W+oW~ is T symmetric and separates 8”x0 and 8§"x1 in
8" %I conceived of as a spherical shell of radius varying from § to %,
and accordingly carries a T symmetric # c¢ycle. Accordingly W O W+AW=—
is a carrier for a symmetric # —1 eyecle which bounds no symmetric chain
on W+o W~ ([1], Theorem 2B) whence it follows that there are n—1+1
orthogonal diameters of some sphere §"xt (of radius }+t) with end
points on W ([1], Theorem 3A) and this implies the assertion (a) of the
theorem.

For (b): Let w designate the generic point of the unit image sphere.
Let

A={w,t)] bz, )= (w,t) for some =}
= h(8eXIs) n Sp(1) x I; C Sp(1) % I .
Let
TA={(w,t)] (—w,t)eA}.

Then 4o T4 is symmetric and separates S,(1)x 0 from S,(1)x 1.
Accordingly, using ([1], Theorems 2B and 3A) the argument follows that
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for (a), with T4 ~ A replacing W+ ~W~ for 85(1)x 1 can be represented
as a sphere of radius 147

Essentially as consequences of Lemma 1 and Theorem 1 we can
make some assertions about doubly periodic functions. To make easier
connection with earlier notation, we now interpret I, as 0 < s < 2n.

We require the Lemma 1 analogne for the torus T = §x8 and
we present a method of proof which illustrates for our special case M = N
how certain results for M xS can be reduced to the case M xI for M
a2 closed simplicial manifold. Note again that « is to be interpreted as
2 real number or as a real number mod2xn according as we write
B,, or 8,. Write 8,8, for S;x0; 0;x8; respectively and ml for
yly="F,k=1,2,...,m,tel}. The cycles below are with integer
coefficients.

Levma 5. Suppose that A is a closed subcomplex of the iriangulated
torus T, then :

(a) if A does mot carry @ non bounding cycle of T' the complement of A
carries cycles homologous respectively to the fundamental cycles 8y and Sy on T

(b) if A carries no non bounding cycle of T homologous to aS;+bS,,
b 0, the complement of A carries a cycle ~8,.

Let N bhe the number of vertices of 7' and choose m > N. The cy-
linder 8, xE;= T is a covering space for T and contains the finite cy-
linder @ = 8, x ml;. Let p project T onto T by p(x, y)= (z,t= g/(monn)).
Let 4 = p—14 ~Q. Evidently A has no component containing hoth (x, ¥)
and (x, ¥y +2wj), § # 0 an integer, for this component wounld carry a curve,
¢, with p5~a81—|—j52 for some integer a. On the other hand if there
were a component I of A joining ¥ = 0 and y = 2nm, since the number
of vertices on I is at least m, there would needs be at least two distinet
representatives of some vertex of 4. Thus I would contain a pair (z, ¥)
and (&, y -+ 2mwj), § # 0. Accordingly there is no continnum in A joining
gy =0 and y = 2wm. Therefore by BA there is a separating (polygonal)
curve f£~8 on @. Thus K = pK, considered on 7T is disjoint from the
original A. This establishes (b). For (a) we need merely consider mI;x§;
also besides Q.

THEOREM 3. Let r and w be continuous, real valued, doudly periodic
functions on E,X B, of period 2= in each of x and 1. Suppose thal « s
an arbitrary positive number. Then:

(a) There is a parallelogram, of base n parallel to the x awxis, and
height o, on the four vertices of which, r assumes the same value.

(b) Suppose that w: Iyxt onto L, Xt and suppose that r is positive.
Write

" R(w,t)={r| r=r(z,1), (@,1) ew™Hw, 1)}
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Then there is a parallelogram of base w and height o whose vertices
satisfy

R(wy, ty) n B{wg+7,8) # @, R(wy,tota)~nBlw+mn,t+a)#0,
R(wy,te) A R(w1,ty+a) =D .
If for each t, w 18 a biunique map then R(w,t) contains a single point and
the same v corresponds to the four vertices.

(The result (a) is known to A. N. Milgram.) Triangulate E’ with
intervals of length 7, where 7, approaches 0 when #—-oco. For some po-
sitive &, and a triangulation T, of 7' of mesh &, there is a simplicial ap-
proximation 7™ to 7 so that |r— ™| < &,. Let

M, t) = rz, 1) — @ +x, t).,
2w, 1) = 7'(”)(m: t) =2, +7),

and let Z{” be the set of zeros of 7, i = 1,2. We drop the script » till
the end of the proof. We assert Z, for instance, carries a cycle, 0~a8,
+b8,, b#0. If not, there is a cycle K~8, in the complement of
Z; by Lemma 5 (b). Moreover just as in the proof of Lemma 1,
K'= {(z,1)| (r+m,t) ¢ K} also is in the complement of Z, and K ~ K’ + @.
Then (zo, ty), (wo+7,1%,) are on K and so from f,(w,, to) fil@ + =, to) < 0
we infer there is a point (%, %) ¢ K for which f,(%,#)=0 in contradiction
with the disjointness of K and Z.

It is convenient now to return to the covering space E, X F; so that ¢
is a curve ioming points (z, 0), (¥,+2wa,2xb). The values of »(z,1)
for (z,1) e U yield the graph & = {((, ©),7)| (z,1) ¢ C, r=r(w, ?)} in TxE,
CEyxE,x E,. Let y project ¢ orthogonally onto the ¢ axis so that G
goes into a graph I': {(t,7) | r=r((z,t)| 0)} over the ¢ axis which
constitutes a curve, generally with self intersections. Let I',= {(¢,7) |
r=r{z,t+a), (,t4+a)e 0}. Let M and m be the maximum and mi-
nimum values of r on I" and therefore on I', also. Since the point on I'
with =M lies abowe I', and the point with »— m does not lie above Iy
the continwum I' must intersect I',. (This already familiar connected-
ness consequence will be referred to below as the M, m argument.) Let
{to,r) e '~ I,. Then r(my, t,) = 7(w,, t, -+ a) for (@9 to) w (1, to+ a) € Z, and
reference to the definition of Z; establishes the assertion (a) (for r = r™).
Since as we now recall r, 2, t,, @, bear the superseript #, the obvious
compactness argument of taking limits of a suitable subsequence then
establishes (a) for r(xz,t).

For (b) interpret (w,r) as h(w,t), proceed to the simplicial appro-
ximation, and define Z™ by

Z™ = {(w, 1) | B™(w, 1) ~ R™(w 4=, 1) £ @) .

. . -
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We omit the superscript » in the sequel. By the earlier arguments in
this paper, Z contains a simple curve ¢ in ¥, xF,;, joining (w, 0) and
(wo + 2na, 2wb), b 5 0. Then the graph G = {((w,1), R) | (w, 1) e C} con-
tains a simple curve with graph @. (Indeed & is the intersection of
L = h(E, x E;) and the cylinder 4 with generators w = constant, t = con-
stant passing through (. Since L separates r = 0 from r = oo points,
G separates ete.) Let y indicate the orthogonal projection onto E, X Ej.
Hence G becomes I'= {(t, n) | ((t, w), r) e G for some w}. Let I',= {(t,7)]
(t—a,r) eI'}. The M, m argument shows I'nI, C iy, r,. Thus for some w,
and for some 2, with (w,, o) w (wy, to+ a) € O, rge B(wq,t) ~ R (wy, {4+ a).

The mode of definition of Z guarantees the validity of (b). The same
sort of standard compactness argument indicated for (a) finishes up the
proof.

CoroLLARY. Let f be @ map of SX1) to B, then for assigned a, 0 < a < =,
f takes on the same value on four poinis x, Ty, and Yy, Y, such that either

(a) @y, @, are the extremities of a diameter D, v, is the reflection of y,
in D and the distance (on the sphere) from yy to @, i8 a or, for some dia-
meter D, z, and y, are the reflections in D of x, and vy, respectively and the
distance between the latitude circles, orthogonal to D, through 2y, 2, and y;, Y,
respectively s

(b) @
or . .

(¢) m—a.

Evidently 7 takes on the same value on some pair of antipodal
points Z, —%, and these determine the diameter .D. So far as the map by f
is concerned, ¥ and —% may be identified to give a pinched torus T arising
from pinching a meridian circle ¢ on a torus 7' so that the deformed C
becomes the identified points Z, —Z. Accordingly f may be viewed as
a map of T to ¥ with f constant on €. We may consider T represented
by its covering surface consisting of translates of the fundamental rect-
angle (or square if vertical lengths are multiplied by 2) whose horizontal
base, B, represents C. Theorem 3 (a) applies and the various cases, (a),
(b) and (c) arise according as the parallelogram whose existence is as-
serted in that theorem has (a) a side coinciding with B, or (b) is con-
tained in the fundamental rectangle, or (¢) has its horizontal sides in
different rectangles.

Let f be a map of §** to E. Denote the generic point of & by z.
The % tuple of points 2M, 2@, ...,2% in B may be considered a single
point 7 in the % fold product (E)*. The diagonal {Z |20 = 2= .. = e}
of B¥ will be denoted by 4 and s will be the cyelic permutation s:
(29, ..., 20) = (2@, ..., 2 2(),
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Thus s* is the identity permutation and the cyelic group @ = {si|
i=0,..,k—1} of order k acts without fixed points on the complement
of 4 in E*. We denote by = the projection parallel to 4 of E* onto the
hyperplane P: 2@ .., 428 = 0.

Thus points of 4 alone project into the origin, 6. Let, finally, o be
the radial projection of P—@ onto the sphere X, in P,

k
(4) D=1
=1

Observe that ¢ takes P into P and X into 2. Hence denote G[P, G|X
by G’ and G” and s|P and 5|2 by &' and &' respectively. The orbit space
of (5,6 is Y.

Let ¢, ...,er be the unit vectors along a fixed orfthogonal frame
in E". Suppose that w == (w!, ..., w*) is a k tuple of orthogonal points
of 8”%, Let M; be the % x %k matrix

010 .0
001 ..0
000 .. 1
100 .. 0

(4.01) . (ﬂ[,,())

induces a permmutation of ¢, ..., ¢ keeping e+, ..., en fixed. Write T
for the eyclic group of order % with generator ;. Remark that the space W,
of k& tuples of orthogonal points ', ..., w* on 8% is in 1-1 correspon-
dence with the cosets of orthogonal transformation moving e, ..., €* to
w', ..., w* where two orthogonal transformations are in the same coset
if and only if they differ on ek+1, ..., e» alone. We shall suppose that % is
an odd prime so that the determinant of M; is 1 and te SO (n). Thus
one shows easily W is the Stiefel manifold W = SO(n)/SO(n—%). The
orbit space under the cyclic permutations w, ..., w*—u?, ..., wk, wt ete.
is denoted by X and is the homogeneous space

X = W|T) =80 (n)/(SO(n—k)x T) .

In terms of the boundary operator for the Smith homology groups
one can define a homomorphism

(4.02) r(n) s CHy(W, Th) =T
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where ¢H, (W, T:) is the Smith homology group over I, and we may
normalize by defining ¢ as 7=1—t for n even and r=1+1t+... gkt
for n odd ([8]; [2], p. 183). A dual homomorphism can be defined on the
cohomology groups. However, for convenience it is desirable to make use
of the isomorphism between H' (W, Ty) and H™(X, T%), [7], and a homo-
morphism induced by 1+ 2t + ...+ (k— 1)t~ on "H™W, Ty) to "H(W, Ts).
The dual homomorphism now indiecated by »*(n) can be regarded as on
I, to HYX, T;) where H™X, Ty) is over Iy

Suppose a space V admits the cyclic group of fixed point free homeo-
morphisms L= {*| i=0,1,...,k—1}.

Let » be a map of W to V., Then v is a symmetry map if yt( )= lp( ).

The key result for our purpose is that if ¢ is a symmetry map, and
if #,(n) refers to the homomorphism (4.02) for ¥, L then ([2], Lemma 2)

(4.03) Y (n)p, = v (n) .

Thus »,(n) is non trivial if »,(n) is non trivial. The indes of (W, T4) de-
noted by »(W, T%) or »(X) is the maximum value of # for which v,(n)
is not trivial (the recursive definition of »,(n) in [2] guarantees that if
v,(n) is not trivial then v,(m), m < n, is not trivial). Thus (4.03) ineludes
the assertion (A): that wnder a symmeiric transformation the index does
not decrease.

(Wu [11], has also recently published (4.03) for a cohomology de-
finition of an index (Wu’s index may differ from ours since for one
thing the coefficient group is taken alternately I and I, starting with
HYX, T4))-

Let @ be a positive real number. Then [a] will denote the integer
part and @' = [}a]. We are now in a position to state the theorem (*)
of this section:

TaEOREM 4. If f maps 8" into E' then some k tuple of orthogonal
points on §*7%, k an odd prime, maps into the same point of B provided

z[ﬁ-i?i(’—”)] > 1, where e(2m) =1, ¢(2m-+1)=0, m=0,1, ..

1

k—1
If the theorem were falge, then for some f,

F(w ! W= (W' ..., wk)) = f(w')y ooy F(W¥)
is disjunct from 4 for all @. Define » on W to 2' by

(@) = onF (). .

(%) Constituting a partial answer to a problem by B. Knaster, Problem 4, Colloguium
Mathematicum 1 (1947), p. 30.
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Observe

F(tw) = f(wz)i very f(wk)> f(wl) = SF(E) .
For E¥— 4, s commutes with g, i. e. g7 = s'pm, or y is a symmetry
map, indeed

p{lw) = "y (W) .
Accordingly

(4.04) »(X) = (W, Tw) <v{p(W), 6") .
Now yp(W) may be a proper subset of X, but since s” takes (W) into
itself and the inclusion map, 4, of X satisfies

18"y (w) = 8"ty (w)
therefore v

(4.05) Yip(W), 67) <»(T).

We have need for the index of ¥ and that of X. The index of ¥
is essentially known for here our index coincides in value with Wuw’s
caleulated one

(4.06) w(¥) = (h—1)1-1.

The index of X is a more recondite affair. I am indebted to A. Borel
for information bearing on the calenlation and exact value. Thus

(4.07) 1(X)=4c[$k] -1,

where ¢ is determined by

(4.08) (?— DE <{(n—kY<ck .

Accordingly, since k' = }(k—1), (4.08) yields
o= [t

E—1
80

»(X)=2(k—1) [%‘f(’”]_L

The contradiction,

. ¥(X) >»(Y),
18 assured when

(409) ~ z[-’”:%:TW] >1,

which implies the assertion of the theorem.

. The orthogonal, or 4= % tuples, can be replaced by equispaced % tuples.
Distances are understood measured on the sphere. A ¢ % tuple has o
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for the common distance of all pairs, Let a={a;|i=1,..,k} be a o k
tuple. Then the end point of

2 aifk

] "

is equidistant, and minimally so, from each of a,,...,a;. Since the
great circle, O;, from Z to e; is a geodesic, is it unique, and hence for
some distance, s, the points on Cy,...,C, at distance s from = constitute
ap. orthogonal k tuple b={b;|¢=1,...,k}. This correspondence a+->b
ensures the homeomorphism between the space of ¢ % tuples denoted
by X, and the }= % tuples which we have denoted above by X=W/T,.
We remark that for n even and k—1|n, the relation
(4.10) 2[L]>z+1
k—1

guaraniees for some gy, o> i, f maps a o, k tuple of 8" into a common
point of E'. (Most likely the stronger result g, = 4= is true alsc.) Write

. n
& =u,,...,0, and congider 87 the meridian sphere of 8": Y i +v* =1.

i
Let G(z,v) map 8™ into B'x B, by G(z,v) = ((1—|v]) f(a/|[),7).
Theorem (4) asserts (4.10) suffices for @ to map some orthogonal
k tuple

(4.11) {{©6),2() ]| § =1,...,k)

into a common point (3, a) of B xB,. The definition of @ shows
ily=..=vk)=ax#%+1.

Hence with y = /],
(D) =-.. =Fly (k).

If a0, {y(4)} constitute a g, ¥ tuple, p,>%n. (The inticated genera-
lization of Theorem 4 to o % tuples so that (4.11) refers to o % tuples
with ¢ - 0 does not ensure {y(¢)} need be a i % tuple.)

Remark. The only result heretofore known on the equispaced
case of the Knaster problem with I 31, » odd, is included in Theorem 4
as the special case k=3, I=n—2. Theorem 4 gives et once (for »
prime) as the case k= n, ! =1, the generalized Kakutani theorem.

Evidently, it is more than enough for the validation of (4.07)
and (4.08) to present the cohomology ring of X. This latter can be de-
termined by the method of Borel in his thesis [4]. All details of notation
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used below are found in [3] and [4]. We merely mention that A and Z,
refer to exterior algebra and polynomial ring respectively, that f, and f
are generators of dimension 1 and 2 respectively, that I, is the spectral
sequence term with

' E2 = H*GSO(n—k)ka ® H*SO (’H/) ([4], Theorem 22) .

Then, using Theorem 22 and Proposition 22.1 of [4] and the bhounded-
ness of the spectral sequence {¥,}, the following represent ation of the
cohomology ring is obtained where to establish Fyp = Eypu—py41 (crucial
for ¢), one shows d, =0, 4(n—k)+1<r<4ck’, by computation using
the simple number theoretic fact (the only one not covered in [3] and
[4]) that the ¢th elementary symmetric funection in 1,2%...,[3«] is
0 mod » for i<in.

(£.12) H*(X) = By = Brrar= E4(n—k)’+1
= A(f) ® Zulf) /(% ® Al2icrray - Zawms) 7) ® D(n)
where g i85 24y, for # odd and is 2,_; for n even,
DEm+1)=1, D(2m) = Zy(Wotn—ny)/(Wetn-ry)?

and the subscripts of f, 2, w indicate dimension. The significant part to
us is that there are no elements of base degree 2¢k’. Let % (1) = »*(1)f,,
%(2) = »*(2)f,. It may be shown that

(4.13) 7(2m)fo=u(2)",  »*2m+1)fy=u(1)u(2)™,

where f, is the 0 dimensional cohomology class of the cocycle identically 1
on X and the produets (and powers) are cup products. It is at once ve-
rified that «(1) and u(2) can be interpreted as the images of f, and f,
in H(X) in (4.12). Accordingly the absence of elements of base degree
2¢k’ in (4.12) indicates the lowest value of m for which the right side
of (4.13) vanishes is 4¢k’ as asserted in (4.07) and (4.08). More complete
details on (4.03) and (4.07) and (4.08) will be appear elsewhere.
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