On the topological structure of 0-dimensional
topological groups
. N
A. Hulanicki (Wroctaw)

The following theorem is well known:

(i) Pach compact 0-dimensional, perfect, separable space i homeo-
morphic with the Cantor set, 4. e. with the Cartesian product of denumerably
many spaces each consisting of two elements.

The Cartesian product of arbitrarily many spaces each consisting of
two elements will be called the generalized Cantor set.

The family of closed-open sets of a 0-dimensional compact space.
constitutes a Boolean algebra. The Boolean algebra of all closed-open sets
of a generalized Cantor set is a free Boolean algebra (*).

Theorem (i) formulated in the language of Boolean algebras has by
Stone’s representation theorem the following form:

(ii) Bach denumerable atom-free Boolean algebra s free.

A question arises what kinds of assumptions must be added in order
to obtain theorems like (ii) omitting the agsumption of countability.
In the topological language that means: which 0-dimensional compach
spaces are homeomorphic with generalized Cantor sets?

Tt is easy to find perfect 0-dimensional compact spaces which are
not homeomorphic with any generalized Cantor set even when they
bave the same character at each of their points. Namely: the space
B(N)\N, where §(N) is the Clech compactification of the set of integers N,
is compact, 0-dimensional, has at each of its points the character of the
continuum, and is not homeomorphic with a generalized Cantor set(*).

() A Boolean algebra is frec whenever there exisis a system {a} of (free) gene-
rators such that a}il’rx,..maf“{c’ # @ where & =0 or 1 and o = af , ol = a,. Note .
that in the Boolean algebra of closed-open sets of & generalized Cantor set elements
B et ilu= 0, 4,=0 or 1 if ¢ 5 t,} constitute a system of free generators.

(*) Indeed: by Novak’s theorem 2 in [3] for each closed infinite set Ocf(N)\N
we have O = 280, One can find easily in each generalized Cantor set & closed subset
of cardinal N,
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The aim of this note is to prove the following

THEEOREM. Fach compact (infinite) 0-dimensional topological group is
homeomorphic with the generalized Cantor set (3).

In the language of Boolean algebras that means:

The Boolean algebra of all closed-open sets of a compact (infinite)
0-dimensional group is free.

Levma 1. An infinite Boolean algebra B is free if and only if there
exists a fransfinite sequence of subalgebras

B,C..CB,C..CB,=B

such that (1) B, consisis of two elements, @ and @', (2) if  is a limit-number,
Bg=JBa, (8)if p' = p+1, there exists a finite number of disjoint ele-
a<p

g
ments a’f,...,aﬁﬂeB, with | jof = @', such that of (4=1,...,k) is inde-

i=1

pendent of By and By = [Bs, df, ..., of,].
Proof. Take the product ¥ = Pr ¥, where Y= (s}, ..., s¥). Let By

B<y

be the algebra of all closed-open sets of the space Y. If 5 =, then By
is free. We define an application of the algebra B onto By by

@) =sixPr ¥,.
aFf
a<y

Since o, ..., of, are disjoint and of, of (with s B) are independent (just
a8 X PrY, and slx Pr Y, are), p can be extended to an isomorphism

aFf $#a
a<y &<y
of B and By.

Since each free Boolean algebra iz representable as a By, the con-
ditions (1)-(3) are satisfied with of = s x Pr¥,. .

o#f
a<ly

Now let @ be a 0-dimensional compact group and let {V,},., con-
stitute a family of all neighbourhoods of the unity of @ given by inva-
riant subgroups (4). We assume that G = V1€ {Valacy. For each V, take
all its different translations alv,, w3y @a°V,. Since V, are open subgroups
and @ is compact, n, are finite for all a. The family of open sets {alV,

. . a}a<
© (0 <1i<n,) constitutes a base of closed-open sets in @. The Boolealq

(®) In the case where the group is agsumed to he a Galois group with Krull’s to-
pology the theorem was proved by A. Biatynicki-Birula in [1].

(*) The existence of & full set of neighbourhoods of the unity which are invariant
subgroups of a compact 0-dimensional group is proved, e. g. in [2], p. 56.
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algebra generated by the family @V Yaey (0 < i < my) will be denoted
in the following by B. Take a subalgebra B; C B generated by the family
{6V Jacp (0 <8 <)

LeMMA 2. Bﬂ = {NﬁV}T’sB; where -Nﬂ — ﬂva .

a<f

Proof. It is evident that each set a e B is of the form N,V: it suf-
fices to take V= qa. In order to prove the converse, note first that for each
ae@if UeB,then al e By, and that for each VeB, V=a, o\ ..:uanV?n
{a; € @). Since Ny is an invariant subgroup (because V, are }nvana.mt), it
suffices to prove that NgV e Bp, where V € {Volucy- Assuming this ‘?ake
all finite intersections of the sets ¥, (e< ) and well-order them in a
transfinite sequence P Vay s V... (@< B). We have
® NV=NVJ.

a<f

Indeed, Np= (Vo= V. and hence NﬁV=(ﬂﬂI7a)V. In order to
a<f a<f a<,

prove (1) it suffices to show the following inclusion: () Tyc(nvay

a<f a<f

(the converse is trivial). Then let z ¢ ﬂﬂ V.V. It means that for each a
a<

T == B, Wwhere x, ef’la and y,eV. Hence 1 = y,, which implies
V¥~V 'w+ 0. Since V is compact and each finite intersection ofNﬁ?ts
belonging to {V:'@lecs belongs to (V. 'luc; again, @ Qﬁ(VnVa )
—Vn NV Let zeV ﬁﬁff;lw, that is 2¢V and 2=1h""z, h epﬁﬁ,.
a: a<

Then mi hz, which proves « e(m{g3 V)V, Since NV is open and V.V
are closed, equality (1) implies NV = VulV A ﬁakNV (< /3); Hence,
since the unity of the group @ belongs to V, N, V2OV . nVy. But,
TNf,,ln... m1~7%=17 being an open subgroup of N,-V, we have N4V
= a A 0,7 (a;¢@). Then by ¥ eB; we obtain NV e By.

Proof of the Theorem. Take the algebra B and a transfinite
sequence of its subalgebras B;CB,C..C B;C...CB,=B, such‘ that
B, is generated by the family {6V Jacp (0 <@ < mg). We are going tf>
prove that this sequence fulfils conditions (1)-(3) of lemma 1. It is evi-
dent that the sequence fulfils conditions (1) and (2). It remains to prove
condition (3). Take a subalgebra B;C B and the sets

(2) M;Vg, ey a},‘ﬁVﬁ.
We say that aiV;, is equivalent to agV if aiNVy = azNgV,. 1t is evident

that in each class of equivalent sets in the sequence (2) tl?ere is the same
number ks of elements. Let my = nglks. If k= 1, then in each class of
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equivalent elements there is exactly one element, that is ai¥, Vi aZNﬁV
8
. C " ; i
=0 if only j 4. Since ¢= )V, and oV, CazNV,; we have a;V,
%
= aj¥,Vs. This proves that, in the case ks=1, Vs ¢ B; and hence B,

= B;+1. Consider the case k; > 2. Denote by V,, 1 <4 < kj, elementy
of jth elass of equivalent sets of the sequence (2). Put

my
B L.
W=UaVy (=12, k).

We are going to show that the elements of have all the properties men-
tioned in (3) of Lemma 1. Indeed:

1° of ~df =0 if only 7 34,

2° all of are independent of By,

3° [Bs, Vg, ..., agVy) =By, of, ..., o]

1° is evident. To prove 2° take an arbitrary element beB. We
have to prove of ~b £ @ and b ~ () = @. By Lemma 2, b= ¥,V. Since

Mg
21 AT 7, :
,-91 4 NpVp = @, we have b~aj°N,V; @ or, which means the same,
» "
NV A af°NgVy 5 @, and hence we obtain NV ~nafVs 3. In order to

. , mg k . &,
obtain b~ (af)’ #0 note that (of) =) Lﬂj afVy= L5 of. Hence, sinee
J=lr#i r#EL ’ T l
k522 br(d)y 0. z
3 ‘It Is evident that [Bp, 4V, ..., ayVy] D [By, of, ..., aﬁﬂ]. In order
to obtain the converse inclusion note that af V= A NV ~ o}
q.
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Concerning the classification of topological spaces from
the stand-point of the theory of retracts

by
K. Borsuk (Warszawa)

We consider in topology two spaces ag different if they are not
homeomorphic and we identify all homeomorphic spaces. It is clear,
from the intuitive point of view, that difference between two not homeo-
morphic spaces may be more or less essential. But the notions which
allow us to state precisely how far one space differs topologically from
another are not numerous. To such notions belong the notion of homoia
(type of dimension) due to Fréchet [2], the notion of type of homotopy
due to Hurewicz [3], the notion of domination due to J. H. C. White-
head [8] and also the notion of R-type [1].

In this note I introduce some notions intimately related to the no-
tion of the R-type. Those notions allow us in some cases to formulate
precisely the sense of the statement that one space is topologically more
complicated than another, and also to formulate precisely in some cases
the degree of diversity between two topological spaces. Moreover, I give
some examples, determine the number of all R-types among the AR-sets
and pose some problems.

1. Basic definitions. By an R-mapping of a space X onto a space ¥
we understand here a function ¢ satisfying the following three conditions:

1° X is the set of arguments and Y the set of values for ¢.

2° ¢ is continuous.

3° There exists a continuous mapping u for which ¥ is the set of
arguments and the values belong to X and for which we have gyp(y) =y
for every ye Y. . .

In particular évery refraction, i. e. every continuous mapping of X
onto a subset ¥ of X, identical on ¥, is an R-mapping. It is easy to
show [1] that the R-mappings are the same as the mappings of the
form hr, where r is a retraction and kb a homeomorphism.

Two spaces X and Y are said to be R-equal, symbolically

(1) =¥,
R
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